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Abstract—This two-part paper investigates the application of
artificial intelligence (AI) and in particular machine learning
(ML) to the study of wireless propagation channels. In Part I,
we introduced AI and ML as well as provided a comprehensive
survey on ML enabled channel characterization and antenna-
channel optimization, and in this part (Part II) we review state-of-
the-art literature on scenario identification and channel modeling
here. In particular, the key ideas of ML for scenario identification
and channel modeling/prediction are presented, and the widely
used ML methods for propagation scenario identification and
channel modeling and prediction are analyzed and compared.
Based on the state-of-art, the future challenges of AI/ML-based
channel data processing techniques are given as well.
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I. INTRODUCTION

IN existing wireless communication systems, the study
on propagation channels has always been a fundamental

research in system design, performance evaluation, and other
related topics [1]. Simultaneously, machine learning (ML)-
based artificial intelligence (AI) techniques have become the
key to develop the next generation communication system. AI
techniques have been introduced into wireless communications
for the last two decades. It has been found in the existing
research that the ML-based AI techniques help solve the
bottlenecks in conventional methods relating to channel and
antenna considerations [2]–[6]. In the Part I [7], we presented
a comprehensive literature review on ML-based channel char-
acterization and antenna-channel optimization, whereas this
paper focuses on ML-based scenario identification and channel
modeling/prediction.

Wireless channels are naturally determined by the physical
propagation environment and the interaction object within
them. Different propagation environments thus lead to dif-
ferent channel characteristics. Consequently, scenario iden-
tification is important and beneficial for many applications,
e.g., intelligent transportation systems (ITS), localization, and
channel modeling. There are two kinds of scenario identifica-
tion: i) discriminating line-of-sight (LoS) or non-line-of-sight
(NLoS) scenarios, i.e., identifying whether there is an LoS
propagation path; and ii) identifying the specific scenarios,
e.g., urban areas, highway areas, or suburban areas. The former
case is important for localization and channel modeling: most
of the existing localization methods require an LoS signal,
and most channel models are parameterized separately for
LoS and NLoS scenarios [8]–[15]. For the latter case, it is a
fundamental precondition for capacity analysis, physical layer
scheduling, etc. Meanwhile, ML methods have been shown
to give good performance in data classification, ML-based
scenario identification thus becomes a hot topic.

Furthermore, the very nature of channel modeling is to
analyze the physical propagation mechanisms and reveal the
relationship between the physical environment and the channel
properties. As mentioned before, the wireless channels can
be characterized by the critical channel parameters, i.e., time

ar
X

iv
:2

11
1.

12
22

8v
1 

 [
ee

ss
.S

P]
  2

4 
N

ov
 2

02
1



2

delay, received power, and angle1 of each multipath compo-
nents (MPCs), and modeled by seeking the correlation between
different channel parameters and physical environments, e.g.,
propagation distance. Then, an accurate channel model can be
used to predict the channel properties in other locations, fre-
quencies, or directions, that have not been measured. Inspired
by the power of ML, researchers have explored for more than
20 years the possibilities of using ML to characterize/model
the channel, e.g., [16] introduces some typical ML methods
for channel modelings. In this paper, we give a comprehensive
investigation of the existing ML-enabled channel modeling
and prediction in time, space, and frequency domains, where
details can be found in the following sections.

This paper is organized as follows. Section II presents ML-
based communication scenario identification, whereas Section
III gives a thorough review of ML-based channel modeling and
prediction. Section IV provides a discussion of challenges and
possible future research avenues for the topics above. Finally,
Section V concludes the paper.

II. SCENARIO IDENTIFICATION

This section introduces state-of-the-art research in this field
and analyzes the pros and cons of different solutions.

A. LoS/NLoS Identification

Identification of LoS/NLoS is essential due to its appli-
cation in localization or channel modeling. However, it is
especially difficult for mobile devices, and in particular for
dynamic propagation channels which are time-varying and
non-stationary. In existing studies, there are mainly three
solutions to identify LoS/NLoS scenarios: i) visual inspection
based on video: LoS/NLoS conditions can be manually and
accurately identified based on the recording video, as in [17];
ii) designing the measurement campaign to distinguish the
scenario inherently: a more direct way of channel modeling
is to individually measure the channels in LoS and NLoS
scenarios, e.g., in [18]; and iii) AI-based automatic identi-
fication: LoS and NLoS conditions usually lead to different
channel characteristics; they thus can be exploited to identify
the LoS/NLoS scenario by using various algorithm, as in [19]–
[48]. Considering the time-consuming nature of the visual
inspection, and the additional efforts needed in designing
measurement campaigns to provide LoS/NLoS distinction, AI-
based automatic identification becomes the most promising
solution.

According to the methodology, AI-based automatic identifi-
cation can be classified into two categories: unsupervised iden-
tification and supervised identification. The main difference
between these two types is, the supervised identification gen-
erally requires a training procedure that needs classified data
as training data, and the unsupervised identification directly
identifies the LoS/NLoS scenario based on the unclassified
characteristics. In another word, the supervised identification
requires classifying the training data first, whereas the unsuper-
vised identification does not. Both solutions have been drawing
a lot of attention.

1The MPC’s angle usually includes azimuth/elevation of arrival/departure.

1) Unsupervised Identification: As early as 1998, [19]
formulate the NLoS identification problem as a binary hy-
pothesis test where the range measurements are modeled as
being corrupted by additive noise, with different probability
distributions depending on the hypothesis. Then, a decision-
theoretic framework based on the probability density function
(PDF) of the time-of-arrival (ToA) was proposed to solve the
hypothesis test problem. Similar solutions are also used in
[20]–[23].

