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APPROXIMATELY COUNTING AND SAMPLING SMALL
WITNESSES USING A COLOURFUL DECISION ORACLE∗

HOLGER DELL† , JOHN LAPINSKAS‡ , AND KITTY MEEKS§

Abstract. In this paper, we design efficient algorithms to approximately count the number
of edges of a given k-hypergraph, and to sample an approximately uniform random edge. The
hypergraph is not given explicitly, and can be accessed only through its colourful independence oracle:
The colourful independence oracle returns yes or no depending on whether a given subset of the
vertices contains an edge that is colourful with respect to a given vertex-colouring. Our results extend
and/or strengthen recent results in the graph oracle literature due to Beame et al. (ITCS 2018), Dell
and Lapinskas (STOC 2018), and Bhattacharya et al. (ISAAC 2019).

Our results have consequences for approximate counting/sampling: We can turn certain kinds of
decision algorithms into approximate counting/sampling algorithms without causing much overhead
in the running time. We apply this approximate-counting/sampling-to-decision reduction to key
problems in fine-grained complexity (such as k-SUM, k-OV and weighted k-Clique) and parameterised
complexity (such as induced subgraphs of size k or weight-k solutions to CSPs).

1. Introduction. Many decision problems reduce to the question: Does a witness
exist? Such problems admit a natural counting version: How many witnesses exist?
For example, one may ask whether a bipartite graph contains a perfect matching, or
how many perfect matchings it contains. As one might expect, the counting version is
never easier than the decision version, and is often substantially harder; for example,
deciding whether a bipartite graph contains a perfect matching is easy, and counting
the number of such matchings is #P-complete [47]. However, even when the counting
version of a problem is hard, it is often easy to approximate well. For example, Jerrum,
Sinclair and Vigoda [36] gave a polynomial-time approximation algorithm for the
number of perfect matchings in a bipartite graph. The study of approximate counting
has seen amazing progress over the last two decades, particularly in the realm of
trichotomy results for general problem frameworks such as constraint satisfaction
problems, and is now a major field of study in its own right [21, 22, 29, 32, 33]. In
this paper, we explore the question of when approximating the counting version of a
problem is not merely fast, but essentially as fast as solving the decision version.

We first recall the standard notion of approximation in the field: For all real
x, y > 0 and 0 < ε < 1, we say that x is an ε-approximation to y if |x − y| < εy.
Note in particular that any ε-approximation to zero is itself zero, so computing an
ε-approximation to N is always at least as hard as deciding whether N > 0 holds.
For example, it is at least as hard to approximately count the number of satisfying
assignments of a CNF formula (i.e. to ε-approximate #Sat) as it is to decide whether
it is satisfiable at all (i.e. to solve Sat).

Perhaps surprisingly, in many cases, the converse is also true. For example, Valiant
and Vazirani [48] proved that any polynomial-time algorithm to decide Sat can be
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bootstrapped into a polynomial-time ε-approximation algorithm for #Sat, or, more
formally, that a size-n instance of any problem in #P can be ε-approximated in
time poly(n, ε−1) using an NP-oracle. A similar result holds in the parameterised
setting, where Müller [45] proved that a size-n instance of any problem in #W[i] with
parameter k can be ε-approximated in time g(k) · poly(n, ε−1) using a W[i]-oracle for
some computable function g : N→ N. Another such result holds in the subexponential
setting, where Dell and Lapinskas [17] proved that the (randomised) Exponential Time
Hypothesis is equivalent to the statement: There is no ε-approximation algorithm for
#3-Sat which runs on an n-variable instance in time ε−22o(n).

We now consider the fine-grained setting, which is the focus of this paper. Here,
we are concerned with the exact running time of an algorithm, rather than broad
categories such as polynomial time, FPT time or subexponential time. The above
reductions all introduce significant overhead, so they are not fine-grained. Here only
one general result is known, again due to Dell and Lapinskas [17]. Informally, if the
decision problem reduces “naturally” to deciding whether an n-vertex bipartite graph
contains an edge, then any algorithm for the decision version can be bootstrapped into
an ε-approximation algorithm for the counting version with only Õ(ε−2) overhead.

(Here and elsewhere, the Õ-notation suppresses a factor of C logC n for some constant
C > 0 depending only on the problem statement.) See Section 1.1 for more details.

The reduction of [17] is general enough to cover core problems in fine-grained
complexity such as Orthogonal Vectors, 3SUM and Negative-Weight Tri-
angle, but it is not universal. In this paper, we substantially generalise it to cover
any problem which can be “naturally” formulated as deciding whether a k-partite
k-hypergraph contains an edge; thus we essentially recover the original result on taking
k = 2. For any problem which satisfies this property, our result implies that any new
decision algorithm will automatically lead to a new approximate counting algorithm
whose running time is at most a factor of logO(k) n larger. Our framework covers
several reduction targets in fine-grained complexity not covered by [17], including
k-Orthogonal Vectors, k-SUM and Exact-Weight k-Clique, as well as some
key problems in parameterised complexity including weight-k CSPs and size-k induced
subgraph problems. (Note that the overhead of logO(k) n can be re-expressed as
k2kno(1) using a standard trick, so an FPT decision algorithm is transformed into an
FPT approximate counting algorithm; see Section 1.2.)

In fact, we get more than fast approximate counting algorithms — we also prove
that any problem in this framework has an algorithm for approximately-uniform
sampling, again with logO(k) n overhead over decision. There is a well-known reduction
between the two for self-reducible problems due to Jerrum, Valiant and Vazirani [37],
but it does not apply in our setting since it adds polynomial overhead.

In the parameterised setting, our results have interesting implications. Here, the
requirement that the hypergraph be k-partite typically corresponds to considering the
“colourful” or “multicolour” version of the decision problem, so our result implies that
uncoloured approximate counting is essentially equivalent to multicolour decision. We
believe that our results motivate considerable further study of the relationship between
multicolour parameterised decision problems and their uncoloured counterparts.

Finally, we note that the applications of our results are not just complexity-
theoretic in nature, but also algorithmic. They give a “black box” argument that
any decision algorithm in our framework, including fast ones, can be converted into
an approximate counting or sampling algorithm with minimal overhead. Concretely,
we obtain new algorithms for approximately counting and/or sampling zero-weight
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subgraphs, graph motifs, and satisfying assignments for first-order models, and our
framework is sufficiently general that we believe new applications will be forthcoming.

In Section 1.1, we set out our main results in detail as Theorems 1.1 and 1.2,
and discuss our edge-counting reduction framework (which is of independent interest).
We describe the applications of our main results to fine-grained complexity and
parameterised complexity in Section 1.2.

1.1. The k-hypergraph framework. Given a k-hypergraph G = (V,E), write
e(G) = |E|, and let

C(G) := {(X1, . . . , Xk) : X1, . . . , Xk are disjoint subsets of V }.

For any (X1, . . . , Xk) ∈ C(G), we write G[X1, . . . , Xk] for the k-partite k-hypergraph
on X1∪· · ·∪Xk whose edge set is {e ∈ E(G) : |e∩Xi| = 1 for all i ∈ [k]}. We define the
colourful independence oracle1 of G to be the function cINDG : C(G)→ {0, 1} such that
cINDG(X1, . . . , Xk) = 1 if G[X1, . . . , Xk] has no edges, and cINDG(X1, . . . , Xk) = 0
otherwise. Informally, we think of elements of C(G) as representing k-colourings of
induced subgraphs of G, with Xi being the i’th colour class; thus given a vertex
colouring of an induced subgraph of G, the colourful independence oracle outputs 1
if and only if no colourful edge is present. We consider a computation model where
the algorithm is given access to V and k, but can only access E via cINDG. We say
that such an algorithm has colourful oracle access to G, and for legibility we write it
to have G as an input. Note that given colourful oracle access to G, it is trivial to
simulate the colourful independence oracle of G[X] for any X ⊆ V (G) as in [7]. Our
main result is as follows.

Theorem 1.1. There is a randomised algorithm Count(G, ε, δ) with the following
behaviour. Suppose G is an n-vertex k-hypergraph, and that Count has colourful
oracle access to G. Suppose ε and δ are rational with 0 < ε, δ < 1. Then, writing
T = log(1/δ)ε−2k6k log4k+7 n: in time O(nT ), and using at most O(T ) queries to
cINDG, Count(G, ε, δ) outputs a rational number ê. With probability at least 1− δ, we
have ê ∈ (1± ε)e(G).

As an example of how Theorem 1.1 applies to approximate counting problems,
consider the problem #k-Clique of counting the number of size-k cliques in an
n-vertex graph H. We take G to be the k-hypergraph on vertex set V (H) whose edges
are precisely those size-k sets which span cliques in G. Thus, ε-approximating the
number of k-cliques in H corresponds to ε-approximating the number of edges in G.
We may use a decision algorithm for k-Clique with running time f(n, k) to evaluate
cINDG in time f(n, k), by applying it to an appropriate subgraph of G (in which we
delete all edges within each colour class Xi). Thus, Theorem 1.1 gives us an algorithm
for ε-approximating the number of k-cliques in H in time O(nT + Tf(n, k)). Any
decision algorithm for k-Clique must read a constant proportion of its input, so we
have f(n, k) = Ω(n) and our overall running time is O(Tf(n, k)). It follows that any
decision algorithm for k-clique yields an ε-approximation algorithm for #k-Clique
with overhead only T = ε−2(k log n)O(k).

The polynomial dependence on ε in Theorem 1.1 is not surprising, as by taking
ε < 1/2nk and rounding we can obtain the number of edges of G exactly. Thus,
if the dependence on ε were subpolynomial, Theorem 1.1 would essentially imply a

1Arguably, colourful edge oracle would be a more natural name, but we stick to the name
established in the literature.
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fine-grained reduction from exact counting to decision. This is impossible under SETH
in our setting; see [17, Theorem 3] for a more detailed discussion.

We extend Theorem 1.1 to approximately-uniform sampling as follows.

Theorem 1.2. There is a randomised algorithm Sample(G, ε) which, given a
rational number ε with 0 < ε < 1 and colourful oracle access to an n-vertex k-hypergraph
G containing at least one edge, outputs either a random edge f ∈ E(G) or Fail. For
all f ∈ E(G), Sample(G, ε) outputs f with probability (1± ε)/e(G); in particular, it
outputs Fail with probability at most ε. Moreover, writing T = ε−2k7k log4k+11 n,
Sample(G, ε) runs in time O(nT ) and uses at most O(T ) queries to cINDG.

We call the output of this algorithm an ε-approximate sample. Note that there is
a standard trick using rejection sampling which, given an algorithm of the above form,
replaces the ε−2 factor in the running time by a Õ(ε−1) factor; see [37]. Unfortunately,
it does not apply to Theorem 1.2, as we do not have a fast way to compute the true
distribution of Sample’s output.

By the same argument as above, Theorem 1.2 may be used to sample a size-k
clique from a distribution with total variation distance at most ε from uniformity with
overhead only T = ε−2(k log n)O(k) over decision. (We also note that it is easy to
extend Theorems 1.1 and 1.2 to cover the case where the original decision algorithm is
randomised, at the cost of an extra factor of k log n in the number of oracle uses; we
discuss this below.)

Theorems 1.1 and 1.2 are also of independent interest, generalising known results in
the graph oracle literature. Colourful independence oracles are a natural generalisation
of the bipartite independent set (BIS) oracles introduced in Beame et al. [7] to a
hypergraph setting, and when k = 2 the two notions coincide. They were first
introduced in Bishnu et al. [12] to solve various decision problems in parameterised
complexity. The main result of Beame et al. [7, Theorem 4.9] says that given BIS
oracle access to an n-vertex graph G, one can ε-approximate the number of edges of G
using O(ε−4 log14 n) BIS queries (which they take as their measure of running time).
The k = 2 case of Theorems 1.1 and 1.2 give a total of O(ε−2 log19 n) queries used,
improving their running time for most values of ε, and extending their algorithm to
approximately-uniform sampling.

When k = 3, our colourful independence oracles are similar to the tripartite
independent set (TIS) oracles of Bhattacharya et al. [10]. (These oracles ask whether
a 3-coloured graph H contains a colourful triangle, rather than whether a 3-coloured
3-hypergraph G contains a colourful edge. But if G is taken to be the 3-hypergraph
whose edges are the triangles of H, then the two notions coincide exactly.) Their
main result, Theorem 1, says that given TIS oracle access to an n-vertex graph G in
which every edge belongs to at most d triangles, one can ε-approximate the number of
triangles in G using at most O(ε−12d12 log25 n) TIS queries; they have subsequently [11]
improved this to O(ε−4d2 log18 n). Our Theorem 1.1 gives an algorithm which requires
only O(ε−2 log19 n) TIS queries, with no dependence on d, and which also generalises
to approximately counting k-cliques for all fixed k. Again, Theorem 1.2 extends the
result to approximately-uniform sampling.

In an independent work made public shortly after this paper appeared on arXiv,
Bhattacharya et al. [9] also prove a version of Theorem 1.1 (but not Theorem 1.2)
for arbitrary k. Their generalised d-partite independent set oracles are essentially the
same as our independence oracles, and their algorithm makes O(ε−4 log5k+5 n) queries
on an n-vertex k-uniform input hypergraph; for comparison, our algorithm makes
O(ε−2 log4k+7 n) queries. Our algorithm therefore trades a slightly worse dependence
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on n for a significantly better dependence on ε. As in [10], the authors are motivated
by the theory of graph oracles rather than by applications to specific approximation
algorithms.

We note in passing that the main result of [17] doesn’t quite fit into this setting,
as it also makes unrestricted use of edge existence queries. It resembles a version of
Theorem 1.1 restricted to k = 2 and with slightly lower overhead in n.

If the colourful independence oracle cINDG of a k-hypergraph G can be simulated
by a deterministic algorithm AG, then Theorems 1.1 and 1.2 immediately yield
algorithms for approximately counting and sampling edges of G: Whenever the
algorithms in Theorems 1.1 and 1.2 would query cINDG, they instead run AG as a
black-box. Suppose instead AG is a randomised algorithm whose error probability is
bounded by a constant, say 1/3. Then we can use standard probability amplification
techniques to make sure that, during any execution of the algorithms in Theorems 1.1
and 1.2, it is very likely that all queries to cINDG are answered correctly. For
convenience, we encapsulate this argument in the following corollary. We defer the
(simple) proof to Section 6.

Corollary 1.3. There is a randomised algorithm SampleCount with the following
behaviour. Let G be an arbitrary n-vertex k-hypergraph for some n and k, and let AG be
a randomised implementation of the colourful independence oracle of G with worst-case
running time T and error probability at most 1/3. Let ε, δ > 0. Then SampleCount

(V (G), k, AG, ε, δ) outputs an ε-approximation of e(G) with error probability at most δ
and an ε-approximate sample from E(G) with error probability zero. Moreover, the
running time of SampleCount is at most ε−2 log2(1/δ)(k log n)O(k)(n+ T ).

We remark that the worst-case running time of AG is measured as the maximum
possible running time of executions AG(X1, . . . , Xk) over all internal random choices
of AG and inputs X1, . . . , Xk. We also mention an analogous corollary for approxi-
mately counting and sampling edges of any k-partite hypergraph G[X1, . . . , Xk] even
if G is not k-partite itself; note that we do not require X1 ∪ · · · ∪Xk = V (G).

In the case where the hypergraph G is k-partite, we can make do with a weaker form
of the oracle. Given a k-hypergraph G = (V,E), we define the uncoloured independence
oracle of G to be the function INDG : 2V → {0, 1} such that INDG(X) = 1 if G[X]
contains no edges, and INDG(X) = 0 otherwise. As we show in Section 6, on a
k-partite graph it is not hard to simulate cINDG given access to INDG.

Corollary 1.4. There is a randomised algorithm PartitionedSampleCount

with the following behaviour. Let G be an arbitrary n-vertex k-partite k-hypergraph
for some n and k with vertex classes V1, . . . , Vk, and let AG be a randomised imple-
mentation of the uncoloured independence oracle of G with worst-case running time T
and error probability at most 1/3. Let ε, δ > 0. Then PartitionedSampleCount

(V1, . . . , Vk, k, AG, ε, δ) outputs an ε-approximation of e(G) with failure probability at
most δ and an ε-approximate sample from E(G) with error probability zero. The run-
ning time of PartitionedSampleCount is at most ε−2 log2(1/δ)(k log n)O(k)(n+ T ).

1.2. Applications. Corollaries 1.3 and 1.4 have algorithmic implications for
many well-known problems in fine-grained and parameterised complexity. On a formal
level, there is no reason not to simply apply Corollaries 1.3 and 1.4. However, it is
instructive to tie these corollaries back to the standard informal notion of the “colourful
version” of a problem, which we do in the following pair of definitions. Recall that
a counting problem is a function #Π: {0, 1}∗ → N and its corresponding decision
problem is defined via Π = {x ∈ {0, 1}∗ : #Π(x) > 0}.
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Definition 1.5. Π is a uniform witness problem if there is a function from
instances x ∈ {0, 1}∗ to uniform hypergraphs Gx such that:

(i) #Π(x) = e(Gx);

(ii) V (Gx) and the size of edges in E(Gx) can be computed from x in time Õ(|x|);
(iii) there exists an algorithm which, given x and S ⊆ V (Gx), in time Õ(|x|)

prepares an instance Ix(S) of Π such that GIx(S) = Gx[S] and |Ix(S)| ∈ O(|x|).
We say Π is a colourful uniform witness problem if Gx is always k-partite, where k is
the edge size of Gx. The set E(Gx) is the set of witnesses of the instance x.

For all the problems we consider, there will only be a single natural choice of
hypergraph representation, and so we consider this representation to be a part of
the problem statement. For example, k-Clique is a uniform witness problem in
which for a given instance x = (H, k), Gx is the hypergraph on V (H) whose edges
are the k-cliques of H. It is immediate that Definition 1.5(i) and (ii) are satisfied,
and Definition 1.5(iii) is satisfied because “induced subgraphs of Gx correspond to
sub-instances of x” — that is, for a given instance x = (H, k) of k-Clique and a
given S ⊆ V (Gx) = V (H), Ix(S) is the instance (H[S], k). As a second example,
Orthogonal Vectors is a colourful uniform witness problem in which the witnesses
are pairs of orthogonal vectors from the given input sets, and again induced subgraphs
of Gx correspond to sub-instances of x.

Definition 1.6. Suppose Π is a uniform witness problem. Colourful-Π is
defined as the problem of, given an instance x ∈ {0, 1}∗ of Π and a partition of V (Gx)
into disjoint sets S1, . . . , Sk, deciding whether cINDGx(S1, . . . , Sk) = 0 holds.

In other words, in Colourful-Π, the goal is to decide whether Gx[S1, . . . , Sk]
has at least one edge containing one vertex from each colour class Si. For example, in
Colourful-k-Clique, we are given a graph G, an integer k, and a k-colouring of
G, and wish to know whether G contains a k-clique with one vertex of each colour.
Observe that if Π is already colourful as in Definition 1.5, then Colourful-Π reduces
to kO(k) instances of Π, since any colourful edges must respect the existing vertex
classes of Gx and since induced subgraphs of Gx correspond to instances of Π. The
colourful version of a problem is sometimes referred to as the multicolour version [43].

Given an instance of Π, we write nx for the number of vertices of Gx, kx for the
edge size of Gx, and Wx for the set of witnesses of x. Using this terminology, we can
now restate (a slightly simplified form of) Corollaries 1.3 and 1.4 as follows, where
we use part (iii) of Definition 1.5 to ensure that cINDGx(S1, . . . , Sk) can be computed
efficiently even when S1 ∪ · · · ∪ Sk ( V (Gx). We prove this result in section 6.

Theorem 1.7. Let Π be a uniform witness problem, and let T be any function
from instances of Π to the positive reals. Suppose that given an instance x of Π, there
is an algorithm to solve Colourful-Π on x with error probability at most 1/3 in

time T (x). Suppose also that any such algorithm has running time Ω̃(|x|). Then there
is a randomised algorithm which, given an instance x of Π and ε > 0, with running
time

(1.1) ε−2(kx log nx)O(kx) ·max
{
T (Ix(S)) : S ⊆ V (Gx)

}
,

outputs an ε-approximation to #Π(x) with probability at least 2/3 and an ε-approximate
sample from Wx with error probability zero.