The solutions above only focus on the received signal
strength and the ToA, [24]–[26] further introduce the root
mean square (RMS)-delay spread as another key parameter
for the LoS/NLoS identification, and perform a likelihood
function test to select the most probable hypothesis. The
defined likelihood functions are the simplified Bayesian alter-
native to the conventional hypothesis testing. In addition, the
overlapping area2 between the propagation distance (delay)
and the LoS distance is adopted as a testing principle for
LoS/NLoS identification in [27], whereas the kurtosis is used
for the identification in [28]–[30]. Similarly, [31] studies
the automatic LoS/NLoS identification for indoor positioning,
where a hybrid time-power test is defined to perform a
binary likelihood-ratio test, [32] defines a particular feature,
named PhaseU, based on the phase information of each
subcarrier from channel impulse response (CIR) to identify the
LoS/NLoS conditions, whereas the relationship between the
Ricean-K-factor and the measured distance is investigated in
[33] to distinguish LoS and NLoS conditions. Besides hypoth-
esis testing, clustering algorithms have been also studied for
the identification, e.g., [34] applies the K-Means algorithm to
analyze the multi-dimension attributes of the wireless channels
for the scenario identification.

The existing unsupervised identification generally focuses
on analyzing the relationship and difference between sev-
eral statistical channel characteristics, e.g., ToA, RMS-delay
spread, and received signal strength, but all use a fixed thresh-
old (obtained by hypothesis testing)3 to separate the data to
LoS/NLoS scenario. Due to the distinct difference between the
LoS and NLoS propagation process, the fixed threshold works
well for static scenarios. However, once it comes to time-
varying/dynamic scenarios, different thresholds are required
for different environments, it thus is hard to find the boundary
of the key characteristics between LoS and NLoS channels. In
other words, it is difficult to use a fixed threshold to perfectly
separate the LoS and NLoS channel data. As shown in Fig.
1, the green and blue marks represent the kurtosis of the
LoS and NLoS data collected from the channel measurement
campaign [49]. It can be found that the LoS and NLoS data
overlap each other for some measurement samples, therefore,
the fixed threshold generated by the hypothesis testing cannot
accurately distinguish the LoS/NLoS scenarios. In this case,
supervised-learning methods become an alternative solution
for the LoS/NLoS identification.

2the MPCs that have the propagation distance approximating to the LoS
distance

3The hypothesis testing-based methods are usually considered as statistical
methods rather than AI methods in some research.
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Fig. 1. Fix-threshold of kurtosis to dividing the LoS and NLoS channel data
in [40].

2) Supervised Identification: Unsupervised identification
performs well only for linear classification problems, whereas
the time-varying channel data usually show non-linear distri-
bution. On the other hand, supervised identification can learn
from the key characteristics and distinguish two non-linear
distributions. Therefore, methods based on Support Vector
Machine (SVM), Relevance Vector Machine (RVM), Decision
Tree, Random Forest, and Artificial Neural Network (ANN)
have been widely used for the data classification problem.

SVMs have been proved to have a great ability for non-
linear classification problems, especially for binary classifi-
cation problems. They thus have been widely exploited for
the LoS/NLoS identification problem, e.g., [35]–[40]. The
key idea of the SVM is to use a proper kernel function,
e.g., Gaussian radial basis function or Polynomial Kernel, and
project the data into a higher dimension, where a hyperplane
that approximates the metric of interest can be found by
training to separate the data. Specifically, the choice of the
feeding feature vector for SVM is critical for the training per-
formance. The least-squares SVM (LS-SVM) [50] is exploited
in [35] which is trained by the channel features extracted
from the channel data, i.e., the received signal strength,
maximum amplitude, rising time, mean excess delay, RMS-
delay spread, and kurtosis. The LS-SVM uses an especially
simple optimization to learn the weights in the SVM to
avoid the quadratic programming problem. Based on the
channel features used in [35], the entropy and variance of
the CIR in the training feature are further exploited in [37] to
improve the classification performance of the SVM. Instead
of using conventional channel characteristics, [38] trains the
LS-SVM by using statistical features of the data, i.e., mean
and standard deviation, skewness, and kurtosis of power delay
profile (PDP), Ricean-K-factor, goodness of fit (with a Rician
distribution), and the distributions of all the features above.
Several typical clustering algorithms, e.g., K-nearest neighbor
(KNN), K-means, and self-organizing maps, are compared
with SVM in [39], where the SVM generally achieves the
highest LoS/NLoS identification accuracy. Similarly, the SVM
is also adopted in [51] to identify LoS/NLoS condition based
on power-angle-spectrum (PAS) features.

Besides the SVM, the RVM is also widely used for clas-
sification problems. Different from the SVM, the RVM is
developed based on Bayesian learning forms [41], which
requires fewer training samples (compared to the SVM) but
also leads to longer training time (with the same amount of
training data). An RVM-based NLoS identification is proposed
in [42], where channel features similar to those used in [35]
are adopted.

The Decision Tree, which is constructed based on the train-
ing data, is another well-known method for binary classifica-
tion problems. Therefore, the KNN, SVM, and Decision Tree
are compared in [43]. Trained by the channel transfer function
and frequency coherence function, the KNN achieves the best
accuracy, whereas the SVM and the Decision Tree show
similar performance. Considering that a single Decision Tree
may cause an overfitting problem, a random forest consists
of multiple Decision Trees trained by different features. Ref.
[44] trains the Random Forest with the channel features used
in [35], and achieves fairly good performance.

Recently, ANNs have also shown great potential for clas-
sification problems. A backpropagation (BP) ANN method is
adopted in [45] and trained by similar statistic features used
in [38] to identify the LoS/NLoS scenario. Considering the
good performance of convolutional neural networks (CNN)
for image processing, a CNN-based LoS/NLoS identification
algorithm is proposed in [46], where the network is trained
directly using the PAS.

Overall, the SVM, Random Forest, and ANN show the most
potential for accurate LoS/NLoS identification. Therefore,
these three methods are compared in [40] trained by the typical
channel features, as used in [35], the time-varying channel
features, i.e., angular difference and angular variant defined in
[40], and the PAS directly. From the comparison evaluation,
the Random Forest method outperforms the others in most
cases, but the ANN achieves the best performance on PAS-
training samples. Furthermore, it also shows that the time
variations of the channel features are crucial for the LoS/NLoS
identification. Similarly, the angle information in addition to
the channel features adopted in [35] is applied in [52], which
significantly reduces the identification error. Furthermore, the
selection of different kernel functions of SVM for LoS/NLoS
identification is investigated in [53], where Gaussian kernel-
based SVM achieves the highest identification accuracy.

In addition, Hidden Markov Model (HMM) introduced in
Part I-Section II-B [7] has also been adopted to learn the PDP
distribution patterns. Ref. [47] assumes the Tx and Rx are
discrete grid points that can be further divided into distinct
non-overlapped cells with different channel conditions; these
are then used to train an HMM classifier to identify the
LoS/NLoS scenario.

Compared with the unsupervised solution, the supervised
LoS/NLoS identification improves the identification accuracy
significantly. The main drawback is that it requires pre-
classification for the training procedure, which may need a
human inspection to identify the training labels first or a
specific measurement campaign to collect the LoS and NLoS
channel data individually. Besides, as shown by the existing
research, the selection of the channel features for training
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TABLE I
SUMMARY OF THE USE OF CHANNEL FEATURES FOR LOS/NLOS IDENTIFICATION.

Characteristic Channel Features Characteristic Type Existing Works
Static Time-Varying

Amplitude-based

• Maximum Amplitude
√

[19], [35]–[37], [40], [42], [52]

• Received Amplitude
√ [21], [22], [24], [25], [29], [31],

[35]–[38], [42]–[44], [47]
• Ricean-K-factor

√
[33], [40], [44], [45], [52]

• Kurtosis
√ [28]–[30], [35]–[38], [40], [42], [45],

[52]
• Skewness

√
[38], [40], [45], [52]

Delay-based

• Propagation Distance
√

[19], [27], [52]
• Mean Excess Delay

√
[30], [31], [35]–[37], [42], [44], [52]

• Rising Time
√

[35]–[37], [40], [42], [52]

• RMS-Delay Spread
√ [21], [24]–[26], [29], [30], [35]–[37],

[40], [42], [52]
• ToA

√
[19]–[26]

Power-angular-based • PAS
√

[40], [46]
Power-phase-based • PhaseU

√
[32]

Angular-based • Angular Difference
√

[40], [51], [52]
• Angular Variant

√
[40]

is critical to the final identification performance. Table. I
summarizes the widely used channel characteristics for the
training features. It can be found that the received amplitude,
kurtosis of PDP, and RMS-delay spread are most widely used
in the existing studies, since the LoS and NLoS conditions
have a major influence on the power and delay attributes,
whereas the maximum amplitude, ToA, Ricean-K-factor, and
mean excess delay are also frequently adopted.

B. Communication Scenario Identification

As an extension of the LoS/NLoS identification, commu-
nication scenario identification is another similar but separate
research topic. The wireless communication’s service quality
is easily affected by the change of the surrounding envi-
ronment, especially for dynamic devices, such as vehicular
communications or railway communications. These influences
are reflected in the channel model, physical layer algorithm,
and network layer design. In terms of channel model, [54]
points out that there are obvious differences in path loss
between different scenes, for example, the path loss exponents
of highways are larger than those of urban areas. The physical
layer algorithms also need intelligent scenario identification
to adjust algorithm parameters or configurations in real-time
according to the environment. In addition, real-time scenario
identification contributes to the adaptive adjustment of network
architecture. For integrated networks with multiple networking
modes, scenario identification is helpful for devices to predict
the changes of network state and make necessary adjustments.
To sum up, if channel scenarios can be identified accurately
and in real-time, the appropriate channel model and transmis-
sion mode can be selected to adapt to the current propagation
environment, which is helpful to improve the performance and
reliability of wireless communication systems.

An identification method is proposed in [55] for high-speed
railway communication systems based on geographic informa-
tion systems (GIS). However, these GIS-based methods are
not suitable for indoor scenarios or dynamic environments
because of the difficulties of localization due to unexpected
situations such as special scenarios or sudden obstructions. The
physical environment of different scenarios leads to different
channel features, so channel features can be used as the basis
for scenario identification. The advantage of this is that the
actual communication process often needs to continuously
monitor the channel state anyway, so there is no obvious
additional required system complexity and communication
overhead. Moreover, channel features come from the physical
environment, reflecting the essential attributes of scenarios,
which are not easily affected by light, temperature, weather,
and other factors. The key of channel-feature-based scenario
identification is to establish the intrinsic mapping relation-
ship between scenarios and corresponding channel features.
However, the correspondence between channel features and
scenarios is complex. Generally, it is impossible to distin-
guish all scenarios accurately by a single channel feature.
In other words, scenario changes will affect a variety of
channel features at the same time, which makes it difficult
to directly describe the mapping relationship between channel
features and scenarios. Therefore, a feasible solution is to
model the nonlinear relationship between channel features and
scenario categories through appropriate ML methods. Ref. [56]
suggests a classification method of the indoor environment,
which is based on real-time measurement data in a real
environment and realizes the classification and identification
of different indoor environments, e.g., lab, lobby, and office,
by using the weighted KNN method. An ANN-based scenario
identification model is presented in [57]. Furthermore, the
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model configuration scheme, including channel feature type,
training data size, and neural network structure, is explored
and presented which can make the proposed identification
model achieve optimal performance. The validation results
show that the identification accuracies are above 98% in some
typical scenarios.

Apparently, there are many similarities between the
LoS/NLoS identification and the communication scenario
identification: they have the similar mathematical problem,
which is a classification task based on the input informa-
tion, i.e., the fingerprint information (as listed in Table I)
of the existing propagation channels. In this sense, develop-
ing ML-based LoS/NLoS identification algorithms and ML-
based communication scenario identification algorithms can
share similar strategies, e.g., SVM or Random forest. On
the other hand, from the application point of view, these
two techniques have different application environments. The
LoS/NLoS identification is mainly conducted for terminal
localization/positioning, whereas the communication scenario
identification is usually conducted for system-level resource
allocation or channel modeling. Therefore, these two tech-
niques share a similar developing principle but have different
implementations. Additionally, the LoS/NLoS identification
has been studied for several years, whereas the communication
scenario identification has recently received much attention.
From this point of view, it is possible that these two sub-
topics maybe considered jointly in future, as a powerful tool
of environment awareness for the Integrated Sensing and
Communication (ISAC).