In a typical application of Theorem 1.7, the maximum in (1.1) will be Õ(T (x)).
Recall that if Π is already colourful, then Colourful-Π reduces to kO(k) instances
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of Π, so Theorem 1.7 can be used to reduce from colourful approximate counting
to colourful decision as well as from uncoloured approximate counting to colourful
decision.

One large family of problems to which this meta-theorem can naturally be applied
is that of self-contained k-witness problems (see [44]); these are essentially a form of
uniform witness problems Π in which for any instance x of Π and all S ⊆ V (Gx), the
instance Ix(S) is a sub-instance of x in a well-defined sense. Thus, every self-contained
k-witness problem is a uniform witness problem, but it seems likely that not every
uniform witness problem is a self-contained k-witness problem.

Applications in fine-grained complexity. In the fine-grained setting, k is
considered to be a fixed constant, so the running-time bound in Theorem 1.7 can be
written as Õ(ε−2 · T (n, k)).

In [17], fine-grained reductions from approximate counting to decision were shown
for the problems Orthogonal Vectors, 3SUM, and Negative-Weight Tri-
angle. In Section 6, we generalise these reductions to k-Orthogonal Vectors,
k-SUM, Zero-Weight k-Clique, and other subgraph isomorphism problems, such
as Colourful-H, Exact-Weight k-Clique, and Exact-Weight H. Similarly, we
also reduce approximate model counting to model checking with respect to k-variable
first-order formulas. In each case, we also have a corresponding result for approximate
sampling of witnesses.

We prove these results in Section 6 as a corollary of our main results. To do so,
we observe that these problems are natural k-witness problems, and that any decision
algorithm for each of these problems can be coaxed in a more or less standard way to
also solve the colourful variant of the problem in roughly the same time.

Applications in parameterised complexity. In the parameterised setting, we
assume that k is taken as the parameter and are therefore interested in the running
time of our algorithms as a function of k. We note that our reduction from approximate
counting to decision involves only a “fine-grained FPT overhead”: we can rewrite
the overhead of logO(k) n as an overhead of k2kno(1) by a standard calculation.2

Thus, whenever there is an FPT implementation of the colourful independence oracle,
Theorem 1.7 gives us an FPTRAS (fixed parameter tractable randomised approximation
scheme [6]) for the corresponding (colourful or uncoloured) counting problem. For
the formal definition of an FPTRAS, and other standard notions in parameterised
(counting) complexity, we refer the reader to [26].

The family of uniform witness problems from Definition 1.5 includes numerous
problems in parameterised complexity, including weight-k solutions to CSPs, size-k
solutions to database queries, and sets of k vertices in a weighted or unweighted graph
or hypergraph which induce a sub(hyper)graph with specific properties. We present
three concrete applications of Theorem 1.7.

Our first application of Theorem 1.7 is to the Graph Motif problem, introduced
by Lacroix, Fernandes and Sagot [40] in the practical context of metabolic networks.
While we defer a detailed discussion to Section 6.1, it will be immediate from the
definition that Graph Motif is a uniform witness problem, and that Colourful-
Graph Motif reduces to Graph Motif (see Lemma 6.3); hence Theorem 1.7
combined with the best-known algorithm for Graph Motif yields an improved
approximate counting algorithm (see Corollary 6.2).

2Indeed, if k ≤ logn/(log logn)2 then logO(k) n = eO(logn/ log logn) = no(1), and if k ≥
logn/(log logn)2 then logO(k) n = O(k2k).
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Our second application of Theorem 1.7 is to induced subgraph counting. Many
problems in this area are special cases of Induced Subgraph With Property (Φ),
abbreviated to ISWP(Φ). This problem asks whether a given graph G contains a k-
vertex induced subgraph with the given property Φ; the problem is then parameterised
by k. For example, if Φ is the family of all cliques, then ISWP(Φ) is simply k-Clique.
There is also a multi-coloured variant of the problem, MISWP(Φ), in which every
vertex in G receives one of k colours, and we seek a k-vertex induced subgraph with
property Φ and one vertex of each colour. See [43] for a survey of results on exact
and approximate #ISWP(Φ) and #MISWP(Φ), and [27] for a more recent complexity
classification of #ISWP(Φ) whenever Φ is a hereditary property. Observe that ISWP is
a uniform witness problem, where the witnesses are the k-vertex subsets of V (G) which
induce copies of graphs satisfying Φ, and Colourful-ISWP(Φ) is simply MISWP(Φ);
hence Theorem 1.7 immediately implies that there is an FPTRAS for #MISWP(Φ) and
#ISWP(Φ) whenever there is an FPT decision algorithm for MISWP(Φ), and moreover
that the running times of these algorithms are the same up to a sub-polynomial factor
in the instance size. This improves on the best previously-known result (due to
Meeks [44, Corollaries 4.8 and 4.10]) in two ways: firstly, in [44] the result is proved
only for properties Φ that are preserved under adding edges; and secondly, in [44] the
FPTRAS is slower than the FPT decision algorithm by a polynomial factor.

Our third application of Theorem 1.7 is to the problems Colourful-H and
Weighted-H for a given k-vertex graph H. In Colourful-H, we are given a
graph G whose vertices are coloured with k colours, and we wish to decide whether G
contains a subgraph copy of H in which every colour is represented. In Weighted-H,
we are given an edge-weighted graph G, and we wish to decide whether G contains a
subgraph copy of H with total weight zero. Unlike our other two applications, the
application of Theorem 1.7 in this setting is not straightforward. The natural way
to frame these problems as uniform witness problems would be, as with ISWP, to
take the witnesses to be vertex sets which induce a copy of H; however, the number
of witnesses would then not in general agree with the number of colourful or zero-
weighted copies of H as required by Definition 1.5(i). Nevertheless, we are able to
use Theorem 1.7 to give a fine-grained reduction from approximate #Colourful-H
to Colourful-H and from approximate #Weighted-H to Weighted-H for all
graphs H; see Corollary 6.8 and Corollary 6.10 for details.

One reason this third application is interesting is that it throws an existing
research question into a new light. In Uncoloured-H, we are given a graph G,
and we wish to decide whether G contains a subgraph copy of H. There are easy
and well-known fine-grained reductions from Uncoloured-H to Colourful-H and
from approximate #Uncoloured-H to approximate #Colourful-H, via colour
coding [5, 4]. For some graphs H, such as cliques, there are also simple reductions in
the other direction. However, a full proof of equivalence would imply the long-standing
dichotomy conjecture for the parameterised embedding problem (see [16] for recent
progress on this conjecture). Corollary 6.8 shows that this question is strongly linked
to the question of when there is a fine-grained FPT reduction from Colourful-H to
Uncoloured-H, and we hope this will spur further research in the area.

Organisation. In the following section, we set out our notation and quote some
standard probabilistic results for future reference. We then prove Theorem 1.1 in
Section 3.2, using a weaker approximation algorithm which we set out in Section 4.
We then prove Theorem 1.2 (using Theorem 1.1) in Section 5. Finally, we prove our
assorted corollaries in Section 6; we emphasise that in general, the proofs in this
section are easy and use only standard techniques.
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2. Preliminaries.

2.1. Notation. Let k ≥ 2 and let G = (V,E) be a k-hypergraph, so that each
edge in E has size exactly k. We write e(G) = |E|. For all U ⊆ V , we write G[U ]
for the subgraph induced by U . For all S ⊆ V , we write dG(S) = |{e ∈ E(G) : S ⊆
e}| for the degree of S in G. If S = {v1, . . . , v|S|}, then we will sometimes write
dG(v1, . . . , v|S|) = dG(S).

For all positive integers t, we write [t] = {1, . . . , t}. We write ln for the natural
logarithm, and log for the base-2 logarithm. Given real numbers x, y ≥ 0 and 0 < ε < 1,
we say that x is an ε-approximation to y if (1−ε)x < y < (1+ε)x, and write y ∈ (1±ε)x.
We extend this notation to other operations in the natural way, so that (for example)
y ∈ xe±ε/(2∓ ε) means that xe−ε/(2 + ε) ≤ y ≤ xeε/(2− ε).

When stating quantitative bounds on running times of algorithms, we assume the
standard randomised word-RAM machine model with logarithmic-sized words; thus
given an input of size N , we can perform arithmetic operations on O(logN)-bit words
and generate uniformly random O(logN)-bit words in O(1) time.

Recall the definitions of C(G) and the colourful independence oracle of G, and
colourful oracle access from Section 1.1. Note that for all X ⊆ V (G), cINDG[X] is a
restriction of cINDG. Thus, an algorithm with colourful oracle access to G can safely
call a subroutine that requires colourful oracle access to G[X].

2.2. Probabilistic results. We use some standard results from probability
theory, which we collate here for reference. The following lemma is commonly known
as Hoeffding’s inequality.

Lemma 2.1 ([14, Theorem 2.8]). Let X1, . . . , Xm be independent real random
variables, and suppose there exist a1, . . . , am, b1, . . . , bm ∈ R be such that Xi ∈ [ai, bi]
with probability 1. Let X =

∑m
i=1Xi. Then for all t ≥ 0, we have

P
(
|X − E(X)| ≥ t

)
≤ 2e−2t2/

∑m
i=1(bi−ai)2 .

The next lemma is a form of Bernstein’s inequality.

Lemma 2.2. Let X1, . . . , Xk be independent real random variables. Suppose there
exist ν and M such that with probability 1,

∑
i E(X2

i ) ≤ ν and |Xi| ≤M for all i ∈ [k].

Let X =
∑k
i=1Xi. Then for all z ≥ 0, we have

P
(
|X − E(X)| ≥ z

)
≤ 2 exp

(
− 3z2

6ν + 2Mz

)
.

Proof. Apply [14, Corollary 2.11] to both X and −X, taking c = M/3 and t = z,
then apply a union bound.

The next lemma collates two standard Chernoff bounds.

Lemma 2.3 ([34, Corollaries 2.3-2.4]). Suppose X is a binomial or hypergeometric
random variable with mean µ. Then:

(i) for all 0 < ε ≤ 3/2, P(|X − µ| ≥ εµ) ≤ 2e−ε
2µ/3;

(ii) for all t ≥ 7µ, P(X ≥ t) ≤ e−t.

The next lemma is a standard algebraic bound.

Lemma 2.4. Let N, k ∈ Z>0. If N ≥ 2k2, then
(

2N−k
N−k

)
/
(

2N
N

)
≥ 2−k−1.

9



Proof. We have

(
2N − k
N − k

)/(2N

N

)
=

(2N − k)!N !

(2N)!(N − k)!
=

k−1∏
i=0

(N − i)
/ k−1∏
j=0

(2N − j)

≥
( N − k + 1

2N − k + 1

)k
=
(1

2
− k − 1

2(2N − k + 1)

)k
≥ 2−k

(
1− k

N

)k
≥ 2−k

(
1− k2

N

)
≥ 2−k−1.

We now prove a technical lemma, which should be read as follows. We are given
the ability to sample from bounded probability distributions D1, . . . ,Dq on [0,∞). We
wish to estimate the sum of their means using as few samples as possible, and we are
given access to a crude estimate of the mean of each Di with multiplicative error b
(for “bias”). Lemma 2.5 says that we can do so to within relative error ξ, with failure
probability at most δ, by sampling ti times from Di for each i ∈ [q]. This lemma will
be important for reducing the running time of our algorithm; see the sketch proof in
section 3.1 for more details.

Lemma 2.5. Let 0 < ξ, δ < 1, let b ≥ 1, and let M1, . . . ,Mq > 0. For all i ∈ [q],
let Di be a probability distribution on [0,Mi] with mean µi. For all i ∈ [q], let µ̂i satisfy
0 < µ̂i ≤ µib, and let

ti =

⌈
4bMi log(2/δ)

ξ2
∑
` µ̂`

⌉
.

Let {Xi,j : i ∈ [q], j ∈ [ti]} be independent random variables with Xi,j ∼ Di. Then with
probability at least 1− δ,

q∑
i=1

ti∑
j=1

Xi,j

ti
∈ (1± ξ)

q∑
i=1

µi.

Note that while Lemma 2.5 does not require a lower bound on µ̂1, . . . , µ̂q, without one
it is useless as

∑
i ti may be arbitrarily large. When we apply Lemma 2.5, we will do

so with µi/b ≤ µ̂i ≤ µib for all i ∈ [q].

Proof. We will apply a form of Bernstein’s inequality (Lemma 2.2). Let

X =

q∑
i=1

ti∑
j=1

Xi,j

ti
, x =

q∑
i=1

µi.

Thus, we seek to prove P(X ∈ (1± ξ)x) ≥ 1− δ. Note that E(X) = x, and that

q∑
i=1

ti∑
j=1

E
(
(Xi,j/ti)

2
)
≤

q∑
i=1

ti∑
j=1

1

t2i
E(MiXi,j) =

q∑
i=1

Miµi
ti

.

Let M = max{Mi/ti : i ∈ [q]}, so that Xi,j/ti ≤ M for all i, j. Then by Lemma 2.2,
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applied to the variables X and Xi,j/ti with z = ξx, it follows that

P(|X − x| ≥ ξx) ≤ 2 exp

(
− 3ξ2x2

6
∑
i
Miµi
ti

+ 2Mξx

)
≤ 2 exp

(
− 3ξ2x2

2 max
{

6
∑
i
Miµi
ti

, 2Mξx
})

= max

{
2 exp

(
− ξ2x2

4
∑
i
Miµi
ti

)
, 2 exp

(
−3ξx

4M

)}
.(2.1)

We now bound the exponents of each term in the max. By our choice of ti’s, we
have

ξ2x2

4
∑
i
Miµi
ti

≥ ξ2x2
/(

4
∑
i

Miµi ·
ξ2
∑
j µ̂j

4bMi log(2/δ)

)
=

bx2 log(2/δ)∑
i µi ·

∑
j µ̂j

=
bx log(2/δ)∑

j µ̂j
.

Since µ̂i ≤ µib for all i, we have x ≥
∑
j µ̂j/b, so

(2.2)
ξ2x2

4
∑
i
Miµi
ti

≥ log(2/δ) ≥ ln(2/δ).

Moreover, again by our choice of ti’s we have

M = max
{Mi

ti
: i ∈ [q]

}
≤ max

{ ξ2
∑
j µ̂j

4b log(2/δ)
: i ∈ [q]

}
≤ ξ2x

4 log(2/δ)
,

so

(2.3)
3ξx

4M
≥ 3 log(2/δ)

ξ
> ln(2/δ).

The result therefore follows from (2.1), (2.2) and (2.3).

3. The main algorithm. In this section we prove our main approximate count-
ing result, Theorem 1.1. We will make use of an algorithm with a weaker approximation
guarantee, whose properties are stated in Lemma 3.3; we will prove this lemma in
Section 4.

3.1. Sketch proof. Let G be the input n-vertex k-hypergraph and let ε be
the input error tolerance, so that we wish to find an ε-approximation of e(G). The
overall aim of our algorithm is to iteratively construct a list L of random induced
sub-hypergraphs G[X1], . . . , G[Xt], together with associated weights w1, . . . , wt, such
that with high probability:

(A1)
∑
i wi · e(G[Xi]) is an ε-approximation to the total number of edges in G; and

(A2) each sub-hypergraph G[Xi] has few enough edges so that we can efficiently
compute e(G[Xi]) exactly by brute force using the coloured independence
oracle; and

(A3) the list L is short enough so that its length does not significantly affect the
running time.

Once a list L satisfying (A1)–(A3) is constructed, we can efficiently approximate e(G)
by computing each e(G[Xi]) using (A2) and taking the weighted sum

∑
i wie(G[Xi]).
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Constructing the list L. We represent L as a list of pairs (wi, Xi). Initially L
contains the single pair (1, V (G)), which naturally satisfies (A1). In order to make
progress towards a list satisfying (A2) and (A3), we repeatedly modify it in two ways:

Refine: To make the sub-hypergraphs smaller, we replace each hypergraph G[X] in
the list L by several random sub-hypergraphs G[Xi] induced by half of the
vertices of X. That is, each pair (w,X) is replaced by (w1, X1), . . . , (wt, Xt)
where |Xi| = |X|/2 holds for all i. The weights wi are set to maintain (A1)
in expectation. This step gets us closer to achieving (A2) and farther from
achieving (A3) while maintaining (A1).

Reduce: To make the list L shorter, we discard randomly-selected elements from it and
re-weight the remaining elements to maintain (A1) in expectation. This step
gets us closer to achieving (A3) while maintaining (A1) and (A2).

We alternate between applying Refine and Reduce to the list until all of (A1)–(A3)
are satisfied, at which point we compute and return

∑
i wie(G[Xi]).

The overall structure of our algorithm for Theorem 1.1 is very similar to that of
Beame et al. [7]. The Cleanup step of [7] roughly corresponds to the calculation of
the weighted sum at the end, and is similar. However, our implementation of Refine
and Reduce differs in two major ways. Firstly, a key component of both Refine and
Reduce is the ability to compute a coarse estimate of the number of edges in each
graph G[X], with multiplicative error logΘ(k) n, and the technique for this used in [7]
does not generalise easily to hypergraphs. We provide such an algorithm as Coarse

and state its properties as Lemma 3.3, but we defer both the sketch proof and the full
proof of this lemma to Section 4. Secondly, by better incorporating these estimates
into Refine and Reduce, we improve the running time’s dependence on ε from ε−4

to ε−2. In order to expand on these differences, we now sketch our implementation of
Refine and Reduce given Coarse.

Sketch of Reduce. Suppose we have a long list L of pairs (w,X) satisfying (A1),
and we wish to make it shorter by randomly discarding and re-weighting elements
while maintaining (A1). (In fact, we start by maintaining something a little stronger
than (A1) since the quality of approximation will degrade as the algorithm runs, but
we ignore this subtlety in our sketch.) We do this by exploiting a statistical technique
called importance sampling, previously applied to the k = 2 case by Beame et al. [7].
The idea is to use the coarse estimates of each e(G[X]) given by Coarse to divide the
pairs (w,X) ∈ L into “bins”, with one bin for pairs with we(G[X]) ∈ [1, 2), one bin for
pairs with we(G[X]) ∈ [2, 4), one bin for pairs with we(G[X]) ∈ [4, 8), and so on for a
total of O(k log n) bins. We then choose a suitably large t and sample t pairs from
each bin uniformly at random (or take the whole bin if it contains less than t pairs),
then re-weight each element to ensure that (A1) is maintained in expectation; we
can then prove concentration via e.g. Hoeffding’s inequality (Lemma 2.1) to conclude
that (A1) is maintained with high probability.

The larger we take t to be in Reduce, the fewer pairs we can discard from L; thus
to minimise our running time, we should take t to be as small as possible while still
being able to apply Hoeffding’s inequality, and this is essentially the approach of [7].
The key difference in our approach is that we make use of Lemma 2.5, allowing t to
vary between bins. If our estimates from Coarse say that pairs (w,X) in some bin
account for about half of the quantity

∑
(w,X)∈L we(G[X]) we wish to preserve, then

we will take about half our samples from that bin, and correspondingly fewer from the
other bins. This allows our algorithm for Reduce to maintain a substantially shorter
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list than the algorithm used in [7], and this is one of the two reasons for our improved
running time.

Sketch of Refine. In [7], Refine was implemented by keeping the number of
vertices the same but halving the number of edges using random colourings. Our im-
plementation is different and works as follows. Suppose we have a list L of pairs (w,X)
satisfying (A1), and we wish to halve the size of all sets X while maintaining (A1).
Then for each X and any integer t ≥ 1, we independently choose t uniformly random
subsets X1, . . . , Xt ⊆ X subject to |Xi| = |X|/2 for all i. It is not hard to show using
Lemma 2.4 that E(e(G[Xi])) ≈ e(G)/2k holds for all i. Thus, using Hoeffding’s in-
equality for large enough t, we can show that the total number of edges

∑t
i=1 e(G[Xi])

is concentrated around its mean of roughly te(G)/2k. With high probability, we now
have (2k/t)

∑t
i=1 e(G[Xi]) ≈ e(G), so that replacing (w,X) with {(2kw/t,Xi) : i ∈ [t]}

maintains (A1). Similarly to Reduce, we use Lemma 2.5 along with our estimates
from Coarse to tailor the value of t to each pair (w,X) ∈ L and avoid making the list
too long in a single iteration of Refine, and this is the second reason for our improved
running time.