Based on the existing research, we can summarize the two
critical aspects for developing the ML-based scenario identifi-
cation method: a well-selected and appropriate set of features,
as the identification basis; and an efficient and accurate identi-
fication algorithm, to identify the scenario based on the given
features. As proved in [40], [51], [52], the selection of features
shows more impacts on the identification accuracy than the
selection of identification algorithms. Especially considering
that there are many kinds of statistical properties of wireless
channels, e.g., the first-order statistics like mean, PDF, and
CDF of received power, and the second-order statistics like
delay/angular spreads and correlation functions, and only a
few of them contribute to the identification accuracy whereas
the others may bring interference instead. It can be found
from the existing experiments that the selection of the features
usually depends on the propagation environment, i.e., the
delay-related features are more helpful for the identification in
indoor communication channels [24], [35], [36], whereas the
angular-related features greatly contribute to the identification
in V2V communication channels [52], [53]. On the other hand,
the selection of identification algorithms not only depends on
the type of the features but also depends on the practical
experiment. For example, the RVM is usually recommended
when the volume of training samples is limited, as in [42];
the CNN is usually recommended when the training feature
contains a spatial structure, e.g., PAS, as in [46]. However,
this is only references rather than principles for selecting
identification method, the final selection still depends on the
experiments based on measurement data. This also leads to

another important issue, i.e., the training data collection for
the experiments, which is discussed in Section IV-A.

III. CHANNEL MODELING

A. Conventional Channel Modeling
As covered in Section I, channel modeling becomes increas-

ingly more multi-dimensional as the generation of cellular
network evolves.

Now, in the 5G and beyond, due to the emergence of, e.g.,
massive multiple-input multiple-output (massive MIMO), the
multi-dimensionality of channels contains more information
than single-input single-output (SISO) channels. The added
constraints to channel model parameters usually includes i)
multiple mobile terminals, which are close to each other;
ii) antenna elements of a physically large antenna array at
the base station. Those two added constraints are called i)
mobile (user) spatial consistency and ii) non-stationarity at the
base station, respectively. In the following, the most popularly
referenced channel models are introduced, all of which are
intended to reproduce channel parameters or parameters that
can describe the measured reality of wave propagation.

1) Statistical Modeling: Traditionally, stochastic channel
models have been used to describe path loss, shadowing, and
small-scale fading, among others. The mathematical formulas
defining the models are heuristically derived from a large
number of empirical observations, i.e., massive data of wave
propagation. The formulas have several variables, whose val-
ues are in practice limited to physically justifiable ranges; for
example, a path loss exponent in free-space can take only a
value of 2 due to the spherical spreading of power radiated
from a point source. The existing channel models are therefore
a good starting point when developing improved models
through computer-assisted model-based learning. Furthermore,
providing a physical understanding of parameter values of
the improved channel model is always useful to justify the
soundness of the model.

These stochastic models, however, suffer from a significant
drawback when fulfilling the added constraints for 5G and
beyond, e.g., they lack implicit modeling of user spatial
consistency and non-stationarity at the base station, defined at
the beginning of this section. The introduced pure statistical
models are therefore used mainly for link-level analyses where
different user links are assumed in the above independent
spatial-, time-, and frequency- properties, and moreover base
station antennas are arranged so that they all see the same
propagation paths.

2) Geometrical Modeling: The above-mentioned draw-
backs of purely statistical models have been solved by in-
troducing geometrical information, which relates variations
of radio channel responses with locations and movement of
radio devices and waves scattering objects in the environment.
Geometrical modeling of channels translates the multipath
parameters into a set of parameters for a given location of
a base station and a mobile device antenna, along with their
moving velocity and direction if applicable.

Site-specific propagation modeling is one of the typical
geometrical modeling approaches, which focuses on the math-
ematical characterization of MPCs arising from radio waves
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interacting with physical objects in the environment, leading
to reflection, scattering, diffraction, and penetration. Therefore
geometrical modeling of propagation channels inherently al-
lows deriving the channel model parameters with the added
constraints defined at the beginning of this section.

An approximate solution of wave propagation can be ob-
tained from ray-tracing (RT), which is based on geometrical
optics that uses ray concepts to determine the reflected and
refracted fields from a surface. In a different approach, channel
modeling based on statistical geometrical information of a
specific cellular site has been an interest for planning base
station deployment. Seminal works of Ikegami, Walfisch, and
Bertoni in the 1980s identify rooftops of office buildings and
residential houses as the major wave interacting points in
urban macrocellular environments where rooftop base stations
serve ground-level outdoor mobile devices. Losses of signal
paths pertaining to the wave interaction are estimated by
modeling the buildings and houses a series of absorbing
screens, e.g., [58], [59] and [60]. For micro-cellular scenarios
where base stations are installed below rooftop level, corners
of buildings serve as wave interacting points in street intersec-
tions [61]. Therefore a “typical” map of an environment can
also be created to emulate delay and angular characteristics
[62]–[64] of a microcellular scenario. Discrete MPCs are
obtained from the map, while scatterers causing weaker paths
are statistically distributed.

Different from the site-specific approach, there are also
approaches to create scattering environments that do not
exist in reality, and are purely determined from a probability
distribution of the scatterer locations [65]. Such imaginary
environments however still reflect some reality of measured
multipath propagation based on statistics derived from mea-
surements. This type of channel model is called reference
or canonical model and has been used to compare different
radio communications technologies. Reference models such
as the 3GPP TR38.901 [66] and COST2100 [67] models and
their predecessors (3GPP spatial channel model, WINNER,
and COST 259, COST 273, respectively) have different steps
to derive the spatial-, time-, delay- and polarization-properties
of MPCs.

The main difference between the two model types is the
extent to which they rely on coordinates of scattering objects
for deriving the multipath parameters. The 3GPP TR38.901
model derives geometrically parameters only for the LoS
path, while the angle and delay deviations of the other paths
relative to the LoS are determined purely statistically. On
the other hand, the COST2100 channel model relies fully
on the coordinates of scattering objects to derive multipath
parameters. This leads to unique advantages and disadvantages
of the two models. The 3GPP model allows straightforward
implementation using statistical distributions of large-scale
parameters such as delay and angular spreads. However, it
requires an extra mechanism to control mobile (user) spatial
consistency and non-stationarity at the base station, which is
only partly available from proposed additional procedures [68].

Spatial consistency is implicitly addressed, on the other
hand, in the COST2100 model, e.g., because of the introduced
concept of visibility regions [69]. A visibility region is asso-

ciated with a single cluster, which is activated for a base-to-
mobile link when a mobile device falls into the region [70].

B. ML-Enabled Channel Modeling and Prediction
The key idea of the conventional channel modeling is

to characterize the MPCs/clusters into mathematical func-
tions, based on stochastic process or deterministic derivation.
However, due to the limitations of the channel measurement
campaigns, we cannot measure the channel in all kinds of
scenarios. Therefore, predicting the channel in unknown en-
vironments is essential. In this sense, the good accuracy and
flexibility of the ML-based predicting methods inspiring us to
explore the ML-based channel modeling/prediction solutions.
Furthermore, the ML methods is able to learn and extract the
underlying properties from the measured data, which cannot
be extracted and described by using conventional modeling
method. This is also a critical point to accurately model/predict
the channels in complicated environment.

We categorize the existing ML-enabled channel studies into
two types: i) ML-based channel characterization/modeling,
which provides the corresponding channel statistical param-
eters, e.g., [71]–[89], and ii) ML-based channel prediction,
which exploits ML methods to learn from the acquired channel
information to predict the channel characteristics at different
locations, different frequency bands or different times, e.g.,
[90]–[123].

1) ML-Based Characterization/Modeling: The key idea is
to directly capture the channel characteristics, e.g., path loss or
delay spread, by using ML methods. Since the ML algorithm
shows good accuracy and efficiency for characterizing the
channel, it is thus expected to directly give the model or
generate the synthetic channel data.

It has been proved in [71] that a three-layer multilayer
perceptron (MLP) neural network can approximate an arbitrary
continuous multidimensional function to any desired accu-
racy, which provides a theoretical basis for employing neural
networks to approximate channel behaviors as functions of
physical/geometrical/bias parameters. As early as 1993, Ref.
[72] studied the channel characteristics by using the standard
Fuzzy Neural Network (FNN) trained by the BP algorithm,
where the received signal strength is estimated from the
receiving distance. Similarly, the BP-trained neural network
is also adopted in [73] to estimate the received signal strength
for wireless channels. Theoretically, for a BP-based neural
network, more hidden layers can lead to better performance.
However, a large number of the hidden layers may cause the
vanishing gradient problem [74], limiting the performance.
To avoid the vanishing gradient problem, a single layer-based
MLP network is proposed in [75] to obtain the path loss
of ultra wideband (UWB) channels with the frequency band
from 0.875 MHz to 10 GHz. Instead of using a generalized
MLP network, an RBF-based neural network is exploited in
[76], [77] to capture the frequency-dependent path loss of
the UWB channels and estimate the received power. The
Radial Basis Function (RBF)-based network used in [76], [77]
is a specialized case of the MLP network which contains
only three layers: an input layer, a hidden layer with a non-
linear RBF activation function, and a linear output layer.
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The RBF-based network and the generalized MLP network
are compared in [78], [79] for modeling the path loss of
60 GHz wireless channels, where the RBF-based network
achieves better accuracy at the cost of higher computational
complexity (because of more neurons in the hidden layers).
Besides neural networks, some other ML tools are also adopted
and compared for channel characterization. Random Forest,
AdaBoost, and KNN, as well as neural networks, are used
to estimate the receiving signal strength in [80], where both
the Random Forest and the KNN achieve better performance
than the generalized neural network. Random Forest and KNN
are further compared in [81] for path loss calculation, where
Random Forest shows better robustness against noise. This
gives us the intuition that other ML methods may fit better
than the “universal” neural network in some specific cases.
Therefore, the MLP network and the SVM network4-based
path loss calculations are investigated and compared in [82].
Specifically, the initial parameters for the SVM network are
optimized by applying a Genetic Algorithm (GA). In this case,
the GA+SVM network outperforms the widely used MLP
network for path loss estimation for 60 GHz channels.

The BP-network introduced above is adopted to simu-
late Additive White Gaussian Noise (AWGN) channels with
Doppler shift in [83]. Similarly, the RBF-based network is
adopted in [84], [85] and a generalized MLP network is
adopted in [86] to simulate a generalized wireless channel,
where the network input and output are the system layout (i.e.,
frequency points and propagation distance) and the channel
impulse response, respectively. A time-varying channel model
is given in [87] at 26 GHz for outdoor and indoor environment,
which exploits two separate ANNs for modeling the path loss
with shadowing and the small scale channel parameters.

From the existing works, the greatest advantage of the ML-
based channel model compared to the conventional models
is that it supports a more flexible environment which thus
leads to higher accuracy for describing the channels than
the conventional models. Nevertheless, it has been found in
many papers that the accuracy of the trained models is limited
by the insufficient training data, i.e., measurement data. The
limitation of the training database is also a major problem in
the computer science field, where the generative adversarial
network (GAN) [88] is proposed to generate the synthetic
data (usually generated by random variables and testified by
a discriminator) which can well simulate the training data.
Following this idea, a GAN-based wireless channel modeling
framework is given in [89], where the channel fake samples are
generated by latent random variables and compared to channel
real samples by using a channel data discriminator, as shown
in Fig. 2(b).