Organisation. The remainder of this section is organised as follows. We begin
by setting out the precise format of our list L in Definition 3.1, which (unlike our
sketch) also stores the estimates of edge counts from Coarse. We then state the
pruning algorithm Reduce and prove its correctness in Lemma 3.2. After this, we state
the behaviour we expect from our coarse counting subroutine Coarse in Lemma 3.3
(deferring the proof to Section 4), state the expansion algorithm Refine using Coarse

as a subroutine, and prove its correctness in Lemma 3.4. We then state HelperCount,
which is essentially our main algorithm, and prove its correctness in Lemma 3.5. Finally,
we prove Theorem 1.1. The purpose of HelperCount is to move some uninteresting
bookkeeping details out of the main proof for readability; namely, the differences
between HelperCount and Count are that HelperCount requires the number of vertices
n to be a power of 2, has a constant failure probability (rather than δ), and could
(with vanishing probability) run more slowly than expected.

3.2. The main algorithm. Recall from our sketch proof in Section 3.1 that our
algorithm will maintain a weighted list L of induced subgraphs of steadily decreasing
size. For convenience, we will also include coarse estimates of the edge count of each
graph in L. Rather than set out the format of this list each time we use it, we define
it formally now.

Definition 3.1. Let G be a hypergraph, let i > 0 be an integer, and let b ≥ 1
be rational. Then a (G, b, y)-list is a list of triples (w, S, ê) such that w and ê are
positive rational numbers, S ⊆ V (G) with |S| = 2y, and ê/b ≤ e(G[S]) ≤ êb. For any
(G, b, y)-list L, we define

Z(L) :=
∑

(w,S,ê)∈L

we(G[S]).

Initially, we will take L = ((1, V (G), ê)) where ê/b ≤ e(G) ≤ êb, so that Z(L) =
e(G). As the algorithm progresses, Z(L) will remain a good approximation to e(G),
and eventually we will be able to compute it efficiently. We are now ready to set out
our importance sampling algorithm, Reduce, which we will use to keep the length of
L small.
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Algorithm Reduce(G, b, y, L, ξ, δ).

Input: G is an n-vertex k-hypergraph, where n is a power of 2, to which Reduce

has (only) colourful oracle access. b is a rational number with b ≥ 1, and y is a
positive integer. L is a (G, b, y)-list with 1/2 ≤ Z(L) ≤ 2nk and |L| ≤ n11k. δ is a
rational number with 0 < δ < 1, and ξ is a rational number with n−2k ≤ ξ < 1.

Behaviour: Reduce(G, b, y, L, ξ, δ) outputs a (G, b, y)-list L′ satisfying the fol-
lowing properties.

(a) |L′| ≤ 33k log(4nb) + 32b2 log(2/δ)/ξ2.
(b) With probability at least 1− δ, we have Z(L′) ∈ (1± ξ)Z(L).

(T1) Calculate a← b15k log(4nb)c+ 1 and

Li ← {(w, S, ê) ∈ L : 2i−1 ≤ wê < 2i} for each −a ≤ i ≤ a.

(We will show that every significant entry of L will be contained in exactly
one Li, and entries (w, S, ê) ∈ Li satisfy wê ≈ 2i.)

(T2) For each −a ≤ i ≤ a, calculate

ti ←
⌈16b22i|Li| log(2/δ)

ξ2W

⌉
, where W :=

∑
(w,S,ê)∈L

wê.

(T3) For each −a ≤ i ≤ a, calculate a multiset L′i as follows. If
|Li| ≤ ti, let L′i ← Li. Otherwise, sample ti entries (wi,1, Si,1, êi,1),
. . . , (wi,ti , Si,ti , êi,ti) from Li independently and uniformly at random, let
w′i,j ← wi,j |Li|/ti, and let L′i ← {(w′i,j , Si,j , êi,j) : j ∈ [ti]}.

(T4) Form L′ by concatenating the multisets {L′i : −a ≤ i ≤ a} in an arbitrary
order, and return L′.

The algorithm Reduce improves significantly on the summation reduction algorithm
of [7, Lemma 2.5], which in our notation outputs a list of length Ω(kb4 log( 1

δ ) log(nb)/ξ2)
compared to our length of O(k log(nb) + b2 log( 1

δ )/ξ2). We obtain this improvement by
defining the number ti of elements to sample from each “bin” Li of tuples in creating L′i
to depend on the approximate value wê ≈ 2i of tuples in Li. By contrast, [7, Lemma 2.5]
defined a single threshold α and sampled min{α, |Li|} tuples from each Li.

Lemma 3.2. Reduce(G, b, y, L, ξ, δ) behaves as claimed above, has running time
O(|L|k3 log(nb/δ)), and does not invoke cINDG.

Proof. Running time. It is clear that Reduce(G, b, y, L, ξ, δ) does not invoke
cINDG. Recall that we work with the word-RAM model, so we can carry out elementary
arithmetic operations on O(k log n)-bit numbers in O(k2) time. Thus step (T1) takes
time O(k2a|L|), and step (T2) takes time O(k2a(log(1/δ) + |L|)). Since |L′i| =
min{|Li|, ti}, steps (T3) and (T4) take time O(k2a|L|). The required bounds follow.

Correctness. In forming L′ from L, Reduce only updates the first elements (i.e. the
weights) of entries of L; since L is a (G, b, y)-list, and the definition of a (G, b, y)-list
does not depend on these weights, L′ is also a (G, b, y)-list. We next prove (a). We
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have

|L′| =
∑
|i|≤a

|L′i| ≤
∑
|i|≤a

ti ≤
∑
|i|≤a

(
1 +

16b22i|Li| log(2/δ)

ξ2W

)
= 2a+ 1 +

16b2 log(2/δ)

ξ2W

∑
|i|≤a

2i|Li|.(3.1)

Recall from the definition of Li that, for all (w, S, ê) ∈ Li, we have wê ≥ 2i−1, so∑
|i|≤a

2i|Li| ≤
∑
|i|≤a

(
2

∑
(w,S,ê)∈Li

wê
)

= 2W.

It therefore follows from (3.1) that |L′| ≤ 2a+ 1 + 32b2 log(2/δ)/ξ2, so property (a)
holds.

It remains to prove property (b). This will follow easily from Lemma 2.5. Before
we can apply it, however, we must set our notation and prove the conditions of the
lemma hold. Let

I := {−a ≤ i ≤ a : |Li| > ti};

thus in step (T3) of Reduce, for each i /∈ I we choose L′i = Li, and for each i ∈ I we
choose L′i by sampling ti elements (wi,j , Si,j , êi,j) from Li. For each i ∈ I and j ∈ [ti],
let

Xi,j := wi,je(G[Si,j ])|Li|, Mi := 2ib|Li|,

µi :=
∑

(w,S,ê)∈Li

we(G[S]), µ̂i :=
∑

(w,S,ê)∈Li

wê.

For all i and j, it is clear that Xi,j ≥ 0. Moreover, since L is a (G, b, y)-list and
(wi,j , Si,j , êi,j) ∈ L, we have e(G[Si,j ]) ≤ bêi,j ; thus by the definitions of Li and Xi,j

we have
Xi,j ≤ bwi,j êi,j |Li| ≤ 2ib|Li| = Mi.

It is also true that E(Xi,j) = µi, that 0 ≤ µ̂i ≤ µib, that the Xi,j ’s are independent,
and that ⌈4bMi log(2/δ)

(ξ/2)2
∑
` µ̂`

⌉
=
⌈16b22i|Li| log(2/δ)

ξ2W

⌉
= ti.

It therefore follows from Lemma 2.5 that with probability at least 1− δ,

(3.2)
∑
i∈I

ti∑
j=1

Xi,j

ti
∈ (1± ξ/2)

∑
i∈I

µi.

Suppose this event occurs; then we will show that Z(L′) ∈ (1± ξ)Z(L), as in (b).
Plugging our definitions into (3.2), we see that

∑
i∈I

ti∑
j=1

Xi,j

ti
=
∑
i∈I

ti∑
j=1

wi,j |Li|
ti

e(G[Si,j ]) =
∑
i∈I

∑
(w,S,ê)∈L′i

we(G[S]),

and ∑
i∈I

µi =
∑
i∈I

∑
(w,S,ê)∈Li

we(G[S]),

15



so ∑
i∈I

∑
(w,S,ê)∈L′i

we(G[S]) ∈ (1± ξ/2)
∑
i∈I

∑
(w,S,ê)∈Li

we(G[S]).

We have L′i = Li for all i ∈ {−a, . . . , a} \ I, so it follows that

(3.3)
∑
|i|≤a

∑
(w,S,ê)∈L′i

we(G[S]) ∈ (1± ξ/2)
∑
|i|≤a

∑
(w,S,ê)∈Li

we(G[S]).

For all (w, S, ê) ∈ L, since L is a (G, b, y)-list with Z(L) ≤ 2nk, we have

wê ≤ bwe(S) ≤ bZ(L) ≤ 2bnk < 2a.

Thus, for all (w, S, ê) ∈ L \
⋃
|i|≤a Li, we have wê ≤ 2−a. It follows from (3.3) that

Z(L′) =
∑
|i|≤a

∑
(w,S,ê)∈L′i

we(G[S]) ∈ (1± ξ/2)Z(L)± 2−a|L|.

Observe that by hypothesis, ξZ(L)/2 ≥ n−2k/4 and 2−a|L| ≤ n−2k/4. Hence, Z(L′) ∈
(1± ξ)Z(L), as required.

We next state the behaviour of our coarse approximate counting algorithm; we
will prove the following lemma in Section 4.

Lemma 3.3. There is a randomised algorithm Coarse(G, δ) with the following
behaviour. Suppose G is an n-vertex k-hypergraph to which Coarse has (only) colour-
ful oracle access, where n is a power of two, and suppose 0 < δ < 1. Then in
time O(log(1/δ)k3kn log2k+2 n), and using at most O(log(1/δ)k3k log2k+2 n) queries
to cINDG, Coarse(G, δ) outputs a rational number ê. Moreover, with probability at
least 1− δ,

e(G)

2(4k log n)k
≤ ê ≤ e(G) · 2(4k log n)k.

Using Coarse, we now describe our algorithm for turning our (G, b, y)-list L into
a (G, b, y − 1)-list L′ with Z(L′) ≈ Z(L).

Algorithm Refine(G, b, y, L, ξ, δ).

Input: G is an n-vertex k-hypergraph, where n is a power of 2, to which Refine

has (only) colourful oracle access. b is a rational number with b ≥ 2(4k log n)k,
and y is a positive integer with 2y−1 ≥ 2k2. L is a (G, b, y)-list. ξ and δ are
rational numbers with 0 < ξ, δ < 1.

Behaviour: Refine(G, b, y, L, ξ, δ) outputs a list L′, which satisfies the following
properties with probability at least 1− δ.

(a) L′ is a (G, b, y − 1)-list.
(b) |L′| ≤ |L|+ 2k+3b2 log(4/δ)/ξ2.
(c) Z(L′) ∈ (1± ξ)Z(L).

(H1) Write L =: {(wi, Si, êi) : 1 ≤ i ≤ |L|}. Calculate

p←
(

2y − k
2y−1 − k

)/( 2y

2y−1

)
, W ←

|L|∑
i=1

wiêi,
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and ti ←
⌈4b2wiêi log(4/δ)

pξ2W

⌉
for all 1 ≤ i ≤ |L|.

(H2) For all 1 ≤ i ≤ |L|, sample subsets Si,1, . . . , Si,ti ⊆ Si independently and
uniformly at random subject to |Si,j | = 2y−1. Then calculate w′i ← wi/pti
and

L′i ←
{(
w′i, Si,j , Coarse

(
G[Si,j ], δ/(2

∑
i ti)
))

: 1 ≤ i ≤ |L|, j ∈ [ti]
}
.

(H3) Form L′ by concatenating the multisets {L′i : 1 ≤ i ≤ |L|} in an arbitrary
order and removing any entries (w, S, ê) with ê = 0, and return L′.

Lemma 3.4. Refine(G, b, y, L, ξ, δ) behaves as claimed above. Moreover, writing

λ = |L|+ 2kb2 log(1/δ)

ξ2
, T = λ log(λ/δ)k3k log2k+2 n,

Refine(G, b, y, L, ξ, δ) has running time O(nT ) and invokes cINDG at most O(T )
times.

Proof. Running time. The running time and oracle usage are both dominated
by the invocations of Coarse in step (H2). We first bound the number

∑
i ti of such

invocations. We have

(3.4)

|L|∑
i=1

ti ≤ |L|+
|L|∑
i=1

4b2wiêi log(4/δ)

pξ2W
= |L|+ 4b2 log(4/δ)

pξ2
.

Since 2y−1 ≥ 2k2, by a standard binomial coefficient bound (Lemma 2.4), we have
p ≥ 2−k−1. Thus, (3.4) implies

(3.5)

|L|∑
i=1

ti ≤ |L|+
2k+3b2 log(4/δ)

ξ2
= Θ(λ).

By Lemma 3.3, writing T ′ = log(λ/δ)k3k log2k+2 2y−1, Coarse has running time
O(2y−1T ′) and invokes cINDG O(T ′) times. Since L is a (G, b, y)-list, we have
2y−1 ≤ n and so the claimed bounds follow from (3.5).

Correctness. Let E1 be the event that Z(L′) ∈ (1 ± ξ)Z(L), and let E2 be the
event that every invocation of Coarse in step (H2) succeeds. We will show that
P(E1 ∩ E2) ≥ 1− δ, and that properties (a)–(c) hold whenever E1 ∩ E2 occurs.

Bounding P(E1 ∩ E2): To bound P(E1) below, we will apply Lemma 2.5. We
first explain the purpose of p, as defined in Refine. Since L is a (G, b, y)-list, we

have |Si| = 2y and |Si−1| = 2y−1, so there are
(

2y

2y−1

)
possible choices of each set Si,j .

Moreover, for any given edge e ∈ E(G[Si]), there are
(

2y−k
2y−1−k

)
possible choices of Si,j

containing e. It follows that any given edge of G[Si] is present in Si−1 with probability
precisely p.

We now set up our notation and show that the relevant assumptions hold in order
to apply Lemma 2.5. For all 1 ≤ i ≤ |L| and all j ∈ [ti], let

Xi,j := wie(G[Si,j ])/p, Mi := wiêib/p,

µi := wie(G[Si]), µ̂i := wiêi.
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For all i and j, it is clear that Xi,j ≥ 0. Moreover, since (wi, Si, êi) ∈ L, we have
e(G[Si,j ]) ≤ e(G[Si]) ≤ êib, so Xi,j ≤ Mi. Since p is the probability that any given
edge in G[Si] survives in G[Si,j ], we have µi = E(Xi,j). The Xi,j ’s are independent,
we have 0 ≤ µ̂i ≤ µib, and we have⌈4bMi log(4/δ)

ξ2
∑
` µ̂`

⌉
=
⌈4b2wiêi log(4/δ)

pξ2W

⌉
= ti.

It therefore follows from Lemma 2.5 that with probability at least 1− δ/2,

(3.6)

|L|∑
i=1

ti∑
j=1

Xi,j

ti
∈ (1± ξ)

|L|∑
i=1

µi.

Plugging our definitions in, we see (3.6) implies that Z(L′) ∈ (1± ξ)Z(L). Thus,

(3.7) P(E1) ≥ 1− δ/2.

By the correctness of Coarse (Lemma 3.3) and a union bound over all 1 ≤ i ≤ |L|
and all j ∈ [ti], we have P(E2) ≥ 1− δ/2. By a union bound with (3.7), we therefore
have P(E1 ∩ E2) ≥ 1− δ as claimed.

Properties (a)–(c) hold: Suppose E1 ∩ E2 occurs. For every entry (w, S, ê) of
L′, w and ê are positive rational numbers and S ⊆ V (G) with |S| = 2y−1. Since
E2 occurs and b ≥ 2(4k log n)k, by the correctness of Coarse (Lemma 3.3) we have
ê/b ≤ e(G[S]) ≤ êb. Thus, L is a (G, b, y − 1)-list as required by property (a). We
have |L′| =

∑
i ti, so (3.5) implies that property (b) holds. Finally, since E1 occurs,

property (c) holds. Thus, properties (a)–(c) all hold whenever E1 ∩ E2 occurs, which
we have already shown happens with probability at least 1− δ.

We now state our main algorithm.

Algorithm HelperCount(G, ε).

Input: G is an n-vertex k-hypergraph, where n is a power of 2. HelperCount

only has colourful oracle access to G, and ε is a rational number with 0 < ε < 1/2.

Behaviour: HelperCount(G, ε) outputs a rational number ê such that with
probability at least 2/3, ê ∈ (1± ε)e(G).

(A1) If ε < n−k, or if n ≤ 500, then return
∑
Y⊆V (G), |Y |=k(1− cINDG(Y )).

(A2) If Coarse(G, δ) = 0, return 0. Otherwise, let

I ← log n− dlog(2k2)e, b← 2(4k log n)k,

ξ ← ε/4I, δ ← 1/3(2I + 1),

L←
{(

1, V (G), Coarse(G, δ)
)}
.

(A3) For i = 1 to I:
(We will maintain the invariant that L is a (G, b, log n − (i − 1))-list
with Z(L) ∈ (1 ± ξ)2ie(G), and that |L| is suitably small (see proof of
Lemma 3.5). Note that this is trivially satisfied at the start of the loop.)
(A4) Update L← Refine(G, b, log n− (i− 1), L, ξ, δ).

(This step turns L into a (G, b, log n− i)-list.)
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(A5) Update L← Reduce(G, b, log n− i, L, ξ, δ).
(This step reduces the length of L.)

(A6) For each entry (w, S, ê) ∈ L, calculate

eS ←
∑
Y⊆S
|Y |=k

(1− cINDG(Y )).

(A7) Output
∑

(w,S,ê)∈L weS .

Lemma 3.5. With probability at least 2/3, HelperCount(G, ε) outputs a rational
number ê ∈ (1± ε)e(G) as claimed above, has running time O(ε−2k6kn log4k+7 n), and
invokes cINDG at most O(ε−2k6k log4k+7 n) times.

Proof. Correctness. Lemma 3.3 implies that whenever HelperCount(G, ε) out-
puts on step (A1) or (A2), correctness holds, so suppose that this does not occur. For
all integers i ≥ 0, let π(i) be the statement that L satisfies the following properties.

(i) L is a (G, b, log n− i)-list.
(ii) Z(L) ∈ (1± ξ)2ie(G).
(iii) |L| ≤ 33k log(4nb) + 32b2 log(2/δ)/ξ2.

We will prove that with probability at least 2/3, π(i) holds at the end of the ith
iteration of loop (A3) for all i ∈ [I]. Suppose this is true: we will show that correctness
follows. With probability at least 2/3, π(I) holds when we exit the loop. In this case,
the final value of L satisfies Z(L) ∈ (1± ξ)2Ie(G) by (ii). We have (1− ξ)2I ≥ 1− 2Iξ,
and (1 + ξ)2I ≤ e2Iξ ≤ 1 + 4Iξ (since 4Iξ = ε < 1), so

Z(L) ∈ (1± 4Iξ)e(G) = (1± ε)e(G).

Moreover, in step (A6) we have eS = e(G[S]) for all (w, S, ê) ∈ L, so Z(L) is the
output.

It remains to prove that with probability at least 2/3, π(i) holds at the end
of the ith iteration of loop (A3) for all i ∈ [I]. Let E0 be the event that Coarse

behaves correctly in step (A2); note that P(E0) ≥ 1− δ by the correctness of Coarse
(Lemma 3.3). For all i ∈ [I], let Ei be the event that Refine behaves correctly in the
ith iteration of step (A4) and Reduce behaves correctly in the ith iteration of step
(A5). (If the input restrictions of Refine or Reduce are violated on the ith iteration,
then Ei occurs automatically.) By correctness of Refine and Reduce (Lemmas 3.2
and 3.4), we have P(Ei | E0, . . . , Ei−1) ≥ 1 − 2δ. Thus, by a union bound over all
0 ≤ i ≤ I, we have

P
( I⋂
i=0

Ei
)
≥ 1− (2I + 1)δ = 2/3.