2) ML-Based Channel Prediction: With the development
of ML algorithms, the accuracy of the ML-based modeling
is continually higher, such that, the channel modeling is
evolving to channel prediction. The main difference between
the channel modeling and the channel prediction is that the
former case more focuses on generalized channel character-

4The SVM network in [82] is a specific neural network with a single hidden
layer, where the SVM is used as the active function.

istics, e.g., the path loss, the shadow fading, or the small
scale fading; the latter case more focuses on predicting the
specific channel characteristic at a particular condition, e.g.,
at a specific location (space domain prediction), a specific
time (time domain prediction), or a different frequency band
(frequency domain prediction). Therefore, the channel predic-
tion is expected to provide channel state information in the
future or in different frequency bands. Generally, the channel
prediction requires more detailed environment information
or channel history information and is able to provide more
accurate channel characteristics under the given condition.
Hence, the set of input training vectors is critical for ML-
based channel prediction.

A coverage estimation method is proposed in [90] for
different outdoor scenarios, e.g., urban, suburban, forest, rural,
or rivers, where an MLP network is adopted to predict the field
strength at different physical positions. In this method, the
portion through the terrain (defined in [90]), which contains
the geometry map information like the position of Tx/Rx, and
physical environment factors, i.e., rolling factor and modified
clearance angle for Tx and Rx, are introduced as network
input, whereas the output is the received power at Rx side.
However, the complicated physical environment brings diffi-
culties to accurately predict the receiving power at a specific
position. Compared with the outdoor environment, the indoor
environment may be more deterministic and the received
power at each position is thus more predictable with detailed
scenario information. An indoor coverage prediction method is
developed in [91] based on a three-layer MLP network, where
free space pathloss, transmission loss, wave-guiding effect,
reflection loss, local reflectors, and shielding effect factors
are adopted as network input to estimate the field strength.
Similarly, a three-layer MLP network is used in [92] for indoor
coverage prediction where Tx, Rx, antenna position, antenna
gain, max transmit power, average attenuation coefficients, the
deviation between the angle of arrival (AoA) and angle of
departure (AoD), and physical environment factors (distance
between Tx and Rx, number of walls and windows between Tx
and Rx, average angle of incidence of walls, visibility factor,
frequency point, and variety of people density) are used as
network input to predict the received power.

To further improve the coverage estimation accuracy, par-
ticle swarm optimization (PSO) is used to improve the MLP
network training efficiency and accuracy in [93], where the
position of Tx and Rx and the received power are the network
input and output, respectively. On the other hand, the training
accuracy is also highly dependent on the training database.
However, it is very challenging to build a comprehensive
database by actually measuring the channels. Therefore, de-
terministic channel simulators like ray-launching (RL) and RT
[124] can provide detailed and sufficient synthetic channel data
for the training process, e.g., an RL-neural network is proposed
in [94] for complex indoor coverage estimation, where the Tx
and Rx coordinates and the received power are the network
input and output, respectively.

The position of the Tx and Rx and the diffraction loss by
the Cascade Knife Edge is used in [95] as the input to an
ANN for generating the received signal, which is compared
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with the ITU-R.526 model and shows better accuracy when
comparing with measurement data. The position of Tx, Rx,
and carrier frequency are adopted in [96] as the input to output
the channel statistical properties, i.e., the received power, RMS
delay spread, RMS angle spread. It has been found in [96]
that FNN and RBF-based networks show similar modeling
performance, which draws a similar conclusion in Section II-
A: Compared with the choice of the specific network model,
the quality of the training data set displays a greater impact
on the accuracy for the communication modeling/classification
problem.

Ref. [97] proposes a propagation loss prediction algorithm
by using an ANN, where the Rx location, effective antenna
height, and terrain irregularity are used as network input to
predict the received power at a different location. An ANN-
based satellite communication channel prediction algorithm
is proposed in [98] to predict the received power, where
the weather information, such as air temperature, humidity,
rainfall rate, visibility, relative speed, etc., is incorporated as
a physical condition factor for the network. The method in
[98] is further developed in [99] by replacing the generalized
ANN with a Long Short-Term Memory (LSTM) network, and
adding a weather condition classification process to improve
the prediction accuracy. Similarly, an LSTM-based multimodal
deep learning network (MDLN) is proposed in [100] for
downlink channel prediction, where the received signals and
pilots, previous downlink channels, Least-squares (LS) esti-
mation results, user location, current uplink channel, partial
downlink channel are exploited as network input. The Tx and
Rx locations and the frequency band are adopted in [101]
as input to train an ANN network to predict the amplitude,
delay, phase, and cross polarization ratio at each location
point, and thus can “playback” the MIMO channels. A similar
approach was taken in [125]. Instead of using LSTM, a CNN-
based pathloss and shadowing prediction is proposed in [102],
where the coordinates of Rx and Tx, the physical environment
information, i.e., terrain height, building height, and foliage
height, and the visibility condition (LoS/NLoS) are used as
input to predict the received power at each position. Instead
of using the generalized/specialized ANN, [103] exploits the
Random Forest and KNN method to build a prediction model
for unmanned aerial vehicle channels, which requires fewer
initial parameters, i.e., propagation distance, altitude of Tx and
Rx, visibility condition (LoS/NLoS), and link elevation angle.

On the other hand, many existing channel estimation studies
more focus on predicting the channel at a different time for the
Time-Division Duplexing (TDD) system or different frequency
band for the Frequency Division Duplexing (FDD) system,
rather than different locations5. For most cases, the channel
matrixes H in history (the history time or the known frequency
band) are often used as the network input, whereas the network
output is the channel matrix H in the present time or for
the unknown frequency band. Following this idea, a recurrent
neural network (RNN)-based channel prediction is proposed
in [104] to predict the channel state information at different

5In some cases, locations and times are highly related to each other in
time-varying scenarios.