It therefore suffices to show that when
⋂
j Ej occurs, π(i) holds at the end of the ith

iteration of loop (A3) for all i ∈ [I].
At the start of the first iteration of loop (A3), when i = 1, L is a (G, b, log n)-list

since E0 occurs, Z(L) = e(G), and |L| = 1. Thus, π(0) holds. Let i ∈ [I], and suppose
that π(i− 1) holds at the start of the ith iteration of loop (A3). Let Li be the value of
L at the start of the ith iteration, let L′i be the value of L after executing step (A4),
and let Li+1 be the value of L after executing step (A5).

By property (i) of π(i), Li is a (G, b, log n− (i− 1))-list, where by our choice of
I we have 2logn−i ≥ 2k2. Since Ei occurs, it follows by the correctness of Refine
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(Lemma 3.4) that L′i is a (G, b, log n− i)-list with

Z(L′i) ∈ (1± ξ)Z(Li),(3.8)

|L′i| ≤ |Li|+ 2k+3b2 log(4/δ)/ξ2.

We next show that 1/2 ≤ Z(L′i) ≤ 2nk, that |L′i| ≤ n11k, and that ξ ≥ n−2k, as
required by Reduce. Since property (ii) of π(i) holds for Z(Li), we have Z(L′i) ∈
(1 ± ξ)2i+1e(G) ⊆ (1 ± ε)e(G). Since HelperCount(G, ε) did not halt at (A2), we
have 1 ≤ e(G) ≤ nk; since ε < 1/2, it follows that 1/2 ≤ Z(L′i) ≤ 2nk. Since
HelperCount(G, ε) did not halt at (A1), we have n ≥ 500 and hence n ≥ 50 log n. We
also have ε ≥ n−k and k ≤ n. Hence:

b2 ≤ n4k; 2k ≤ nk; log(4/δ) ≤ log(24 log n) ≤ n;

log(4nb) ≤ 6k log n ≤ n2; 1/ξ2 ≤ 16(log n)2n2k ≤ n4k.

Since property (iii) of π(i) holds for Li, it follows that

|L′i| ≤ 33k log(4nb) + 40 · 2kb2 log(4/δ)/ξ2 ≤ 33n3 + 40n9k+1 ≤ n10k.

We have therefore shown that L′i and ξ satisfy the input restrictions of Reduce. Since
Ei occurs, by the correctness of Reduce (Lemma 3.2) and by (3.8) it follows that Li+1

is a (G, b, log n− i)-list with

Z(Li+1) ∈ (1± ξ)Z(L′i) ⊆ (1± ξ)2Z(Li) ⊆ (1± ξ)2(i+1)e(G),

|Li+1| ≤ 33k log(4nb) + 32b2 log(2/δ)/ξ2.

Thus, properties (i)–(iii) hold for Li+1, as required.

Running time and oracle queries. If step (A1) is executed, so that ε < n−k or
n ≤ 500, then the algorithm runs in time O(nk) = O(ε−1) and uses O(nk) = O(ε−1)
oracle queries, so our claimed bounds hold. Suppose instead step (A1) is not executed,
so that ε ≥ n−k. Recall that

⋂
i Ei holds with probability at least 2/3. Suppose

this occurs. The bottleneck in both running time and oracle invocations is then
step (A4). For legibility, we give the time and oracle requirements of the other
steps in the following table, giving justifications in the paragraph below. We write
Λ = 33k log(4nb) + 32b2 log(2/δ)/ξ2 for the upper bound on |L| in property (iii) of our
invariant π.

Step number Running time Oracle calls
(A1) O(k2) None

(A2) O
(
k3k+2n log2k+2 n log(1/δ)

)
O
(
k3k log2k+2 n log(1/δ)

)
(A3) O(I) None

(A5) O
(
I
(
Λ + 2kb2ξ−2 log(1/δ)

)
k4 log n

)
None

(A6) O(Λ(4k2)k) O(Λ(4k2)k)
(A7) O(k2Λ) None

For step (A1), we use the fact that ε ≥ n−k and so the conditional does not trigger;
we verify this fact in time O(k2). For step (A2), we use the fact that n is a power
of 2 (so computing log n is easy) and the time bounds on Coarse (Lemma 3.3). For
step (A5), we first observe that the step is executed I times. We then apply the time
bounds on Reduce (Lemma 3.2), together with property (iii) of π(i) and the fact that
Refine adds at most 2k+3b2ξ−2 log(4/δ) to the length of L (see Lemma 3.4). (Note
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that k3 log(nb/δ) = O(k4 log n).) For step (A6), we use the fact that after the loop of
(A3), L is a (G, b, log n− I)-list, so each entry (w, S, ê) of L has |S| = 2logn−I ≤ 4k2.

We now consider step (A4), which is executed I times. From the time bounds of
Refine (Lemma 3.4), it follows that the total running time of step (A4) is O(nT ) and
the total number of oracle accesses is O(T ) times, where

T = O
(
Iλ log(λ/δ)k3k log2k+2 n

)
, λ = Λ + 2kb2ξ−2 log(1/δ).

This clearly dominates everything in the table. Observe that Λ = O(2kb2ξ−2 log(1/δ)),
so λ = O(2kb2ξ−2 log(1/δ)) also. Since ε ≥ n−k,

log(λ/δ) = O
(
k + k log(k log n) + log I + log(1/ε) + log(1/δ)

)
= O(k log n).

Thus

T = O
(
I2kb2ξ−2 log(1/δ)k3k+1 log2k+3 n

)
= O

(
log n · 2k · (k log n)2k · ε−2 log2 n · log log n · k3k+1 log2k+3 n

)
= O

(
ε−2k6k log4k+7 n

)
,

and the claimed bounds follow.

We now recall Theorem 1.1 and then prove it.

Theorem 1.1. There is a randomised algorithm Count(G, ε, δ) with the following
behaviour. Suppose G is an n-vertex k-hypergraph, and that Count has colourful
oracle access to G. Suppose ε and δ are rational with 0 < ε, δ < 1. Then, writing
T = log(1/δ)ε−2k6k log4k+7 n: in time O(nT ), and using at most O(T ) queries to
cINDG, Count(G, ε, δ) outputs a rational number ê. With probability at least 1− δ, we
have ê ∈ (1± ε)e(G).

Proof. To evaluate Count(G, ε, δ), we first make n into a power of two by adding at
most n isolated vertices to G; note that this does not impede the evaluation of cINDG.
We then run HelperCount(G,min{ε, 1/3}) a total of 36dln(2/δ)e times and return the
median result ê. If some invocation of HelperCount(G,min{ε, 1/3}) takes more than
Θ(ε−2k6kn log4k+7 n) time, or invokes cINDG more than Θ(ε−2k6k log4k+7 n) times,
we halt execution and consider the output to be −1.

It is immediate that this algorithm satisfies our stated time bounds. Moreover,
ê ∈ (1± ε)e(G) unless at least half our invocations of HelperCount fail. The number
of such failures is dominated above by a binomial variable N with mean 12dln(2/δ)e,
so by a standard Chernoff bound (namely Lemma 2.3(i)) we have

P
(
ê /∈ (1± ε)e(G)

)
≤ P

(
N ≥ 18dln(2/δ)e

)
≤ P

(∣∣N − E(N)
∣∣ ≥ 1

2
E(N)

)
≤ 2e−dln(2/δ)e ≤ δ,

as required.

4. Coarse approximate counting. In this section, we prove Lemma 3.3. We
fix the input graph G to be an n-vertex k-hypergraph to which we have (only) colourful
oracle access, where n is a power of two.
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4.1. Sketch proof. The heart of our algorithm will be a subroutine to solve the
following simpler “gap-version” of the problem. Given a k-partite k-hypergraph G and
a guess M ≥ 0, we ask: Does G have more than M edges? We wish to answer correctly
with high probability provided that either G has at least M edges, or G has significantly
fewer than M edges, namely at most γM edges with γ = 1/(23k+1k2k logk n). Suppose
we can solve this problem probabilistically, perhaps outputting Yes with probability
at least 1/50 if e(G) ≥ M (which we call completeness) and outputting Yes with
probability at most 1/100 if e(G) ≤ γM (which we call soundness). We then apply
probability amplification to substantially reduce the failure probability, and use binary
search to find the least M such that our output is Yes— with high probability, this
will approximate e(G) when our input k-hypergraph is k-partite. We then generalise
our algorithm to arbitrary inputs using random colour-coding. These parts of the
algorithm are fairly standard, so in this sketch proof we will only solve the gap-problem.
(We implement this sketch below as the VerifyGuess algorithm.)

Let G be a k-partite k-hypergraph with vertex classes X1, . . . , Xk. The basic idea
of the algorithm is to randomly remove vertices from G to form a new graph H in
such a way that each edge survives with probability roughly 1/M , and then query the
colourful independence oracle and output Yes if and only if at least one edge remains.
If G has at most γM edges, then a union bound implies we are likely to output No

(soundness); if G has at least M edges, then in expectation at least one edge survives
the removal, so we hope to output Yes (completeness). Unfortunately, the number of
edges remaining in H need not be concentrated around its expectation — for example,
if every edge of G is incident to a single vertex v — so we must be very careful if this
hope is to be realised.

Suppose for the moment that k = 2, so that G is a bipartite graph with vertex
classes X1 and X2. Then we will form X ′1 ⊆ X1 by including each vertex independently
with probability p1, and X ′2 ⊆ X2 by including each vertex independently with
probability p2. Each edge survives with probability p1p2, so we require p1p2 ≤ 1/M
to ensure soundness. To ensure completeness, we would then like to choose p1 and p2

such that G[X ′1, X
′
2] is likely to contain an edge whenever e(G) ≥M .

To see that such a pair (p1, p2) exists, we first partition the vertices in X1 according
to their degree: For 1 ≤ d ≤ log n, let Xd

1 be the set of vertices v with 2d−1 ≤ d(v) < 2d.
By the pigeonhole principle, there exists some D such that XD

1 is incident to at least
e(G)/ log n edges. Then we take p1 = 2D/M and p2 = 1/2D. We certainly have
p1p2 ≤ 1/M . Suppose e(G) ≥M . Since XD

1 is incident to at least e(G)/ log n edges,
we have |XD

1 | ≥ M/2D log n, so with reasonable probability X ′1 contains a vertex
v1 ∈ XD

1 . Then v1 has degree roughly 2D in X2, so again with reasonable probability
X ′2 contains a vertex adjacent to it.

There is one remaining obstacle: Since we only have colourful oracle access to G,
we do not know what D is! Fortunately, since there are only O(log n) possibilities,
we can simply try them all in turn, and output Yes if any one of them yields a pair
X ′1, X

′
2 such that G[X ′1, X

′
2] contains an edge. (It is not hard to tune the parameters

so that this doesn’t affect soundness.) This is essentially the argument used by Beame
et al. [7].

When we try to generalise this approach to k-hypergraphs, we hit a problem. For
illustration, take k = 3 and suppose e(G) ≥ M . Then we wish to guess a vector
(p1, p2, p3) such that p1p2p3 ≤ 1/M and, with reasonable probability, G[X ′1, X

′
2, X

′
3]

contains an edge. As in the k = 2 case, we can guess an integer 0 ≤ D ≤ 2 log n such
that a large proportion of G’s edges are incident to a vertex in X1 of degree roughly
2D. Also, as in the k = 2 case, if we take p1 = 2D/M then it is reasonably likely that
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X ′1 will contain a vertex of degree roughly 2D, say v1. But we cannot iterate this
process — the structure of G[v1, X2, X3], and hence the “correct” value of p2, depends
very heavily on v1. So for example, when we test the two guesses (2D/M, 1/2D, 1)
and (2D/M, 1, 1/2D), we wish to ensure that the value of v1 is the same in each test.
This is the reason for step (C1) in the following algorithm; it is important that we do
not choose new random subsets of X1, . . . , Xk independently with each iteration of
step (C2).

Algorithm VerifyGuess(G,M,X1, . . . , Xk).

Input: G is an n-vertex k-hypergraph to which VerifyGuess has (only) colourful
oracle access. n and M are positive powers of two, and X1, . . . , Xk ⊆ V (G) are
disjoint.

Behaviour: Let pout = (8k log n)−k.
Completeness: If e(G[X1, . . . , Xk]) ≥ M , then VerifyGuess outputs Yes with
probability at least pout.
Soundness: If e(G[X1, . . . , Xk]) < M ·pout/2(k log n)k, then VerifyGuess outputs
Yes with probability at most pout/2.

(C1) For each i ∈ [k] and each 0 ≤ j ≤ k log n, construct a subset Yi,j of Xi

by including each vertex independently with probability 1/2j . Construct
the finite set A of all tuples (a1, . . . , ak) with 0 ≤ a1, . . . , ak ≤ k log n and
a1 + · · ·+ ak ≥ logM .

(C2) For each tuple (a1, . . . , ak) ∈ A: If cINDG(Y1,a1 , . . . , Yk,ak) = 0, then halt
and output Yes.

(C3) We have not halted yet, but do so now and output No.

4.2. Solving the gap problem.

Lemma 4.1. VerifyGuess behaves as stated, runs in time O(nkk logk n), and
makes at most O(kk logk n) oracle queries.

Proof. Let G,M,X1, . . . , Xk be the input for VerifyGuess, and write H =
G[X1, . . . , Xk]. For notational convenience, we denote the gap in the soundness
case by γ, that is, we set γ := pout/2(k log n)k = 1/23k+1k2k log2k n.

Running time and oracle queries. Step (C1) takes O(nk2 log n+ kk logk n) time
and no oracle queries; step (C2) takes O(kk logk n) time and O(kk logk n) oracle queries;
and step (C3) takes O(1) time and no oracle queries. The claimed bounds follow, and
it remains to prove that the soundness and completeness properties hold.

Soundness. We next prove soundness, as this is the easier part of proving correctness.
So suppose e(H) ≤ γM . Let (a1, . . . , ak) ∈ A, and let H ′ ⊆ H denote the random
induced subgraph G[Y1,a1 , . . . , Yk,ak ]. Then for all e ∈ E(H), we have

P(e ∈ E(H ′)) =

k∏
j=1

2−aj ≤ 1

M
≤ γ

e(H)
≤ pout

2|A|e(H)
.

By a union bound over all e ∈ E(H) and all (a1, . . . , ak) ∈ A, it follows that the
probability that VerifyGuess outputs Yes is at most pout/2. This establishes the
soundness of the algorithm, so it remains to prove completeness.
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Completeness. Suppose now that e(H) ≥M holds. We must show that VerifyGuess
outputs Yes with probability at least pout. It suffices to show that with probability
at least pout, there is at least one setting of the vector (a1, . . . , ak) ∈ A such that
G[Y1,a1 , . . . , Yk,ak ] contains at least one edge.

We will define this setting iteratively. First, with reasonable probability, we
will find an integer a1 and a vertex v1 ∈ Y1,a1 such that G[v1, X2, . . . , Xk] con-
tains roughly 2−a1e(H) edges. In the process, we expose Y1,a1 . We then, again
with reasonable probability, find an integer a2 and a vertex v2 ∈ Y2,a2 such that
G[v1, v2, X3, . . . , Xk] contains roughly 2−a1−a2e(H) edges. Continuing in this vein, we
eventually find (a1, . . . , ak) ∈ A and vertices vi ∈ Yi,ai such that {v1, . . . , vk} is an
edge in G[Y1,a1 , . . . , Yk,ak ], proving the result.

More formally, recall from Section 2.1 that for all i ∈ [k] and v1, . . . , vi ∈ V (G),
dH(v1, . . . , vi) is the number of edges in H containing {v1, . . . , vi} as a subset. For all
i ∈ [k], let Ei be the event that there exist 0 ≤ a1, . . . , ai ≤ k log n and v1, . . . , vi ∈
V (H) such that:

(a) for all j ∈ [i], vj ∈ Yj,aj ;
(b) we have dH(v1, . . . , vi) ≥ e(H)/

∏i
j=1 2aj .

We make the following Claim: P(E1) ≥ 1/(8k log n) and, for all 2 ≤ i ≤ k, P(Ei |
Ei−1) ≥ 1/(8k log n).

Proof of Lemma 4.1 from Claim: Suppose Ek occurs, and let a1, . . . , ak and
v1, . . . , vk be as in the definition of Ek. By (b), dH(v1, . . . , vk) > 0, so {v1, . . . , vk} is
an edge in H; it follows by (a) that it is also an edge in G[Y1,a1 , . . . , Yk,ak ]. Also by

(b), since dH(v1, . . . , vk) = 1, we have
∏k
j=1 2aj ≥ e(H) ≥M , so a1 + · · ·+ak ≥ logM .

Thus, (a1, . . . , ak) ∈ A, so whenever Ek occurs, VerifyGuess outputs Yes on reaching
(a1, . . . , ak) in step (C2). By the Claim, we have

P(Ek) = P(E1)

k∏
j=2

P(Ej | E1, . . . , Ej−1) = P(E1)

k∏
j=2

P(Ej | Ej−1) ≥ 1/(8k log n)k = pout,

so completeness follows. The lemma statement therefore follows as well.
Proof of Claim: We first prove the claim for E1. We will choose a1 depending

on the degree distribution of vertices in X1. For all integers 1 ≤ d ≤ k log n, let

Xd
1 := {v ∈ X1 : 2d−1 ≤ dH(v) < 2d}

be the set of vertices in X1 with degree roughly 2d. Every edge in H is incident to
exactly one vertex in exactly one set Xd

1 , so there exists D such that XD
1 is incident

to at least e(H)/k log n edges of H. We take a1 := dlog e(H)e − D + 1. Note that
0 ≤ a1 ≤ k log n, since XD

1 6= ∅ and so e(H) ≥ 2D−1.
We would like to take v1 ∈ Y1,a1 ∩XD

1 , so we next bound the probability that this
set is non-empty. We have

P(XD
1 ∩ Y1,a1 6= ∅) = 1− (1− 2−a1)|X

D
1 | ≥ 1− exp(−2−a1 |XD

1 |).

Since every vertex in XD
1 has degree at most 2D, by the definition of D we have

2D|XD
1 | ≥ e(H)/(k log n). Moreover, we have a1 ≤ log e(H)−D + 2. It follows that

P(XD
1 ∩ Y1,a1 6= ∅) ≥ 1− exp

(
−2D−2

e(H)
· e(H)

k2D log n

)
= 1− exp

(
− 1

4k log n

)
≥ 1

8k log n
.
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Suppose XD
1 ∩ Y1,a1 6= ∅, and take v1 ∈ XD

1 ∩ Y1,a1 . Then v1 certainly satisfies (a),
and by the definitions of a1 and XD

1 we have e(H)/2a1 ≤ 2D−1 ≤ dH(v1), so v1 also
satisfies (b). We have therefore shown P(E1) ≥ 1/(8k log n) as required.

Now let 2 ≤ i ≤ k. The argument is similar, but we include it explicitly for the
benefit of the reader. We first expose Y1,a1 , . . . , Yi−1,ai−1 : Let F be a possible filtration
of these variables consistent with Ei−1, and let a1, . . . , ai−1 and v1, . . . , vi−1 be as in
the definition of Ei−1. It then suffices to show that P(Ei | F) ≥ 1/(8k log n).

Similarly to the i = 1 case, for all integers 1 ≤ d ≤ k log n, let

Xd
i := {v ∈ Xi : 2d−1 ≤ dH(v1, . . . , vi−1, v) < 2d}.

Every edge in H[v1, . . . , vi−1, Xi, . . . , Xk] is incident to exactly one vertex in exactly one
set Xd

i , so there exists Di such that XDi
i is incident to at least dH(v1, . . . , vi−1)/k log n

edges of H[v1, . . . , vi−1, Xi, . . . , Xk]. We take ai := dlog dH(v1, . . . , vi−1)e − Di + 1;
note that 0 ≤ ai ≤ k log n.

As in the i = 1 case, we would like to take vi ∈ Yi,ai ∩X
Di
i , so we next bound

the probability that this set is non-empty. Since every vertex v ∈ XDi
i satisfies

dH(v1, . . . , vi−1, v) ≤ 2Di , we have 2Di |XDi
i | ≥ dH(v1, . . . , vi−1)/k log n. It follows

that

P(XDi
i ∩ Yi,ai 6= ∅ | F) = 1− (1− 2−ai)|X

Di
i | ≥ 1− exp(−2−ai |XDi

i |)

≥ 1− exp
(
− 2Di−2

dH(v1, . . . , vi−1)
· dH(v1, . . . , vi−1)

k2Di log n

)
= 1− exp

(
− 1

4k log n

)
≥ 1

8k log n
.