times for the time-varying channels. The RNN and Kalman
filter are compared in [105] for predicting the channel matrixes
H in future time, whereas the extended Kalman filter and the
decoupled extended Kalman filter are used in [106] to train
the RNN for channel matrix prediction for SISO system. A
similar method is also used in [107] for MIMO flat-fading
channels prediction. A frequency-domain RNN predictor that
deals with a frequency-selective MIMO channel as a set of
parallel flat-fading sub-carriers is proposed in [108]. Ref. [109]
proposes real-valued RNNs to implement multi-step predictors
for long-term prediction, and further verifies its effectiveness
in a TAS system to lower complexity. The PSO method in
[93] is also adopted in [111] to help train the RNN network
for channel prediction. A jointly optimized extreme learning
machine (JO-ELM) for short-term prediction is delivered in
[110], whereas the long-term prediction method based on
LSTM is presented in [112]–[114]. In contrast to simply
using channel matrix H in history as input, Refs. [115], [116]
argue for applying CNN to extract channel state information
(CSI) and present a CNN-RNN architecture for CSI aging.
A decision-directed estimation with deep-FNN based channel
prediction is built in [117] for MIMO transmission, whereas
the ANN-based deep learning is also used in [118] to estimate
the beamforming vector instead of the channel matrix H with
the input of user position and the channel matrix H history.
Instead of using the RNN, [119], [120] deliver a CSI predictive
method by means of combing a multi-layer complex-valued
neural network (CVNN) with the chirp Z-transform. For the
FDD system, [121] delivers a hybrid of a CNN and LSTM
to extract the downlink CSI according to that of uplink
channels assuming strong channel correlation, whereas a deep
learning-based extrapolation approach is proposed in [122]
which infers the downlink CSI by solely observing uplink CSI
on an adjacent frequency band. A deep transfer-based meta-
learning (DT-meta-learning) algorithm is proposed in [123]
for downlink channel estimation which trains the network by
alternating inner-task and across-task updates and then adapts
to a new environment with a small number of labeled data.

Overall, the ML-based channel characterization/modeling
and prediction mostly relies on different strong points of the
ML methods: the former case generally uses the ML methods
for seeking the mapping function between the environment and
the channel properties or directly emulate the measurement
data, as shown in Fig. 2(a) and (b), respectively, whereas
the latter case usually uses the ML method to learn the his-
tory of channels6 and predict/extrapolate the future/unknown
channels, as shown in Fig. 2(c). It can be found in the state-
of-the-art studies, most of the ML-based channel prediction
algorithms are proposed based on the ANN, which have offline
training process and low computational complexity online
implementations, but with different network structures. This
leads to the major challenges of developing channel prediction
methods: i) what type of ANN should be used? and ii) what
input and output should be used for training? Facing these
two challenges, Table II summarizes the typical ML-based

6The history here is not only in time dimension but also includes frequency
dimension.
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Fig. 2. Key ideas of the ML-based (a) channel modeling, (b) channel simulation, and (c) channel prediction.

channel prediction methods. It is noteworthy that the material
factors, geometry map, and propagation factors may refer to
different particular parameters in each work, and the detail of
each factor can be found in each reference.

It has been found from the existing research that embody-
ing some prior knowledge into neural network architectures
usually induces good generalization [126]. This inductive
bias has been reflected in many networks, such as CNN for
processing the data that have a certain spatial structure, e.g.,
PAS; and RNN for the data that have a sequential structure,
e.g., PDP. This is a general guideline to designing/developing
any ML-based applications for the communication system, the
network model should be carefully selected according to the
characterization of the processed data, e.g., the CNN-based
methods are recommended to extract the PAS/channel matrix
feature in each snapshot; whereas the RNN-based methods are
recommended to process a period time of channel data. This is
a direction for selecting a proper ML method, in particular an
ANN method. There are still massive kinds of CNNs (e.g.,
LeNet, AlexNet, VGG-Net, GoogLeNet, and ResNet) and
RNNs (e.g., LSTM, Gate Recurrent Unit, and their variants),
which needs further experiment to evaluate each method.

IV. IMPORTANT ISSUES AND CHALLENGES

A. Training Data Collection for AI-based Applications

The training database is a critical point for design-
ing/developing any ML method, i.e., the volume or the type
of training data significantly affects the performance of AI-
based applications regarding what type of ML method or what
input features to use. The existing ML-based applications for
wireless communications mostly use the training data collected
from channel measurement to achieve the best performance in
practical deployment. Nevertheless, the channel measurement
is usually time-consuming and requires a high capital cost, and
thus cannot be extensively conducted for massive scenarios. In

this case, using synthetic data is an alternative way to build a
training database.

There are mainly three ways to generate the synthetic data:
1) using the existing conventional models (such as standard
models) or ML-based channel model; 2) using the simulator
like RT; 3) using data reproduction method like GAN. The
former two solutions can provide relatively accurate synthetic
channel data in various scenarios, as a supplement to training
data. In this case, the accuracy/performance of the trained ML
method will highly depend on the accuracy of the models. In
the other words, the performance of the ML-based applications
is limited by the accuracy of the synthetic channels. Despite
the limitations, the synthetic data is still a good compensation
to some extension scenarios that conducting measurements are
not feasible, especially for some extreme environment. On the
other hand, the GAN-based simulator only reproduces the data
that have the same inner pattern as training data (measurement
data), and cannot provide new information but enhances the
data pattern of the specific condition (the condition of the
measurement data collection scenario). Hence, the synthetic
generated by the GAN-based simulator cannot be considered
as data of extension scenarios. In this sense, the synthetic
data generated by the GAN-based simulator can be used as an
enhancement if the volume of training data is not sufficient.
Overall, both the measured data and the synthetic data should
be tested as the training data for ML methods. Two major
challenges are the limited volume of the measured data volume
and the relatively low matching rate of the synthetic data. This
leads to the crucial questions: i) how to improve the training
efficiency by using a limited volume of the training data,
and ii) how to improve the synthetic data accuracy compared
to the measured data. These two challenges deserve further
investigation in the future.
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TABLE II
SUMMARY OF THE ML-BASED CHANNEL PREDICTION.