Suppose XDi
i ∩ Yi,ai 6= ∅, and take vi ∈ XDi

i ∩ Yi,ai . Then vi certainly satisfies (a).

By the definitions of ai and XDi
i , and the fact that v1, . . . , vi−1 satisfy (b), we have

e(H)/

i∏
j=1

2aj ≤ dH(v1, . . . , vi−1)/2ai ≤ 2Di−1 ≤ dH(v1, . . . , vi).

Thus, (b) is satisfied, and we have shown P(Ei | F) ≥ 1/(8k log n) as required.

4.3. Proving Lemma 3.3. We next turn VerifyGuess into a crude approxima-
tion algorithm for k-partite k-hypergraphs in the natural way.

Algorithm ColourCoarse(G,X1, . . . , Xk).

Input: G is an n-vertex k-hypergraph, where n is a power of two, to which
ColourCoarse has colourful oracle access (only). X1, . . . , Xk form a partition of
V (G).

Behaviour: Let b := (4k log n)k. Then ColourCoarse (G) outputs a non-negative
integer m such that, with probability at least 2/3, m/b ≤ e(G[X1, . . . , Xk]) ≤ mb.

(D1) Set pout := (8k log n)−k and N := d48 ln(6k log n)/poute.
(D2) For each M in {1, 2, 4, 8, . . . , nk}: Execute VerifyGuess

(G,M,X1, . . . , Xk) a total of N times, and let SM ∈ {0, . . . , N}
be the number of executions that returned Yes. (Naturally we use
independent randomness for each value of M .)
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(D3) If cINDG(X1, . . . , Xk) = 1, let m = 0. Otherwise, if there exists M such
that SM ≥ 3

4poutN , let m be the least such M . Otherwise, let m = nk.

Output m
(
pout/2k

k logk n
)1/2

.

Lemma 4.2. ColourCoarse behaves as stated, runs in time O((8k log n)2k+2n),
and requires O((8k log n)2k+2) oracle queries.

Proof. Let G and X1, . . . , Xk be the inputs, so that G is an n-vertex k-hypergraph
and X1, . . . , Xk partition V (G).

Running time and oracle queries. Observe N = O((8k log n)k+1). The
algorithm ColourCoarse executes VerifyGuess at most O(log(nk)N) times. By
Lemma 4.1, each execution takes O(nkk logk n) time and makes O(kk logk n) oracle
queries. Thus the claimed bounds on the running time and number of oracle queries
of ColourCoarse follow.

Correctness. Let M ∈ {1, 2, 4, 8, . . . , nk}, and let H = G[X1, . . . , Xk]. For this
fixed M , the algorithm invokes VerifyGuess N times, so the random variable SM
is the sum of N independent indicator variables. By a standard Chernoff bound
(Lemma 2.3(i) taking ε = 1/4),

P
(
|SM − E(SM )| ≥ E(SM )/4

)
≤ 2 exp

(
− 1

48E(SM )
)

(4.1)

If e(H) ≥ M , then the completeness of VerifyGuess implies E(SM ) ≥ Npout.
Thus, (4.1) and our choice of N imply that

P
(
SM ≤ 3

4Npout
)
≤ 2 exp

(
− 1

48Npout
)
≤ 1/(3k log n).

Similarly, if e(H) < Mpout/(2(k log n)k), then the soundness of VerifyGuess implies
E(SM ) ≤ Npout/2. But then (4.1) implies that

P
(
SM ≥ 3

4Npout
)
≤ P

(
SM ≥ 5

4E(SM )
)
≤ 2 exp

(
− 1

48Npout
)
≤ 1/(3k log n).

Finally, we perform a union bound over all M ∈ {1, 2, 4, 8, . . . , nk} that satisfy
either e(H) ≥ M or e(H) ≤ Mpout/(2k

k logk n). (Note that no value of M satisfies
both inequalities.) There are at most k log n such M ’s, so with probability at least 2/3,
we see SM > 3Npout/4 whenever e(H) ≥ M and SM < 3Npout/4 whenever e(H) ≤
Mpout/(2k

k logk n). By the definition of m, it follows that in this case

pout

2kk logk n
m ≤ e(H) ≤ m.

Hence, writing x = m(pout/2k
k logk n)1/2 for the output of ColourCoarse,

x

√
pout

2kk logk n
≤ e(H) ≤ x

/√ pout

2kk logk n
.

Since pout = 1/(8k log n)k, the output of ColourCoarse approximates e(H) up to a
factor of (4k log n)k as required.

We now combine our algorithm for coarsely approximately counting edges in
k-partite k-hypergraphs with colour-coding to obtain an algorithm for general k-
hypergraphs.
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Algorithm HelperCoarse(G).

Input: G is an n-vertex k-hypergraph, where n is a power of two, to which
HelperCoarse has colourful oracle access (only).

Behaviour: HelperCoarse(G) outputs a non-negative integer ê which, with
probability at least 2/3, satisfies ê/2(4k log n)k ≤ e(G) ≤ ê · 2(4k log n)k.

(E1) Let t = 12e2k, and let T = d72 ln te+ 3.
(E2) For each i ∈ [t]:

(E3) Sample a uniformly random function ci : V (G)→ [k], which yields a
random k-partition X1, . . . , Xk of V (G).

(E4) Execute ColourCoarse(G,X1, . . . , Xk) exactly T times and let Mi

be the median output produced by these executions.

(E3) Output kk

tk!

∑t
i=1Mi.

Lemma 4.3. HelperCoarse behaves as stated, runs in time O(k3kn log2k+2 n),
and requires O(k3k log2k+2 n) oracle queries.

Proof. Let G be an n-vertex k-hypergraph input for HelperCoarse.
Running time and oracle queries. It is clear that the bottleneck in both

the running time and the number of oracle queries is the Tt total invocations of
ColourCoarse. Recall from Lemma 4.2 that each such invocation runs in time
O(n(8k log n)2k+2) and requires O((8k log n)2k+2) oracle queries. Since t = O(e2k)
and T = O(k), the claimed bounds follow.

Correctness. Let b := (4k log n)k be the approximation ratio of ColourCoarse.
For all i ∈ [t], let Gi = G[c−1

i (1), . . . , c−1
i (k)] be the ith hypergraph we consider, and

let mi = e(Gi). Let xi,j be the output of the jth call to ColourCoarse in evaluating
Mi, and let Ei,j be the event that xi,j/b ≤ mi ≤ xi,jb.

Note that the Ei,j ’s are independent conditioned on ci, and that the correctness of
ColourCoarse (Lemma 4.2) implies that P(Ei,j) ≥ 2/3 for all j ∈ [T ]. Moreover, for
all i ∈ [t], if at least half the Ei,j ’s occur, then Mi/b ≤ mi ≤ bMi. Thus, by a Chernoff
bound (Lemma 2.3(i) applied with ε = 1/4 and µ = 2T/3), we have

P( 1
bMi ≤ mi ≤ bMi | ci) ≥ 1− 2e−T/72 ≥ 1− 2e− ln t−3 > 1− 1/(6t).

It follows by a union bound that, with probability at least 5/6, Mi/b ≤ mi ≤ bMi for
all i ∈ [t].

Now observe that E(
∑
imi) = t(k!/kk)e(G), and that each mi lies in [0, e(G)]. It

follows by Hoeffding’s inequality (Lemma 2.1) that

P
(∣∣∣ kk
tk!

∑
i

mi − e(G)
∣∣∣ > 1

2
e(G)

)
= P

(∣∣∣∑
i

mi −
tk! · e(G)

2kk

∣∣∣ > tk!

2kk
e(G)

)
≤ 2 exp

(
−2
( tk!

kk
e(G)

)2

/te(G)2

)
= 2 exp

(
−2t(k!/2kk)2

)
.

By Stirling’s formula and our definition of t, it follows that

P
(∣∣∣ kk
tk!

∑
i

mi − e(G)
∣∣∣ > 1

2
e(G)

)
≤ 2 exp

(
−te−2k/4

)
≤ 1/6.
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Thus, with probability at least 5/6, we have e(G)/2 ≤ kk

tk!

∑
imi ≤ 2e(G).

It now follows by a union bound that with probability at least 2/3, 1
2b · e(G) ≤

kk

tk!

∑
iMi ≤ 2b · e(G) as required.

We now restate Lemma 3.3 and prove it via the usual probability amplification
argument.

Lemma 3.3. There is a randomised algorithm Coarse(G, δ) with the following
behaviour. Suppose G is an n-vertex k-hypergraph to which Coarse has (only) colour-
ful oracle access, where n is a power of two, and suppose 0 < δ < 1. Then in
time O(log(1/δ)k3kn log2k+2 n), and using at most O(log(1/δ)k3k log2k+2 n) queries
to cINDG, Coarse(G, δ) outputs a rational number ê. Moreover, with probability at
least 1− δ,

e(G)

2(4k log n)k
≤ ê ≤ e(G) · 2(4k log n)k.

Proof. Given G and δ > 0, we simply invoke HelperCoarse(G) a total of T :=
d36 ln(2/δ)e times and return the median output. By the correctness of HelperCoarse
(Lemma 4.3), each invocation returns a valid approximation of e(G) with probability
at least 2/3, and if at least T/2 invocations return valid approximations then the
median is also a valid approximation. It follows by Chernoff bounds (Lemma 2.3(i)
with ε = 1/2 and µ = T/3) that we output a valid approximation with probability at
least 1 − 2e−T/36 ≥ 1 − δ, as required, and our bounds on running time and oracle
usage are immediate from Lemma 4.3.

5. Approximately uniform sampling. In this section we demonstrate that
we can use our approximate counting algorithm to sample an edge almost uniformly
at random, proving Theorem 1.2. We begin by sketching our algorithm.

Suppose for the moment that we are given access to a deterministic algorithm
ExactCount(G) which, given colourful oracle access to a k-hypergraph G, returns the
exact value of |E(G)|. Let G be an n-vertex k-hypergraph for which we have access
to a colourful independence oracle, and suppose further that n is a power of two and
that G contains at least one edge. In this hypothetical scenario, we could proceed
to sample an edge of G from the exact uniform distribution using iterated rejection
sampling as follows.

Let X1 = V (G) and M1 = ExactCount(G). Choose a uniformly random subset
X ⊂ X1 of size n/2, and let M = ExactCount(G[X]). With probability M/M1, we
“accept” X, setting X2 = X and M2 = M . Otherwise, we “reject” X, reinitialising it
to a new uniformly random size-(n/2) subset, and repeat the process until we accept
some set X. Likewise, we then choose a uniformly-random subset X ⊂ X2 of size
n/4 and let M = ExactCount(G[X]); with probability M/M2, we “accept” X, setting
X3 = X and M3 = M , and otherwise we “reject” X and resample. Continuing in this
way, we generate two sequences X1, . . . , XI and M1, . . . ,MI with |Xi| = n/2i−1 for
all i ≤ I, where I is chosen so that k ≤ |XI | ≤ 2k. We then enumerate the edges of
G[XI ] directly using O(2k) calls to the colourful independence oracle, and output a
uniformly random such edge F .

Observe that by a standard rejection sampling argument (see e.g. Florescu [25,
Proposition 3.3]), for any possible value (Y1, . . . , YI , e) of (X1, . . . , XI , F ), we have

P
(
(X1, . . . , XI , F ) = (Y1, . . . , YI , e)

)
=

1

|E(G[YI ])|
·
I−1∏
i=1

|E(G[Yi+1])|∑
Z⊆Yi
|Z|=n/2i

|E(G[Z])|
.
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Since for each i, each edge of G[Yi] contributes 1 to exactly
( |Yi|−k
|Yi|/2−k

)
terms in the

sum above and 0 to the rest, it follows that

P
(
(X1, . . . , XI , F ) = (Y1, . . . , YI , e)

)
=

1

|E(G[YI ])|
·
I−1∏
i=1

|E(G[Yi+1])|
|E(G[Yi])|

(
|Yi| − k
|Yi|/2− k

)−1

=
1

|E(G)|

I−1∏
i=1

(
|Yi| − k
|Yi|/2− k

)−1

.

On summing over all possible sequences Y1, . . . , YI , we recover that P(F = e) =
1/|E(G)| as required. Moreover, each edge of G[Xi] appears in G[Xi+1] with probability
roughly 1/2k, so in expectation we will reject roughly 2k samples before accepting
each Xi, for a total of O(2k log n) calls to ExactCount.

Of course, Count is neither a deterministic nor an exact counting algorithm.
However, with careful bookkeeping, essentially the same algorithm turns out to yield
an approximate sample. We do the bulk of the work with the following ancillary
algorithm HelperSample(G, ε), which assumes that |V (G)| is a power of two and
that G contains at least one edge; we then address these assumptions (which will be
easy) in the main proof of Theorem 1.2 later in the section.

Algorithm HelperSample(G, ε).

Input: G is an n-vertex k-hypergraph containing at least one edge, where n
is a power of two, to which HelperCoarse has colourful oracle access (only).
0 < ε < 1/2 is a rational number.

Behaviour: With probability at least 1 − ε/nk, HelperSample(G, ε) outputs
a sample from a distribution Û on E(G) such that, for all e ∈ E(G), Û(e) ∈
(1± ε)/e(G).

(S1) If ε ≤ n−k, then enumerate the edges of G using
(
n
k

)
invocations of cINDG

and return a uniformly-sampled edge.
(S2) Let I = log n − dlog(8k2)e, ξ = ε/(100 log n), and δ = ξ/2k+8n2k. If

I ≤ 1, enumerate the edges of e(G) using cINDG and return a uniformly
random sample.

(S3) Let X1 ← V (G), M1 ← Count(X1, ξ, δ), and i← 2. While i ≤ I:
(a) Choose a size-(|Xi−1|/2) set X ⊆ Xi−1 uniformly at random, and

let M ← Count(G[X], ξ, δ).
(b) If Mi−1 = 0, output Fail. Otherwise, with probability max{0, 1−

M/Mi−1}, go to (a) (i.e. reject X and resample).
(c) Accept X by setting Xi ← X, Mi ←M and i← i+ 1.

(S4) Enumerate the edges of G[XI ] using cINDG and return a uniformly
random sample.

Lemma 5.1. HelperSample(G, ε) behaves as claimed. With probability at least
1 − ε/nk, writing T = ε−2k7k log4k+11 n, its running time is O(nT ), and it invokes
cINDG at most O(T ) times.

Proof. If ε ≤ n−k or I ≤ 1, then both correctness and the stated time bounds
are clear, so suppose ε > n−k and I ≥ 2 (which implies n ≥ 32k2). We first carefully
bound the probability that something goes wrong over the course of the algorithm’s
execution.
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We define events as follows for all r ∈ [I]:

• Let Er be the event that in step (S3) Count is called at most 2k+3 ln( 8Ink

ε )
times in calculating Mr, that each time it is called it returns M satisfying
M ∈ (1± ξ)e(G[X]), and that Mr > 0.

• Let Er,1 be the event that when i = r, we accept a set Xr within 2k+3 ln( 8Ink

ε )
iterations of (S3a)–(S3c).

• Let Er,2 be the event that when i = r, we accept a set Xr without Count ever
returning an inaccurate estimate M /∈ (1± ξ)e(G[X]).

Intuitively, Er is the event that the algorithm behaves as we expect in determining
Xr. We will use Er,1 and Er,2 to bound P(Er | E1, . . . , Er−1) below for all r ∈ [I], and
hence bound P(E1, . . . , Er) below. When r = 1, it follows from Theorem 1.1 and the
fact that e(G) > 0 that P(E1) ≥ 1− δ.

Let 2 ≤ r ≤ I, let F be a possible filtration of X1, . . . , Xr−1 and M1, . . . ,Mr−1

compatible with E1, . . . , Er−1, and let Y be the value of Xr−1 determined by F . Note
that if Er,2 ∩ F occurs, then Mr ∈ (1± ξ)e(G[Xr]); moreover, since we accepted Xr

with probability at most Mr/Mr−1, we must have Mr > 0. Thus

(5.1) P(Er | F) ≥ P(Er,1 ∩ Er,2 | F).

To bound P(Er,1 ∩ Er,2 | F) below, consider the first iteration of (S3a)–(S3c) with
i = r. In this iteration, let A1 be the event that Count returns an inaccurate estimate
M , and let A2 be the event that Count returns an accurate estimate M and we
subsequently accept X; note that each of these events is independent of past samples,
and that their probability does not depend on the value of i. By Theorem 1.1, we
accept X in any given round with probability at least P(A2 | F)− δ; hence

(5.2) P(Er,1 | F) ≥ 1−
(
1− P(A2 | F) + δ

)2k+3 ln(8Ink/ε)
.

Let T be the number of iterations of (S3a)–(S3c) before either Count returns an
inaccurate estimate or we accept an accurate estimate. By Bayes’ theorem, for all
t ≥ 0, we have

P(Er,2 | F and T = t) =
P(Er,2 and T = t | F)

P(T = t | F)
=

P(Er,2 and T = t | F and T ≥ t)
P(T = t | F and T ≥ t)

=
P(A2 | F)

P(A2 | F) + P(A1 | F)
.

Summing over all values of t yields

P(Er,2 | F) =
P(A2 | F)

P(A2 | F) + P(A1 | F)
.(5.3)

We now bound P(A1 | F) above and P(A2 | F) below. Theorem 1.1 implies that

(5.4) P(A1 | F) ≤ δ.

Moreover, for all S ⊂ Y with |S| = |Y |/2, Theorem 1.1 implies that

P
(
A2 occurs and X = S | F

)
≥
(
|Y |
|Y |/2

)−1

· (1− δ) · (1− ξ)e(G[S])

Mr−1
.
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By the definition of F we have Mr−1 ∈ (1± ξ)e(G[Y ]), so it follows that

P
(
A2 occurs and X = S | F

)
≥ 1

2

(
|Y |
|Y |/2

)−1
e(G[S])

e(G[Y ])
.

On summing both sides over S, since each edge of G[Y ] appears in exactly
( |Y |−k
|Y |/2−k

)
sets S ⊂ Y with |S| = |Y |/2, we obtain

P(A2 | F) ≥ 1

2

(
|Y |
|Y |/2

)−1( |Y | − k
|Y |/2− k

)
.

Since r ≤ I, we have |Y | ≥ n/2I−1 ≥ 4k2, so by Lemma 2.4 it follows that P(A2 |
F) ≥ 2−k−2. It therefore follows from (5.2), (5.3) and (5.4) that

P(Er,1 | F) ≥ 1− (1− 2−k−2 + δ)2k+3 ln(8Ink/ε) ≥ 1− (1− 2−k−3)2k+3 ln(8Ink/ε)

≥ 1− e− ln(8Ink/ε) = 1− ε/8Ink,
P(Er,2 | F) ≥ 2−k−2/(2−k−2 + δ) ≥ 1− 2k+2δ ≥ 1− ε/8Ink.

By (5.1), it follows that P(Er | F) ≥ 1− ε/4Ink for all r ∈ [I]. Thus

P(Er | E1, . . . , Er−1) ≥ 1− ε/4Ink for all r ∈ [I], and(5.5)

P(E1, . . . , EI) ≥ 1− ε/4nk.(5.6)

With these equations in hand, we are now ready to proceed with the main proof.
Running time and oracle queries. Since |XI | = n/2I−1 ≤ 32k2 by our choice

of I, the bottleneck in the running time is the invocations of Count in (S3b). By
Theorem 1.1, each invocation takes time O(log(1/δ)ξ−2k6kn log4k+7 n) and requires
O(log(1/δ)ξ−2k6k log4k+7 n) invocations of the oracle. Since 1/ξ = O((log n)/ε),
log(1/δ) = O(k log n + log(1/ε)) and 1/ε = O(nk), each invocation takes time
O(ε−2k6k+1n log4k+10 n) and requires O(ε−2k6k+1 log4k+10 n) oracle invocations. As
by (5.6), with probability at least 1 − ε/nk there are at most 2k+3 ln(8Ink/ε) =
O(k2k log n) such invocations, the claimed bounds follow.

Correctness. Let F be the output of HelperSample(G, ε), or Fail if it does not
halt. Since e(G) > 0, by (5.6), HelperSample(G, ε) outputs a sample from E(G) with
probability at least 1− ε/nk; thus to prove Lemma 5.1, it suffices to show that for all
f ∈ E(G) we have P(F = f) ∈ (1± ε)/e(G).

Let S1 = V (G) and, for all S1 ⊃ S2 ⊃ · · · ⊃ SI ⊃ f with |Sr| = n/2r−1 for all
r ∈ [I], let

p(S1, . . . , SI , f) = P(Xr = Sr for all r ∈ [I], F = f, and E1, . . . , EI occur).

Thus for all f ∈ E(G), we have

P(F = f) ≥
∑

S1⊃···⊃SI⊃f
|Sr|=n/2r−1

p(S1, . . . , SI , f),

P(F = f) ≤
∑

S1⊃···⊃SI⊃f
|Sr|=n/2r−1

p(S1, . . . , SI , f) +
(
1− P(E1 ∩ · · · ∩ EI)

)
.
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By (5.6), it follows that

(5.7)
∑

S1⊃···⊃SI⊃f
|Sr|=n/2r−1

p(S1, . . . , SI , f) ≤ P(F = f) ≤
∑

S1⊃···⊃SI⊃f
|Sr|=n/2r−1

p(S1, . . . , SI , f) +
ε

4nk
.

To bound each term p(S1, . . . , SI , f), we first derive estimates for the probability
that Xr = Sr, conditioned on Xt = St for all t ∈ [r − 1] and on E1, . . . , Er−1. Let Fr
be an arbitrary filtration of X1, . . . , Xr−1 and M1, . . . ,Mr−1 compatible with these
events. For all S ⊂ Sr−1 with |S| = |Sr−1|/2, let q(S) be the probability that we
accept S on a given iteration of (S3a)–(S3c) conditioned on X = S and Fr. Then by
Theorem 1.1 and the definition of Fr,

(5.8) q(S) ≥ (1− δ) (1− ξ)e(G[S])

(1 + ξ)e(G[Sr−1])
and q(S) ≤ (1 + ξ)e(G[S])

(1− ξ)e(G[Sr−1])
+ δ.

Moreover, by a standard rejection sampling argument (see e.g. Florescu [25, Proposition
3.3]), we have

(5.9) P(Xr = Sr | Fr) =
q(Sr)∑

T⊂Sr−1

|T |=|Sr−1|/2
q(T )

.

By (5.8) and (5.9), and using the fact that e(G[Sr]) ≥ 1, we have

P(Xr = Sr | Fr) ≤
( (1 + ξ)e(G[Sr])

(1− ξ)e(G[Sr−1])
+ δ
)/( ∑

T⊂Sr−1

|T |=|Sr−1|/2

(1− δ)(1− ξ)e(G[T ])

(1 + ξ)e(G[Sr−1])

)

=
(1 + ξ)2

(1− ξ)2(1− δ)
· e(G[Sr]) + δe(G[Sr−1])∑

T⊂Sr−1

|T |=|Sr−1|/2
e(G[T ])

≤ (1 + ξ)3

(1− ξ)3
· e(G[Sr])∑

T⊂Sr−1

|T |=|Sr−1|/2
e(G[T ])

.

Since each edge of G[Sr−1] appears exactly
( |Sr−1|−k
|Sr−1|/2−k

)
times in this sum, it follows

that

P(Xr = Sr | Fr) ≤
(1 + ξ)3

(1− ξ)3
· e(G[Sr])( |Sr−1|−k
|Sr−1|/2−k

)
e(G[Sr−1])

≤ (1 + 8ξ)
e(G[Sr])( |Sr−1|−k

|Sr−1|/2−k
)
e(G[Sr−1])

.(5.10)

(Here the last inequality follows since ξ < 1/20.)
Also by (5.8) and (5.9), we have

P(Xr = Sr | Fr) ≥
(1− δ)(1− ξ)e(G[Sr])

(1 + ξ)e(G[Sr−1])

/( ∑
T⊂Sr−1

|T |=|Sr−1|/2

( (1 + ξ)e(G[T ])

(1− ξ)e(G[Sr−1])
+ δ
))

≥ (1− δ)(1− ξ)2

(1 + ξ)2
· e(G[Sr])∑

T⊂Sr−1

|T |=|Sr−1|/2

(
e(G[T ]) + δe(G[Sr−1])

) .
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Since there are
( |Sr−1|
|Sr−1|/2

)
terms in the sum, and since each edge of G[Sr−1] contributes

1 to
( |Sr−1|−k
|Sr−1|/2−k

)
terms of the sum and zero to the rest, it follows that

P(Xr = Sr | Fr) ≥
(1− ξ)3

(1 + ξ)2
· e(G[Sr])( |Sr−1|−k
|Sr−1|/2−k

)
e(G[Sr−1]) +

( |Sr−1|
|Sr−1|/2

)
δe(G[Sr−1])

.

Since |Sr−1| = n/2r−1 ≥ 4k2, by Lemma 2.4 we have(
|Sr−1|
|Sr−1|/2

)
≤ 2k+1

(
|Sr−1| − k
|Sr−1|/2− k

)
.

It follows that

P(Xr = Sr | Fr) ≥
(1− ξ)3

(1 + ξ)2
· e(G[Sr])

(1 + 2k+1δ)
( |Sr−1|−k
|Sr−1|/2−k

)
e(G[Sr−1])

≥ (1− 6ξ)
e(G[Sr])( |Sr−1|−k

|Sr−1|/2−k
)
e(G[Sr−1])

.(5.11)

With upper and lower bounds on P(Xr = Sr | Fr) now in place, we return to the
task of bounding p(S1, . . . , SI , f). Observe that for all f ∈ E(G),

∑
S1⊃···⊃SI⊃f
|Sr|=n/2r−1

p(S1, . . . , SI , f) =
∑

S1⊃···⊃SI⊃f
|Sr|=n/2r−1

1

e(G[SI ])

I∏
r=1

P
(
Xr = Sr, Er occurs | Fr

)
.

It therefore follows from (5.10) that

∑
S1⊃···⊃SI⊃f
|Sr|=n/2r−1

p(S1, . . . , SI , f) ≤
∑

S1⊃···⊃SI⊃f
|Sr|=n/2r−1

1

e(G[SI ])

I∏
r=2

(1 + 8ξ)e(G[Sr])( |Sr−1|−k
|Sr−1|/2−k

)
e(G[Sr−1])

.

(Recall that e(G[Sr]) ≥ 1 for all r ∈ [I].) We have (1 + 8ξ)I ≤ e8Iξ ≤ 1 + 16Iξ, so on
collapsing the telescoping product we obtain

∑
S1⊃···⊃SI⊃f
|Sr|=n/2r−1

p(S1, . . . , SI , f) ≤
∑

S1⊃···⊃SI⊃f
|Sr|=n/2r−1

1 + 16Iξ

e(G)

I∏
r=2

(
n/2r−2 − k
n/2r−1 − k

)−1

.

All terms of this sum are equal, and there are precisely
∏I−2
r=0

( n/2r−k
n/2r+1−k

)
terms, so∑

S1⊃···⊃SI⊃f
|Sr|=n/2r−1

p(S1, . . . , SI , f) ≤ 1 + 16Iξ

e(G)
≤ 1 + ε/2

e(G)
.

Hence by (5.7), we have P(F = f) ≤ (1 + ε)/e(G), as required.
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Similarly, it follows from (5.11) that

∑
S1⊃···⊃SI⊃f
|Sr|=n/2r−1

p(S1, . . . , SI , f) ≥
∑

S1⊃···⊃SI⊃f
|Sr|=n/2r−1

1− δ
e(G[SI ])

I∏
r=2

(1− 6ξ)e(G[Sr])( |Sr−1|−k
|Sr−1|/2−k

)
e(G[Sr−1])

−
I∑
r=1

(
1− P(Er | E1, . . . , Er−1)

)
.

By (5.5), the last term is bounded above by ε/4nk; it follows that

∑
S1⊃···⊃SI⊃f
|Sr|=n/2r−1

p(S1, . . . , SI , f) ≥
∑

S1⊃···⊃SI⊃f
|Sr|=n/2r−1

1− 6Iξ

e(G)

I∏
r=2

(
n/2r−2 − k
n/2r−1 − k

)−1

− ε

4nk

=
1− 6Iξ

e(G)
− ε

4nk
≥ 1− ε
e(G)

.

It therefore follows from (5.7) that P(F = f) ≥ (1− ε)/e(G) as required.

It is now easy to prove Theorem 1.2 from Lemma 5.1.

Theorem 1.2. There is a randomised algorithm Sample(G, ε) which, given a
rational number ε with 0 < ε < 1 and colourful oracle access to an n-vertex k-hypergraph
G containing at least one edge, outputs either a random edge f ∈ E(G) or Fail. For
all f ∈ E(G), Sample(G, ε) outputs f with probability (1± ε)/e(G); in particular, it
outputs Fail with probability at most ε. Moreover, writing T = ε−2k7k log4k+11 n,
Sample(G, ε) runs in time O(nT ) and uses at most O(T ) queries to cINDG.

Proof. To evaluate Sample(G, ε), we first make n into a power of two by adding
at most n isolated vertices to G; note that this does not impede the evaluation of
cINDG. We then call HelperSample(G, ε/3). If it returns Fail, or does not return a
value within O(nT ) time and O(T ) oracle queries, then we return Fail. Otherwise,
we return its output. Writing F for our output, by Lemma 5.1, for all f ∈ E(G), we
have P(F = f) ≤ (1 + ε)/e(G) and

P(F = f) ≥ 1− ε/3
e(G)

− 2ε

3nk
≥ 1− ε
e(G)

,

as required.

6. Corollaries of Theorems 1.1 and 1.2. In this section, we restate and prove
some fairly straightforward consequences of our main results, which allow us to turn
decision algorithms for various problems in parameterised and fine-grained complexity
into approximate counting and sampling algorithms.

Corollary 1.3. There is a randomised algorithm SampleCount with the following
behaviour. Let G be an arbitrary n-vertex k-hypergraph for some n and k, and let AG be
a randomised implementation of the colourful independence oracle of G with worst-case
running time T and error probability at most 1/3. Let ε, δ > 0. Then SampleCount

(V (G), k, AG, ε, δ) outputs an ε-approximation of e(G) with error probability at most δ
and an ε-approximate sample from E(G) with error probability zero. Moreover, the
running time of SampleCount is at most ε−2 log2(1/δ)(k log n)O(k)(n+ T ).
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Proof. We may assume without loss of generality that ε > n−k, since otherwise
we can count or sample by brute force in time O(ε−1T ) by applying the (simulated)
colourful independence oracle to each k-element subset of V (G).

We next reduce the failure probability of AG with a standard probability am-
plification technique. Let A′G be the algorithm with runs AG on the given inputs
d600k log(n/δ)e times and returns the most common answer. By Lemma 2.3, the
probability that this answer is incorrect is at most 2e−600k log(n/δ)/36 < (n/δ)−14k, and
each invocation of A′G takes O(Tk log n) time. We now simply run Count(G, ε, δ/2)
and Sample(G, ε/2) and return the results, using A′G to simulate each call to the
colourful independence oracle of G.

Recall the properties of Count and Sample from Theorems 1.1 and 1.2. In both
algorithms, A′G is invokedO(ε−2k7k log4k+11 n) times; by a union bound, for sufficiently
large n, the probability it returns the correct answer on every invocation is at least

1−O
(
ε−2k7k log(1/δ) log4k+11 n · (n/δ)−14k

)
≥ 1− (n/δ)−10k.

Conditioned on all oracle calls returning the correct answer, Count returns a valid
ε-approximation with probability at least 1− δ/2 and Sample returns a valid (ε/2)-
approximate sample. It follows by union bounds that without this conditioning, Count
returns a valid ε-approximation with probability at least 1− δ/2− n−10k, and Sample

returns a valid (n−10k + ε/2)-approximate sample with no possibility of failure. Since
(n/δ)−10k ≤ δ/2 and (n/δ)−10k ≤ ε/2, it follows that SampleCount behaves as desired.
Moreover, by our running time bounds on Count, Sample and A′G, the running time
of SampleCount is ε−2(k log n)O(k)(n+ T ) as required.

We believe that Corollary 1.4 does follow from a careful reading of the proofs of
Theorems 1.1 and 1.2 in the way one might expect, replacing all randomly-applied
colourings of the graph by the colouring induced by X1, . . . , Xk. However, for the
benefit of the reader, we give a slightly less efficient but far more easily-checkable
algorithm by means of a standard colour coding argument.

Corollary 1.4. There is a randomised algorithm PartitionedSampleCount

with the following behaviour. Let G be an arbitrary n-vertex k-partite k-hypergraph
for some n and k with vertex classes V1, . . . , Vk, and let AG be a randomised imple-
mentation of the uncoloured independence oracle of G with worst-case running time T
and error probability at most 1/3. Let ε, δ > 0. Then PartitionedSampleCount

(V1, . . . , Vk, k, AG, ε, δ) outputs an ε-approximation of e(G) with failure probability at
most δ and an ε-approximate sample from E(G) with error probability zero. The run-
ning time of PartitionedSampleCount is at most ε−2 log2(1/δ)(k log n)O(k)(n+ T ).

Proof. By Corollary 1.3, it suffices to simulate the colourful independence oracle
of G in time (k log n)O(k)(n+T ). Let X1, . . . , Xk ⊆ V (G) be an input to the colourful
independence oracle of G, and let Xi,j = Xi ∩ Vj for all i, j ∈ [k]. Since G is k-partite
with vertex classes V1, . . . , Vk, every edge e of G[X1 ∪ · · · ∪Xk] contains one vertex
from each of X1,σe(1), X2,σe(2), . . . , Xk,σe(k) for some map σe : [k]→ [k]. Moreover, e
is colourful under X1, . . . , Xk if and only if σe is a bijection. Motivated by this, for
each bijection σ : [k]→ [k], let Gσ = G[X1,σ(1) ∪ · · · ∪Xk,σ(k)]; then every colourful
edge of G appears in exactly one Gσ, and every edge appearing in any Gσ is colourful.
It follows that

cINDG(X1, . . . , Xk) = min
{

INDG(X1,σ(1) ∪ · · · ∪Xk,σ(k)) : σ a bijection [k]→ [k]
}
.

We can compute each tuple (X1,σ(1), . . . , Xk,σ(k)) in O(n) time, each oracle invocation
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takes T time, and there are k! such tuples to compute; thus overall we can compute
cINDG(X1, . . . , Xk) in (k log n)O(k)(n+ T ) time as required.

Finally, we give a formal proof of Theorem 1.7, which is straightforward from
Corollary 1.3 and Definition 1.5.

Theorem 1.7. Let Π be a uniform witness problem, and let T be any function
from instances of Π to the positive reals. Suppose that given an instance x of Π, there
is an algorithm to solve Colourful-Π on x with error probability at most 1/3 in

time T (x). Suppose also that any such algorithm has running time Ω̃(|x|). Then there
is a randomised algorithm which, given an instance x of Π and ε > 0, with running
time

(1.1) ε−2(kx log nx)O(kx) ·max
{
T (Ix(S)) : S ⊆ V (Gx)

}
,

outputs an ε-approximation to #Π(x) with probability at least 2/3 and an ε-approximate
sample from Wx with error probability zero.

Proof. Let x be an instance of Π, and let ε > 0. For all disjoint X1, . . . , Xkx ⊆
V (Gx), we may compute cINDGx(X1, . . . , Xkx) as follows:

(i) Compute Ix(X1 ∪ · · · ∪Xkx) using the algorithm of Definition 1.5(iii);
(ii) Run the assumed Colourful-Π algorithm on y = Ix(X1 ∪ · · · ∪Xkx) with

input partition X1, . . . , Xkx of Gy = Gx[X1 ∪ · · · ∪Xkx ].
(iii) Return 1 if Colourful-Π returns No and 0 if Colourful-Π returns Yes.

Denote this implementation by A. For brevity, let T+(x) = max
{
T (Ix(S)) : S ⊆

V (Gx)
}

; then A has running time Õ(|x|+ T+(x)). Since T+(x) ≥ T (x) = Ω̃(|x|) by

hypothesis, A therefore has running time Õ(T+(x)).
Our algorithm now simply computes V (Gx) and kx from x using the algorithm of

Definition 1.5(ii), then returns SampleCount(V (Gx), kx, A, ε, 2/3); by Corollary 1.3,
this will yield an ε-approximation to |E(Gx)| and the desired ε-approximate sample
from E(Gx) = Wx with the desired error probability. By Definition 1.5(i) we have
|E(Gx)| = #Π(x), and E(Gx) = Wx by definition, so the algorithm performs as
required.

We now bound the running time. Observe from Definition 1.5(ii) that nx = Õ(|x|),
and recall that by hypothesis we have T+(x) ≥ T (x) = Ω̃(|x|); hence by Corollary 1.3,
the overall running time is

Õ(|x|) + ε−2 log2(1/δ)(kx log nx)Õ(k)(nx + T+(x))

= ε−2 log2(1/δ)(kx log nx)Õ(k)T+(x),

as required.

6.1. Application to Graph Motif. We now describe an approximate count-
ing problem in parameterised complexity for which our results imply an immediate
improvement over the best stated running time bound in the literature: the Graph
Motif problem, introduced by Lacroix, Fernandes and Sagot [40] in the context of
metabolic networks. This problem takes as input an n-vertex m-edge graph with a
(not necessarily proper) vertex-colouring, together with a multiset M of colours. We
write k = |M |. A motif witness for M is a set U ⊆ V (G) of k vertices such that
the induced subgraph G[U ] is connected and the colour multiset of U is exactly M .
If M has a motif witness, then M is called a motif. Without loss of generality, let us
assume that the set C of allowed colours always satisfies C = {1, . . . , n}. The problem
is formally stated as follows.
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Graph Motif
Input: A graph G on n vertices and m edges, a colouring c : V (G)→ C, and a
multiset M consisting of elements of C, with |M | = k.
Question: Is there a set U ⊆ V (G) with |U | = k such that U induces a connected
subgraph of G and the multiset {c(u) : u ∈ U} is equal to M?

There has been substantial progress in recent years on improving the running-time
of decision algorithms for Graph Motif [8, 13, 24, 31, 39]. Björklund, Kaski, and
Kowalik [13] gave the fastest known randomised algorithm to solve (a generalisation
of) this problem; in the following theorem, µ = O(log k log log k log log log k) accounts
for the time required to carry out arithmetic operations in a finite field of size O(k)
and characteristic 2.

Theorem 6.1 (Björklund, Kaski, and Kowalik [13]). There exists a Monte Carlo
algorithm for Graph Motif that runs in O(2kk2mµ) time and in polynomial space,
with the following guarantees: (i) the algorithm always returns No when given a No-
instance as input, (ii) the algorithm returns Yes with probability at least 1/2 when
given a Yes-instance as input.

For the counting version of Graph Motif, Guillemot and Sikora [31] addressed
the related problem of counting k-vertex subtrees whose multiset of vertex colours
equals M . This problem is equivalent to counting motif witnesses U for M weighted
by the number of trees spanned by U . When M is a set, this exact counting problem
admits an FPT algorithm, but is #W[1]-hard otherwise. Subsequently, Jerrum and
Meeks [35] addressed the more natural counting analogue of Graph Motif in which
the goal is to count all motif witnesses for M (without weights). They demonstrated
that this problem is #W[1]-hard to solve exactly even if M is a set, but gave an
FPTRAS to solve it approximately. The goal in [35] was simply to demonstrate the
existence of an FPTRAS rather than to optimise the running time; the algorithm
as described has running time Ω(n3). We believe that, with sufficient care, the
general strategy described in [35] could be adapted to give a running time similar to
that obtained in the following corollary; however, Theorem 1.7 allows us to deduce
this improvement immediately from Theorem 6.1. Moreover, it provides a method
for translating any future improvement to the decision algorithm into an improved
algorithm for approximate counting or sampling.

Corollary 6.2. Given an n-vertex, m-edge instance (G, c,M) of Graph Motif
with k = |M | and 0 < ε < 1, there is a randomised algorithm to ε-approximate the
number of motif witnesses or to draw an ε-approximate sample from the set of motif
witnesses in time ε−2kO(k)m logO(k) n.