Domain Existing works Machine learning tools Method input Method output

Space
domain

prediction

[90]

MLP

• Material factors
• Geometry map • Received power

[91]
• Propagation factors
• Geometry map • Received power

[92]

• Geometry map
• Transmit power
• Propagation factors
• Frequency band;

• Received power

[93] • Tx and Rx position • Received power
[94] • Tx and Rx position • Received power

[95]
• Distance between Tx and Rx
• Propagation factors • Received power

[96]
• Geometry map
• Frequency band

• Received power
• Delay/angular spread

[97]
• Geometry map
• Material factors • Received power

[98]
• Weather factors
• Geometry map
• Propagation factors

• Channel excess attenuation

[99]
• Weather factors
• Geometry map
• Propagation factors

• Channel excess attenuation

[103]
• Geometry map
• Material factors • Received power

[101]
• Geometry map
• Frequency band

• Amplitude, delay, phase
• Cross polarization

[100] LSTM-based MDLN
• H matrix in history
• LS estimation results
• Geometry map

• Downlink CSI

[102] CNN
• Geometry map
• Material factors

• Large scale fading
in each position

Time
domain

prediction

[104]

RNN

• CSI in history • CSI for future

[106]
[107]
[108]
[111]
[109]
[119] CVNN[120]
[105] Kalman filter/RNN
[110] JO-ELM
[112]

RNN(LSTM)[114]
[113]
[115] CNN+RNN[116]
[117] DNN
[118]

• Geometry map
• CSI • Beamforming vector

Frequency
domain

prediction

[121] CNN+LSTM
• Uplink CSI • Downlink CSI[122] DNN

[123] DT-meta-learning
* Material factors, geometry map, and propagation factors may refer to different particular parameters in each paper, the
detail of each factors can be found in each reference.
* DNN here indicates a generalized deep learning network without using a specific structure, e.g., CNN.
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B. AI-Based Channel Characterization for Positioning

Future IoT networks and applications strongly rely on
device positioning, which is still difficult for moving devices
(e.g., smartphones or vehicles) in a complex environment with
the continuous influence of human bodies and objects where
sensors are mounted. But with the development of multi-
antenna techniques and the computing power of the devices,
more and more channel information can be obtained during
communications. The contribution of the channel information
to the localization/positioning has been extensively investi-
gated [127]. According to the existing studies, the propagation
environment impacts on the localization/positioning accuracy
significantly. Therefore, the LoS/NLoS and even the physical
scenario identification will greatly contribute to the local-
ization/positioning performance. As reviewed in Section II,
many researchers studied the channel scenario identification
based on static channel characteristics, but only a few research
exploited the time-varying characteristic. As the matter of
fact, the time-varying channel characteristics are sensitive to
the changes of the propagation environment, in other words,
the time-varying channel characteristics can significantly im-
prove the efficiency and accuracy of the propagation scenario
identification. However, there are still many critical problems
that are not well addressed yet: how to exploit the time-
varying channel characteristics to improve the positioning
accuracy? How to combine the scenario identification and the
positioning? Which characteristics are more contribute to the
scenario identification and positioning? All these questions
still require further investigation.

C. AI-Based Channel Prediction for Complicated/Combined
Scenario

As introduced in Section III, it is impractical to perform
channel measurement campaigns everywhere. The question
of the generalizability of channel models obtained from one
environment to other environments needs to be investigated
in more detail. To ensure the practicality of models for all
similar scenarios, the accuracy is sacrificed in a way to achieve
the trade-off between the generality and the specialness for a
specific scenario. Due to the flexibility of AI methods, the
AI-based model can use more physical environmental factors
as input to reveal the underlying connections between the
channel properties and the physical propagation environment.
This indicates that AI-based channel models can achieve better
accuracy while maintaining the generality of their structure
for different scenarios (since the changes of the physical
environment are adopted as inputs), which makes it possible
to predict the channel in the time/frequency/location domain
based on the learning of channel history. However, most of the
existing research still separates the propagation environment
into particular/representative scenarios, e.g., urban, suburban,
or tunnel, before the modeling. The bridge between the
physical environment and model parameters built by AI tech-
niques brings the opportunity to build a complicated/combined
scenario channel model that can flexibly support multiple
scenarios with proper environmental factors and material
factors, which can more accurately reconstruct/predict the

experienced channels for moving terminals. For this purpose,
the classification of scenarios, the representative and unified
physical environmental factors for channel prediction will re-
quire further investigations. In addition, the transform between
different scenarios usually leads to rapid changes of wireless
channels, which is difficult to be modeled/predicted. Predicting
the channels with rapid changes is still a challenging task for
the prediction method. Besides, for prediction problems, the
length of the time window of channel history for learning, the
balance between the prediction accuracy and the prediction
time length, and the selection of prediction method still require
further study.

D. AI-Based Channel Information Processing for Network
Optimization

As introduced in Section V, with the help of AI methods,
highly accurate channel prediction becomes possible. Further-
more, with the development of the B5G and 6G commu-
nications, the high-speed movement scenario with ultra-low
latency communication becomes one of the typical applica-
tions. This brings a big challenge for the data processing
efficiency and the conventional network resource allocation
methods may not meet the requirement of the new appli-
cations [128], [129]. On the other hand, channel prediction
is able to provide the CSI in advance, which gives more
processing time for the network optimizations and ultimately
leads to lower latency. In addition, as explained in Section II,
the channel scenario identification is not only an important
precondition for high accuracy localization/positioning but
also key information for network optimization. However, the
channel modeling/prediction and the network optimization for
scheduling/resource allocation are generally independent in the
existing research. In this sense, the ML techniques can become
the bridge of the two studies (since both have been tackled
by ML). Therefore, the merging of the channel scenario
identification, channel prediction, and network optimization is
one of the promising future areas of wireless communication
system development.

V. CONCLUSION

AI techniques have become a necessary tool to develop
the next generation communication network. In this paper, we
provide a thorough overview of AI-enabled data processing for
propagation channel studies, including the scenario identifica-
tion and the channel modeling/prediction. This paper demon-
strates the early results of the related works and illustrates
the typical AI/ML-based solutions for each topic. Based on
the state-of-art, the future challenges of AI/ML-based channel
data processing techniques are given as well.
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