In order to apply Theorem 1.7, we need to show that Graph Motif is a uniform
witness problem according to Definition 1.5. Given an instance x = (G, c,M), we let Gx
be the k-hypergraph on the vertex-set V (G) whose edges are all sets U ⊆ V (G) that
are motif witnesses for M . It is clear that Gx satisfies the conditions of Definition 1.5
on taking Ix(S) = (G[S], c|S ,M), and so Graph Motif is a uniform witness problem.
Another precondition of Theorem 1.7 is that any algorithm for the problem requires
at least time Ω̃(n); this is true for Graph Motif, because any algorithm for it must
read a constant proportion of the input. Finally, before we can apply Theorem 1.7
to immediately obtain Corollary 6.2, we must state an algorithm for the problem
Colourful-Graph Motif of Definition 1.6; to avoid confusion with the colouring
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that already exists, we instead call this Partitioned Graph Motif. It is clear that
the maximum running time for this algorithm on any sub-instance will be dominated
by that for the original instance.

Lemma 6.3. There exists a randomised algorithm for Partitioned Graph Mo-
tif that runs in time kO(k)m, with error probability at most 1/3.

Proof. The input to Partitioned Graph Motif consists of (G, c,M) and a
partition of V (G) into disjoint sets S1, . . . , Sk. We now describe an algorithm that
decides whether there is a motif witness U ⊆ V (G) that intersects each set Si in
exactly one vertex.

Write M = {c1, . . . , ck}. For each possible bijection π : [k]→ [k] we will determine,
with probability at least 1 − 1

3k! , whether there is a motif witness U with U =
{u1, . . . , uk} ⊆ V (G) such that, for all i ∈ [k], we have ui ∈ Si and c(ui) = cπ(i).
We achieve this by solving a new instance (G, c′,M ′) of Graph Motif using the
algorithm of Theorem 6.1: we use the same input graph, but define a new colouring
c′ : V (G)→ C×[k], where c′(v) = (c, i) if and only if c(v) = c and v ∈ Vi. Moreover, we
set M ′ = {(cπ(1), 1), . . . , (cπ(k), k)}. We silently replace C × [k] with [n] by discarding
unused colours and renaming the rest. To achieve the claimed success probability, it
suffices to call the randomised algorithm for Graph Motif a total of d3k log ke times,
returning Yes if any of the calls returns Yes, and No otherwise.

We return Yes if any of our trials over all possibilities for π returns Yes; otherwise
we return No. By a union bound, the probability that we obtain the correct answer
for all k! choices of π is at least 2/3, and in this case we output the correct answer.

In total, we invoke the randomised Graph Motif algorithm k!d3k log ke times,
so the total running time is O(k!k log k · 2kk2m log k log log k log log log k) = kO(k)m.

Corollary 6.2 is now immediate from Lemma 6.3 and Theorem 1.7. (Recall
that, for any k-colour m-edge instance x = (G, c,M) of Graph Motif and any
S ⊆ V (Gx) = V (G), we have Ix(S) = (G[S], c|S ,M); thus the maximum in the
right-hand side of (1.1) is simply kO(k)m.)

6.2. Application to k-SUM. The k-SUM problem has been studied since
the 1990s as it arises naturally in the context of computational geometry (see for
example [28]), and it has become an important problem in fine-grained complexity
theory [51]. For all integers k ≥ 3, the k-SUM problem asks, given a set of integers,
whether some k of them sum to zero. Each k-subset of integers that does sum to
zero is called a witness. While Kane, Lovett, and Moran [38] very recently developed
almost linear-size linear decision trees for k-SUM, the fastest known algorithm for this
problem still runs in time Õ(ndk/2e). A running time of no(k) as k →∞ is ruled out
under the exponential-time hypothesis [46]. We prove that any sufficiently non-trivial
improvement over the best known decision algorithm carries over to approximate
counting and witness sampling.

For any integer k ≥ 3, the k-SUM problem is stated formally as follows.

k-SUM
Input: A set X of integers.
Question: Is there a set S ⊆ X with |S| = k such that

∑
x∈S x = 0? We call such

sets witnesses for X.

Observe that k-SUM is a uniform witness problem by Definition 1.5: The k-
hypergraph has vertex set X, its edges are precisely the witnesses for X, and for all
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S ⊆ X, the instance IX(S) is simply S. Thus, the problem Colourful-k-SUM of
Definition 1.6 is given as follows: The input consists of k disjoint sets X1, . . . , Xk

of integers, and the goal is to determine whether there exist x1 ∈ X1, . . . , xk ∈ Xk

such that
∑
i xi = 0. Note that any algorithm for Colourful-k-SUM requires time

Ω̃(|X|) to read the input.
In order to apply Theorem 1.7, we first reduce Colourful k-SUM to k-SUM

with the following lemma (which is well-known folklore).

Lemma 6.4. If an n-integer instance of k-SUM can be solved in time T (n), then
there is an O(T (n))-time algorithm for Colourful k-SUM.

Proof. Let X1, . . . , Xk be the input for Colourful k-SUM. For each i ∈ [k],
define injections fi : Z→ Z by

fi(x) = (k + 1)kx+ (k + 1)i−1 for all i ∈ [k − 1],

fk(x) = (k + 1)kx−
k−1∑
i=1

(k + 1)i−1.

For all i ∈ [k], let Yi = {fi(x) : x ∈ Xi}, and let Y = Y1 ∪ · · · ∪ Yk. Now we run the
assumed k-SUM decision algorithm on Y and output the result. Preparing the set Y
and running the algorithm takes time O(n) + T (n). Since any algorithm for k-SUM
must read a constant proportion of its input, we have T (n) ≥ Ω(n); thus, the overall
running time of this algorithm is O(T (n)).

To prove correctness, let xi ∈ Xi for all i ∈ [k] such that
∑
i xi = 0. Then

k∑
i=1

fi(xi) = (k + 1)k
k∑
i=1

xi +

k−1∑
i=1

(k + 1)i−1 −
k−1∑
i=1

(k + 1)i−1 = 0,

and so there are k distinct numbers in Y whose sum is zero. Conversely, suppose
y1, . . . , yk ∈ Y are distinct numbers whose sum is zero. Then by the uniqueness of base-
(k+1) expansions, we must have yi ∈ Yσ(i) for some permutation σ : [k]→ [k]; moreover,∑

i f
−1
σ(i)(yi) = 0. Thus {f−1

σ(1)(y1), . . . , f−1
σ(k)(yk)} is a witness for Colourful k-SUM

as required. We conclude that the reduction is correct.

The following corollary is now immediate from Lemma 6.4 and Theorem 1.7.
(Recall that, for any n-element instance X of k-SUM and any S ⊆ V (GX) = X, we
have IX(S) = S; thus the maximum in the right-hand side of (1.1) is simply T (n).)

Corollary 6.5. Fix k ≥ 3, suppose an n-integer instance of k-SUM can be
solved in time T (n), and write W for the set of witnesses. Then there is a randomised
algorithm to ε-approximate |W |, or draw an ε-approximate sample from W , in time

ε−2 · Õ(T (n)).

6.3. Application to k-Orthogonal Vectors. As is standard, we abbreviate
k-Orthogonal vectors to k-OV. The k-OV problem has connections to central
conjectures in fine-grained complexity theory [1, 30]. Clearly, k-OV can be solved in
time O(NkD) using exhaustive search. Gao et al. [30] stated the Moderate-Dimension
k-OV Conjecture, which says that k-OV cannot be solved in time O(Nk−ε poly(D))
for any ε > 0. We show that every superlogarithmic improvement over exhaustive
search for k-OV carries over to approximate counting and sampling of k-OV witnesses.
Note that such an improvement is already known for 2-OV, namely 2-OV has an
N2−1/O(log(D/ logN))-time algorithm [3]. Chan and Williams [15] already generalised
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this 2-OV decision algorithm to an exact counting algorithm. For all integers k ≥ 2,
the k-OV problem is stated formally as follows.

k-OV
Input: Sets X1, . . . , Xk of vectors from {0, 1}D.

Question: Do there exist x1 ∈ X1, . . . , xk ∈ Xk with
∑D
j=1

∏k
i=1(xi)j = 0? We

call such tuples (x1, . . . , xk) witnesses for X1, . . . , Xk.

We remark that the sum and product in the problem definition refer to the usual
arithmetic operations over Z. Observe that k-OV is a uniform witness problem
according to Definition 1.5: for a k-OV instance x = (X1, . . . , Xk), the k-hypergraph
Gx has vertex-set X1 ∪ · · · ∪ Xk, its edges are precisely the witnesses of the k-OV
instance, and for any S ⊂ X1 ∪ · · · ∪Xk, the instance Ix(S) is (S ∩X1, . . . , S ∩Xk).
Notice that k-OV is in fact a colourful uniform witness problem, since Gx is always
k-partite, and so Colourful-k-OV reduces to kO(k) instances of k-OV.

The following corollary is now immediate by Theorem 1.7, since any algorithm
for k-OV requires time Ω̃(|X1 ∪ · · · ∪Xk|) to read the input and, by the definition of
Ix(S) and our choice of T , it is immediate that the maximum in the right-hand side
of (1.1) is simply T (x).

Corollary 6.6. Fix k ≥ 2, suppose an N-vector D-dimensional instance of k-
OV can be solved in time T (N,D), and write W for the set of witnesses. Then there
is a randomised algorithm to ε-approximate |W |, or draw an ε-approximate sample

from W , in time ε−2 · Õ(T (N,D)).

6.4. Application to first-order model checking. In this section, we apply
our results to the property testing problem for k-FO. Informally, the input to this
problem consists of a formula and a structure (e.g., the edge relation of a graph), to
decide whether the formula is satisfiable in the structure, that is, whether there is an
assignment to the free variables that makes the formula true. Correspondingly, the
property counting problem is to count all satisfying assignments. In order to formally
introduce this problem, we must introduce some standard notation from logic; for
the convenience of the reader, we will also give a brief introduction to the associated
concepts.

Syntax. The class k-FO is the set of all first-order formulas ϕ in prenex normal
form with at most k variables. Here is an example of a formula Φ ∈ 5-FO:

Φ(x1, x2, x3) = ∀x4∃x5 . R1(x1, x2) ∧ (R2(x5, x3, x1)⇒ R1(x4, x5)) .

Because all the quantifiers are at the front, the formula is in prenex normal form. The
formula Φ has free variables x1, x2, x3 and uses two relation symbols R1 and R2. The
arity of R1 is 2 and the arity of R2 is 3. Therefore, we say that Φ uses the vocabulary
νΦ = (R1, R2, 2, 3).

In general, a vocabulary is a tuple ν = (R1, . . . , Rr, α1, . . . , αr), where R1, . . . , Rr
are relation symbols and α1, . . . , αr are positive integers denoting the respective arities
of the relation symbols. A formula ϕ ∈ k-FO over the vocabulary ν satisfies

ϕ(x1, . . . , x`) = Q1x`+1Q2x`+2 . . . Qk−`xk . ψ(x1, . . . , xk) ,

where the variables x1, . . . , x` are the free variables of ϕ, each Qi ∈ {∃,∀} is a quantifier,
and ψ is a quantifier-free Boolean formula over the variables x1, . . . , xk such that each
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atom of ψ is of the form Ri(xj1 , . . . , xjαi ), that is, each atom of ψ applies some relation
symbol Ri to a tuple of αi variables.

Semantics. So far, the formulas Φ and ϕ only consist of syntax. In order to be
able to say that a formula is satisfiable, we need to define a universe U as well as
instantiate the relation symbols with actual relations over U of matching arities. In
our example, we might set the universe to be UΦ = {a, b, c, d}. Then the variables of Φ
take values from UΦ, and all quantification is over UΦ. We might then instantiate the
relations via R1 = {(a, b), (b, c)} and R2 = {(a, d, c)}. We say that SΦ = (U,R1,R2)
is a structure for νΦ. Now we can see that Φ(a, b, c) is true and Φ(a, c, d) is false in
the structure SΦ, and that Φ is satisfiable in SΦ because it has at least the satisfying
assignment (a, b, c).

In general, a structure S = (U,R1, . . . ,Rr) for the vocabulary ν consists of a finite
universe U together with relations R1, . . . ,Rr over U such that the arity of each Ri
is equal to αi. An assignment (y1, . . . , y`) ∈ U ` to the free variables of ϕ is called
satisfying in S if ϕ(y1, . . . , y`) is true in the structure S. For all positive integers k,
we define the following problem.

k-FO Property Testing
Input:

(i) A vocabulary ν = (R1, . . . , Rr, α1, . . . , αr) with αi ≤ k for all i,
(ii) A structure S = (U,R1, . . . ,Rr) on ν, where all tuples in all Ri’s are

explicitly given as a list and ∅ 6= Ri ⊆ Uαi holds for all i,
(iii) A first-order formula ϕ in prenex normal form and with vocabulary ν,

free variables x1, . . . , x`, and at most k − ` quantifiers.
Question: Does ϕ have a satisfying assignment in S?

Property testing is an important problem in logic and in database theory (cf. [23]).
The fine-grained complexity of property testing has recently been studied to some
extent [19, 30, 49]. In particular, Gao et al. [30] devise an algorithm for the property

testing problem that runs in time mk−1/2Θ(
√

logm) for any fixed k-FO formula, where
m is the number of distinct tuples in the input relations. This improves upon an
already non-trivial Õ(mk−1) time algorithm.

We prove the following reduction from approximate counting to decision.

Corollary 6.7. Fix k ∈ Z≥0, and suppose k-FO Property Testing has an
algorithm that runs in time T (|ϕ|, n,m), where |ϕ| is the size of the formula, n is the size
of the universe, and m is the total number of tuples in the structure. Let W be the set
of satisfying assignments. Then there is a randomised algorithm to ε-approximate |W|,
or draw an ε-approximate sample from W, in time ε−2 · Õ(T (|ϕ|+ `, n,m+ n)).

This corollary follows from Theorem 1.7 by using the assumed algorithm for k-FO
Property Testing to simulate the uncoloured independence oracle of an appropriate
hypergraph.

Proof. In order to apply Theorem 1.7 to property testing, we need to show how
k-FO Property Testing is a uniform witness problem according to Definition 1.5.
Let x = (ν,S, ϕ) be an instance of k-FO Property Testing , let S = (U,R1, . . . ,Rr),
and let ` with ` ≤ k be the number of free variables in ϕ. We define the hypergraph
G = Gx as follows: For all i ∈ {1, . . . , `}, let Ui = U × {i}. Define an `-hypergraph G
with vertex set U1 ∪ · · · ∪ U` whose edges are the sets {(y1, 1), . . . , (y`, `)} such that
(y1, . . . , y`) is a satisfying assignment of ϕ in S.

It is clear that this function x 7→ Gx satisfies the conditions (i) and (ii) of
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Definition 1.5. To prove that k-FO Property Testing is a uniform witness
problem, it remains to prove (iii). Indeed, let X ⊆ V (G) be given as an input in

addition to x. Then we prepare in time Õ(|x|) an instance Ix(X) = (ν′,S ′, ϕ′) of
k-FO Property Testing such that GIx(X) = Gx[X] holds: We set Xi = X ∩Ui for
all i ∈ {1, . . . , `}. We form the new instance (ν′,S ′, ϕ′) of k-FO Property Testing
as follows: form ν′ from ν by adding ` additional relation symbols ∈X1

, . . . ,∈X` , each
with arity 1; form S ′ from S by instantiating each ∈Xi with the set {y : (y, i) ∈ Xi};
and form ϕ′ from ϕ by conjoining it with the formula (∈X1(x1)∧ · · · ∧∈X`(x`)). Then
GIx(X) = Gx[X] indeed holds. Thus, (iii) holds and k-FO Property Testing is a
uniform witness problem. In fact, since all hypergraphs involved are k-partite, it is a
colourful uniform witness problem.

A technical precondition of Theorem 1.7 is that any algorithm for the prob-
lem requires at least time Ω̃(|x|); this is true for k-FO Property Testing , be-
cause any algorithm for it must read a constant proportion of the input. Since
k-FO Property Testing is a colourful uniform witness problem, we obtain an algo-
rithm for Colourful-Π with an overhead of only kO(k) = O(1) time. Thus, we can
apply the theorem and obtain an algorithm for ε-approximate counting and sampling
that runs in time

ε−2(k log n)O(k)kO(1) · max
X⊆V (G)

T (Ix(X)) .

Since all instances Ix(X) have a universe of size n, at most n additional tuples,
and a formula ϕ′ that is ϕ conjoined with ` additional terms, we have T (Ix(X)) ≤
T (|ϕ|+ `, n,m+ n). The claimed running time then follows from k = O(1).

By applying Corollary 6.7, we are able to lift the algorithm of Gao et al. [30], to
approximate counting and sampling. For example, we obtain an algorithm to ε-
approximately sample uniformly random satisfying assignments. For any fixed k-FO
formula ϕ, this algorithm runs in time ε−2mk−1/2Θ(

√
logm). We remark the following

subtleties: Gao et al. [30] state their algorithm for any fixed formula ϕ, but actually
their algorithm is uniform in ϕ with a running time that can be expressed as a product
f(|ϕ|) · T (n,m). This means that increasing the size of ϕ by a constant does not
change the asymptotic running time for any fixed ϕ, since f(|ϕ|+ `) is constant as
well. Finally, for certain quantifier structures of ϕ, they obtain even faster decision
algorithms; since our reduction does not change the quantifier structure, these running
times transfer to approximate counting and sampling as well.

6.5. Application to subgraph problems. Recall from the discussion following
the statement of Theorem 1.1 that the theorem can be applied to the problem #k-
Clique for every constant k. Thus, every T (n)-time algorithm to decide the existence

of a k-clique can be turned into a Õ(ε−2T (n))-time algorithm to ε-approximate the
number of k-cliques. We now generalise this result to the problems of finding colourful
or zero-weight copies of an arbitrary subgraph, and we obtain similar consequences for
approximately uniform sampling via Corollary 1.4.

6.5.1. Colourful subgraphs. In this section, we use Corollary 1.4 to transform
any decision algorithm for Colourful-H into an approximate counting or sampling
algorithm with roughly the same running time. For all graphs H with k vertices, the
Colourful-H problem is stated formally as follows.

Colourful-H
Input: A graph G in adjacency list format and a vertex-colouring c : V (G)→ [k]
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(not necessarily proper).
Question: Does G contain a (not necessarily induced) subgraph S such that S is
isomorphic to H and, for all i ∈ [k], there is some v ∈ V (S) with c(v) = i?

Dı́az, Serna, and Thilikos [20] use dynamic programming to solve Colourful-H

in time Õ(nt+1), where t is the treewidth of H — their algorithm works for the exact
counting version of the problem, too. Marx [42] asks, loosely speaking, whether the
decision problem can be solved in time no(t), and proves that no(t/ log t) is impossible
under the exponential-time hypothesis (ETH). For all constant γ > 0, we show
that a factor nγ improvement to Dı́az et al.’s algorithm for the decision problem
would immediately yield a corresponding improvement to the approximate counting
or sampling problems.

Corollary 6.8. Let H be any fixed graph. Suppose n-vertex m-edge instances
of Colourful-H can be solved by a randomised algorithm in time T (m,n), and
write H for the set of colourful H-subgraphs. Then there is a randomised algorithm to
ε-approximate |H|, or draw an ε-approximate sample from H, in time ε−2 · Õ(T (m,n)).

In the proof, we use the notion of a graph homomorphism (see [41]). A function
f : V (H) → V (G) is called a homomorphism if, for all {u, v} ∈ E(H), we have
{f(u), f(v)} ∈ E(G). Note that injective homomorphisms correspond to subgraph
embeddings.

Proof. Let (G, c) be an instance of Colourful-H. To motivate our proof, we
first discuss a natural approach which fails. First, remove all edges {u, v} ∈ E(G)
with c(u) = c(v) from the graph, and note that this makes G k-partite with vertex
classes c−1(1), . . . , c−1(k) but does not change the answer. It would be natural to
apply Theorem 1.7 to the k-partite k-hypergraph G on V (G) in which S ⊆ V (G) is
an edge of G if G[S] contains a subgraph isomorphic to H, and indeed when H is a
k-clique this approach works. However, in general each edge S of G may correspond
to more than one copy of H contained in G[S]. Instead, we will apply Corollary 1.4
directly to count the edges in multiple k-hypergraphs corresponding to the k! possible
ways H could be embedded as a subgraph in G[S].

For each bijective function d : V (H) → [k], we let Gd be a k-hypergraph with
vertex set V (G) and edges given as follows. For each size-k subset S ⊆ V (G) with the
property that c|S : S → [k] is bijective (i.e. S is colourful under c), we add S to E(Gd)
if the function (c|−1

S ◦ d) : V (H)→ S is an injective homomorphism from H to G[S]
(i.e. G[S] contains H as a subgraph with vertex colours matching d). We now claim

(6.1) |H| = 1

Aut(H)

∑
d

e(Gd),

where Aut(H) is the number of automorphisms of H. Observe that since H is fixed,
we have access to Aut(H); thus given the claim, the problem of ε-approximating |H|
reduces to that of ε-approximating each term e(Gd).

Proof of (6.1): We proceed by double-counting the number N of injective
homomorphisms h : V (H)→ V (G) such that the image h(H) is colourful in G with
respect to c, i.e. the number of ways H can be embedded in G as a colourful subgraph.
On the one hand, each such h has a unique image S = h(V (H)) ⊆ V (G) and a unique
labelling d : V (H) → [k] such that h = c|−1

S ◦ d; thus it corresponds bijectively to
the edge spanning S in Gd, and

∑
d e(Gd) = N . On the other hand, each copy of H
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in G corresponds to Aut(H) embeddings of H into G, so we have |H|Aut(H) = N .
Combining these two equations yields (6.1) as required.

Approximating the terms: We will now ε-approximate each term e(Gd) of
the right-hand side of (6.1) using PartitionedSampleCount from Corollary 1.4 with
δ = 1/(3k!). By a union bound, the probability that at least one of the k! invoca-
tions of PartitionedSampleCount fails is at most 1/3. To approximate e(Gd) using
PartitionedSampleCount, we first recall that Gd is a k-partite k-hypergraph with
explicitly given vertex classes, and then implement the uncoloured independence oracle
for Gd using the assumed randomised decision algorithm for Colourful-H. To this
end, we define the following algorithm A(X):

1. On input X ⊆ V (G), the algorithm constructs a graph G′ on the vertex
set V (G′) = X. Start with G[X] and delete all edges internal to colour
classes and all edges between colour classes whose corresponding vertices are
not joined in H. (Conversely, we only add {u, v} ∈ E(G[X]) to E(G′) if
{d−1(c(u)), d−1(c(v))} ∈ E(H) holds.)

2. Run the assumed algorithm for Colourful-H on input (G′, c′) where c′ =
c|V (G′) and return its output.

Note that A runs in time Õ(n+m+T (m,n)). Since any algorithm for Colourful-H
must read a constant proportion of the input vertices and edges, we have T (n,m) =

Ω(n + m), so A in fact runs in time Õ(T (n,m)). If A implements the uncoloured
independence oracle for Gd with error probability at most 1/3, we can pass the
description of this algorithm along with the vertex classes Xi = X ∩ c−1(i) for all
i ∈ [k] and parameters k, ε, and δ = 1/(3k!) to PartitionedSampleCount. Our
running time bounds therefore follow, and it remains to prove correctness.

Correctness: First assume that A(X) accepts, so that the goal is to show
e(Gd[X]) > 0. Because A accepts, there is an H-isomorphic colourful subgraph F
of (G′, c). Let S = V (F ). By the construction of G′, all edges in F must be between
colour classes whose corresponding vertices are joined in H, so the function c|−1

S ◦ d is
an injective homomorphism from H to G′[S]. Thus S ∈ E(Gd[X]), so e(Gd[X]) > 0 as
required.

For the reverse direction, suppose e(Gd[X]) > 0. We need to show that A(X)
accepts with probability at least 2/3. Let S ∈ E(Gd[X]). Then by the definition
of Gd, the function c|−1

S ◦ d is an injective homomorphism from H to G[S]. By the
construction of G′, it is also an injective homomorphism from H to G′[S], so G′

contains a colourful H-subgraph and so (G′, c) is a Yes instance. In this case, our
assumed algorithm for Colourful-H, and hence also A(X), accepts with probability
at least 2/3. We have proved correctness as required.

Sampling: Our sampling algorithm is very similar to our approximate counting
algorithm, again using the fact that each subgraph corresponds to Aut(H) embeddings,
so we omit the details. The only differences are the following:

1. We require that each invocation of our approximate counting algorithm has
failure probability at most ε/(10k2k ln(5/ε)) and set δ accordingly.

2. Rather than outputting a weighted sum of ε-approximations of each e(Gd),
we use (ε/10)-approximations of each e(Gd) to apply rejection sampling
as in e.g. Florescu [25, Proposition 3.3]. Thus writing N for our (ε/10)-
approximation of |H| and Nd for our (ε/10)-approximation of e(Gd), we
choose a bijective function d : [k]→ [k] uniformly at random, take an (ε/10)-
approximate sample from E(Gd), and accept and output this sample with
probability Nd/N ; otherwise, we reject it and resample. If we require more
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than k2k ln(5/ε) iterations, we return an arbitrary output.
Note that the acceptance probability at each step is at least 1/(Aut(H)2) ≥ 1/k2k,

and acceptance is independent at each step, so the probability we require more than

k2k ln(5/ε) invocations is at most (1 − 1/k2k)k
2k ln(5/ε) ≤ ε/5. Combining this with

the error in the rejection sampling from our (ε/10)-approximations, and with the
probability that our approximate counting algorithm fails to return a correct value
in the first k2k ln(5/ε) invocations (which is at most ε/10 by a union bound), we see
that our algorithm returns an ε-approximate sample as required. Since ε ≥ n−k, the
running time bound is immediate.

6.5.2. Weighted subgraphs. In an edge-weighted graph, the graph G is aug-
mented with a function w : E(G) → Z. The weight w(F ) of a subgraph F of G
is the sum

∑
e∈E(F ) w(e) of all edge-weights in F . We now consider the following

computational problem for any fixed unweighted graph H.

Exact-Weight-H
Input: An edge-weighted graph G with (perhaps negative) integer weights.
Question: Does G have a subgraph isomorphic to H with total weight zero?

The special case where H is a k-clique has been studied in fine-grained complexity
under the name Exact-Weight k-Clique. It has been conjectured [1] that there
does not exist any real ε > 0 and integer k ≥ 3 such that the Exact-Weight
k-Clique problem on n-vertex graphs and with edge-weights in {−M, . . . ,M} can be
solved in time n(1−ε)k polylog(M). For the closely related Min-Weight k-Clique
problem, only subpolynomial-time improvement over the exhaustive search algorithm
is known [1, 50, 15], with a running time of nk/ exp(Ω(

√
log n)). As we now show,

Theorem 1.7 implies that any sufficiently non-trivial improvement on the running
time of an Exact-Weight k-Clique algorithm will carry over to the approximate
counting and sampling versions of the problem.

Corollary 6.9. Fix k ≥ 3, suppose an n-vertex m-edge instance of Exact-
Weight k-Clique with weights in [−M,M ] can be solved in time T (n,m,M), and
write C for the set of zero-weight k-cliques. Then there is a randomised algorithm to ε-
approximate |C|, or draw an ε-approximate sample from C, in time ε−2 ·Õ(T (n,m,M)).

Proof. First observe that Exact-Weight k-Clique is a uniform witness problem
by Definition 1.5: Given an instance (G,w, k) of Exact-Weight k-Clique, we
have V (Gx) = V (G) and the edges of Gx are precisely the k-cliques of G, with
I(G,w,k)(S) = (G[S], w|S , k) for all S ⊆ V (G). Moreover, any randomised algorithm
for Colourful-Exact-Weight k-Clique (see Definition 1.6) must read at least
a constant proportion of the input bits, and so the lower bound on its running
time required by Theorem 1.7 is satisfied. Hence, by Theorem 1.7, it suffices to
give an algorithm for Colourful-Exact-Weight k-Clique with running time
Õ(T (n,m,M)).

Let (G,w, k) be an instance of Exact-Weight k-Clique, and let X1, . . . , Xk

be a partition of V (G). Then we form a graph G′ from G in linear time by removing
all edges internal to each vertex set Xi, and apply our Exact-Weight k-Clique
decision algorithm to G′ in time at most T (n,m,M). The cliques of G′ are precisely
the colourful cliques of G with respect to V1, . . . , Vk, so this solves Colourful-Exact-
Weight k-Clique in Õ(m+ n+ T (n,m,M)) time as required.

There is a generalisation of Exact-Weight k-Clique to edge-weighted d-hypergraphs,
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for which a fine-grained complexity conjecture exists [1]. A result analogous to
Corollary 6.9 holds for this problem as well, but we do not state it formally.

Instead, we now state a more interesting corollary for Exact-Weight-H. WhenH
is a k-clique, it was sufficient in the proof of Corollary 6.9 to delete some edges to
make sure that the colourful independence oracle only counts colourful copies of H.
For general graphs H, we control this by relying on basic bit tricks that are commonly
used in subset sum or exact-weight type problems. Unfortunately, we do not know
how to do so inside the colourful independence oracle, at least not in the way in which
we have formalised it. Instead, we perform an additional colour-coding step before
running the algorithm of Corollary 1.4 as a black box, which leads to an additional
ε−2 factor overhead in the running time. However, we believe that this is merely an
artefact that can be avoided by doing some surgery on the proofs of our main results.
Since doing so would be lengthy, and does not add any insight, we accept the loss in
the running time to get a cleaner proof.

Corollary 6.10. Let H be any fixed graph with k vertices. Suppose that n-vertex
m-edge instances G of Exact-Weight-H with weights in [−M,M ] can be solved in
time T (m,n,M), and write S for the set of subgraphs of G that are isomorphic to H.
Then there is a randomised algorithm to ε-approximate |S|, or draw an ε-approximate

sample from S, in time ε−4 · Õ(T (m,n, k2M)).

Proof. We first set out the approximate counting algorithm, and we suppose
for simplicity that our decision algorithm is deterministic. Let G be an instance of
Exact-Weight-H, and let k = |V (H)|. If n < k, we return the correct answer 0.
If H has exactly i isolated vertices, we remove them from H, produce an estimate
for the reduced graph, and multiply this estimate by

(
n−k+i

i

)
to obtain the estimate

for H. Thus, we can assume without loss of generality that n ≥ k and that H has no
isolated vertices. The algorithm now proceeds as follows:

1. Let t = ε−2 · 100e2k. For all r from 1 to t:
(a) Sample a partition V1 ∪ · · · ∪ Vk = V (G) uniformly at random.
(b) For all bijective functions π : [k]→ V (H):

i. Define the graph Gr,π by deleting from G all edges E(Vi, Vj) between
parts Vi and Vj for which π(i)π(j) is not an edge of H.

ii. Define the k-partite k-hypergraph Gr,π with vertex set V (G) such
that each set S ⊆ V (G) is an edge of Gr,π if and only if Gr,π[S] is
isomorphic to H, contains one vertex from each Vi, and is zero-weight
with respect to w.

iii. Call the algorithm PartitionedSampleCount from Corollary 1.4
on Gr,π with δ = 1/(100tk!) and with error parameter ε/3 to obtain
an estimate Nr,π for the number of edges in Gr,π.

2. Output the estimate
∑
r,π Nr,π · kk/(tk! ·Aut(H)).

Here the scaling factor kk/(tk! ·Aut(H)) arises from the fact that a random k-colouring
of a set of size k is colourful with probability k!/kk, each edge in our hypergraph
corresponds to Aut(H) injective homomorphisms from H to G, and we repeat the
whole process t times.

We will explain how to simulate the uncoloured independence oracles of the
hypergraphs Gr,π (as required by PartitionedSampleCount) shortly. First, we argue
for the correctness of the algorithm.

Proving correctness given uncoloured independence oracles: Count is
called tk! times, and each invocation fails to produce an (ε/3)-approximation with
probability at most δ. By a union bound, this implies that, with probability at least 0.99,
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all estimates Nr,π are (ε/3)-approximations to the respective numbers e(Gr,π) of edges
in the hypergraphs Gr,π. Conditioned on this event, the sum that is produced as
output is thus an (ε/3)-approximation to

∑
r,π e(Gr,π) ·kk/(tk! ·Aut(H)). Let sr be the

number of subgraphs of G that are isomorphic to H, are zero-weight with respect to w,
and are colourful with respect to V1, . . . , Vk. As in the proof of Corollary 6.8, each
colourful zero-weight copy of H corresponds to exactly Aut(H) terms in

∑
π e(Gr,π),

and so the algorithm produces an ε/3-approximation to
∑
r srk

k/(tk!).
We now prove that

∑
r srk

k/(tk!) is likely to be an (ε/3)-approximation to the
total number |S| of zero-weight subgraphs of G that are isomorphic to H. To do so, we
first show that it is equal to |S| in expectation and then apply Hoeffding’s inequality
to prove concentration. For any zero-weight subgraph F of G that is isomorphic to H,
let Xr,F ∈ {0, 1} be the indicator random variable for the event that F is a subgraph
of G[V1, . . . , Vk] in the r’th iteration (that is, the event that there is some π with
V (F ) ∈ E(Gr,π)). Then E(Xr,F ) = k!/kk, so we have

E
( t∑
r=1

sr
kk

tk!

)
= E

( t∑
r=1

∑
F∈S

Xr,F
kk

tk!

)
=

t∑
r=1

∑
F∈S

1

t
= |S|.

Since each sr lies in [0, |S|], it follows by Hoeffding’s inequality (Lemma 2.1) that

P
(∣∣∣ kk
tk!

∑
r

sr − |S|
∣∣∣ > ε

3
|S|
)

= P
(∣∣∣∑

r

sr −
tk! · |S|
kk

∣∣∣ > ε
tk!

3kk
|S|
)

≤ 2 exp

(
−2ε2

( tk!

3kk
|S|
)2

/t|S|2
)

= 2 exp
(
−2ε2t(k!/3kk)2

)
.

By Stirling’s formula and our definition of t, it follows that

P
(∣∣∣ kk
tk!

∑
r

sr − |S|
∣∣∣ > ε

3
|S|
)
≤ 2 exp

(
−tε2e−2k/9

)
≤ 1/10.

Thus, with overall probability at least 4/5, we have (1− ε
3 )|S| ≤ kk

tk!

∑
r sr ≤ (1+ ε

3 )|S|.
We now note that for all 0 < ε < 1, (1 − ε/3)2 > 1 − ε and (1 + ε/3)2 < 1 + ε;

hence an (ε/3)-approximation of an (ε/3)-approximation is an ε-approximation. It
therefore follows by a union bound that with probability at least 2/3, the output of
our algorithm is an ε-approximation to |S|. This completes our correctness analysis.

Implementing the uncoloured independence oracles: For each hyper-
graph Gr,π, we will implement the uncoloured independence oracle using our assumed
decision algorithm for Exact-Weight-H. Let X ⊆ V (G); then we must determine
whether Gr,π[X] contains an edge, i.e. whether Gr,π[X] contains a subgraph which is
isomorphic to H, is zero-weight with respect to w, and is colourful with respect to the
partition V1, . . . , Vk. We cannot simply apply the decision algorithm to Gr,π[X] with
the same weight function w, because this algorithm may find zero-weight isomorphic
copies of H that are not colourful. To deal with this issue, we give Gr,π a new weight
function wr,π which will enforce colourfulness using standard bit tricks.

For each i ∈ [k], let Xi = X ∩ Vi. Let h be the number of edges of H. We define
the function ι : E(G)→ [h] as follows: We set ι({u, v}) = ι for all {u, v} ∈ E(G) with
u ∈ Vi and v ∈ Vj such that {π(i), π(j)} ∈ E(H) is the ι’th edge of H in lexicographic
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order. We define the edge weights of Gr,π by wr,π(e) = w(e) + δr,π(e) for all e, where

δr,π(e) =

{
(hM + 1) · (2h)ι(e) if ι(e) > 1;

−(hM + 1) ·
∑h
ι=2(2h)ι if ι(e) = 1.

Let φ be the canonical homomorphism from Gr,π to H, that is, the function that maps
vertices from Vi to the vertex π(i) in H.

We claim that for any subgraph F of Gr,π isomorphic to H, we have wr,π(F ) = 0
if and only w(F ) = 0 and F is colourful with respect to the partition V1, . . . , Vk. If
this is true, then we can simulate the uncoloured independence oracle of Gr,π applied
to a set X by applying our decision algorithm to Gr,π[X].

To prove the claim, first note that

(6.2) wr,π(F ) =
∑

f∈E(F )

(
w(f) + δr,π(f)

)
= w(F ) +

∑
f∈E(F )

δr,π(f).

This latter sum has exactly h summands, and each summand is either (hM + 1)(2h)ι

for some ι ≥ 2, or it is −(hM + 1)
∑h
ι=2(2h)ι. If F is colourful, then φ maps every

edge of F to a distinct edge of H, so the summands that occur are all different and
trivially cancel; we therefore have wr,π(F ) = w(F ) in this case.

Suppose instead that F is not colourful, so that φ maps two distinct vertices x and
y of F to the same vertex z of H. Since φ is a homomorphism, x and y are each joined
to dH(z) colour classes out of {V1, . . . , Vk} in F ; moreover, by the construction of Gr,π,
at most dH(z) of these classes are distinct. Since H does not contain isolated vertices,
we have dH(z) > 0 and so some colour class must appear in both x’s neighbourhood
and y’s neighbourhood. In other words, φ must map two different edges f, f ′ of F to
the same edge e of H; this implies there is some ι ∈ [h] such that φ maps no edges to
the ι’th edge of H. Thus, the summands on the right-hand side of (6.2) do not cancel,
since for all ι ∈ [h] we have h · (2h)ι < (2h)ι+1 and (2h)ι+1 − h · (2h)ι > (2h)ι, and
so wr,π 6= 0 as required. We have therefore successfully implemented the uncoloured
independence oracle for Gr,π, the missing ingredient in our algorithm.

Bounding the running time: Our algorithm creates tk! = O(ε−2) weighted
graphs Gr,π and calls PartitionedSampleCount once for each. By Corollary 1.4, this

takes time Õ(ε−4(m+n)) and makes Õ(ε−4) queries to the independence oracle. Each
query to the independence oracle takes time T (n,m, k2M) = Ω(n+m). Combining

these facts, we obtain an overall running time of Õ(ε−4T (n,m, k2M)) as claimed.
Sampling algorithm: Our sampling algorithm is very similar to our approximate

counting algorithm, so we omit the details. The only differences are the following.
1. We take only a single uniformly random partition V1∪ · · ·∪Vk with associated

graphs Gπ for every π : [k]→ V (H).
2. We require that each invocation of our approximate counting algorithm has

failure probability at most ε/(ln(5/ε)10k2k) and set δ accordingly.
3. Rather than outputting a weighted sum of ε-approximations of each e(Gπ),

we use (ε/10)-approximations of each e(Gπ) to apply rejection sampling
as in e.g. Florescu [25, Proposition 3.3]. Thus writing N for our (ε/10)-
approximation of e(G) and Nπ for our (ε/10)-approximation of e(Gπ), we
choose a bijective function π : [k]→ [k] uniformly at random, take an (ε/10)-
approximate sample from E(Gπ) using the PartitionedSampleCount algo-
rithm from Corollary 1.4, and accept and output this sample with probability
Nπ/N ; otherwise, we reject it and resample. If we require more than k2k ln(5/ε)
iterations, we return an arbitrary output.
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Note that the acceptance probability at each step is at least 1/k2k, and acceptance
is independent at each step, so the probability we require more than k2k ln(5/ε)

invocations is at most (1 − 1/k2k)k
2k ln(5/ε) ≤ ε/5. Combining this with the error

in the rejection sampling from our (ε/10)-approximations, and with the probability
that our approximate counting algorithm fails to return a correct value in the first
k2k ln(5/ε) invocations (which is at most ε/10 by a union bound), we see that our
algorithm returns an ε-approximate sample as required. Since ε ≥ n−k, the running
time bound is immediate.

Corollary 6.10 can be combined with known, non-trivial decision algorithms for
Exact-Weight-H. For example, Abboud and Lewi [2, Corollary 5] prove that Exact-

Weight-H can be solved in time Õ(nγ(H)), where γ(H) ≥ 1 is a graph parameter
that is small whenever H has a balanced separator. We obtain the following.

Corollary 6.11. Let H be a fixed graph. When S denotes the set of zero-
weight H-subgraphs of a given n-vertex graph G, there is a randomised algorithm to
ε-approximate |S|, or draw an ε-approximate sample from S, in time Õ(ε−4nγ(H)).
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