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Abstract

We study how strategic interaction and cooperation are affected by the heterogene-
ity of cognitive skills of groups of players, over consecutive plays of repeated games
with randomly matched opponents using Prisoner’s Dilemma as stage game. We ob-
serve overall higher cooperation rates and average final payoffs in integrated treatment
groups – where subjects of different IQ levels interact together– than in separated
treatment groups. Lower IQ subjects are better off and higher IQ subjects are worse
off in integrated groups than in separated groups. Higher IQ subjects adopt harsher
strategies when they are pooled with lower IQ subjects than when they play separately.
We demonstrate that this outcome should be expected in learning and evolutionary
models where higher intelligence subjects exhibit lower frequency of errors in the im-
plementation of strategies. Estimations of errors and strategies in our experimental
data are consistent with the model’s assumptions and predictions.
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1 Introduction

Intelligence is an important characteristic affecting single agent and strategic behaviour (e.g.

Jones, 2008; Alaoui and Penta, 2016; Gill and Prowse, 2016; Alaoui and Penta, 2018; Alaoui

et al., 2020). In repeated games where cooperation is possible, the level of intelligence of

players is a crucial factor in affecting mutually beneficial behavior. Proto et al. (2019) find

that when subjects are allocated into two groups on the basis of their intelligence, only the

higher intelligence groups converge to full cooperation in complex, non-zero-sum games such

as the repeated Prisoner’s Dilemma.

However, such separation of individuals into distinct classes of intelligence seldom occurs

in everyday life. The experimental literature has shown that when people are not separated

by level of intelligence, they tend to choose efficient strategies leading to cooperation under

repeated interactions, when gains from cooperation are sufficiently large (e.g. Dal Bó, 2005;

Dreber et al., 2008; Duffy and Ochs, 2009; Dal Bó and Fréchette, 2011; Blonski et al., 2011).

The questions of how groups interact and how people of different types within that group

influence one another remain open.

To clarify these issues, we conduct an experiment allowing to directly compare how people

cooperate when they are repeatedly interacting with individuals of the same or different

levels of cognitive skills. In our laboratory experiment we find strong evidence that low IQ

players learn to cooperate from high IQ players. Cooperation rates in integrated groups –

where subjects with different IQ levels are pooled together– substantially increase among

less-intelligent players (with IQ in the 76-106 range), and slightly decrease among more-

intelligent players (those with IQ in the 102-127 range) when compared to rates in groups

separated according to IQ.

We also find evidence of systematic differences in the strategies used in the integrated-

intelligence setting, as compared to those in the separated-intelligence setting. High-IQ

players in the integrated treatment are less likely to revert to cooperation after a defection

of the partner than they do when playing in the separated treatment. To better understand

the complex interaction of learning and teaching that produces this shift, we analyze a

model that introduces differences among players in the ability to consistently and precisely

implement strategies.

Before illustrating this model we need to recall some definitions, relying on an established

classification of repeated game strategies, in particular for the Prisoner’s dilemma (see for

example: Aoyagi et al., 2019). A strategy is called lenient if it does not revert to defection

after a single deviation; forgiving if it returns to cooperation after a punishment of a defection.

A strategy is called cooperative if it plays cooperation at some stage. Always Defect is not
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cooperative, Grim Trigger is cooperative, but not forgiving, and Tit-for-Tat is cooperative

and forgiving but not lenient, Always Cooperate is lenient, forgiving and cooperative. The

combination of those three criteria produces an order, which if restricted to the four strategies

we mention is complete. We call this an order of harshness: Always Defect, Grim Trigger,

Tit-for-Tat and Always Cooperate are in order of decreasing harshness. We find that if the

fraction of players with limited cognitive skills in the population increases, and, thus, the

average probability of errors also increases, players will adopt harsher strategies.

We model a strategy as an automaton; management of a strategy consists in correctly

choosing the next state in the automaton, given the current state and the observed action

profile, and then correctly choosing an action. Thus, possible errors are errors in transition

and errors in action choice. The distinction between the two types of errors is important for

data analysis but most importantly as a conceptual distinction.1 The literature on refinement

of Nash equilibria (started with Selten, 1975) has introduced errors as an essential component

of the analysis, and those are naturally interpreted as errors in action choice. The distinction

between the two types of error makes an interpretation of observed behavior easier. An error

in transition is likely due to a fault in cognitive skills and, in particular, working memory

storage of the strategy adopted, its current state, and updating the state given the observed

actions; an error in action is likely due to lack of care and attention in choice.

We study the effect on the frequency of strategies in the population at the evolutionary

equilibria of different benchmark models (the proportional imitation model and the best re-

sponse model; Gilboa and Matsui, 1991; Schlag, 1998) and in a rational learning model. This

is a natural modeling choice because in our experiment each individual adapts strategies to

the environment by observing the behavior of randomly met opponents. The cognitive skills

distribution determines the probability of errors, which in turn affects the implementation

of the strategy. Higher probability of errors lead subjects to shift towards harsher strategies,

in particular the Always Defect strategy.

In our data analysis we follow the hypotheses of the model and estimate the probability

of errors and the equilibrium strategy. We find a pattern consistent with the predictions

of the model: in subject pools where subjects commit more errors, players employ harsher

strategies. This is the opposite of what happens when errors in detection are introduced (as

in models of imperfect monitoring).2 In this case experimental evidence suggests that the

presence of errors in detection produces a shift in the direction of more lenient strategies

(see for example Aoyagi et al., 2019). A systematic comparison between these two errors is

an interesting topic of future research.

1We develop an algorithm which exploits this difference in section E of the online appendix.
2This observation was suggested by a clever referee.
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Our results allow to establish a clear link between intelligence, errors and strategic choices

in repeated Prisoner’s Dilemma. This is important for several reasons. First, it provides fur-

ther insights in the way cooperation arises and evolves among self-interested individuals.

Second, it provides a framework linking limited cognitive capacities and strategic errors.

Third, it can help to understand strategic interactions in environments typically charac-

terized by high heterogeneity in cognitive abilities, thus allowing a better evaluation of

alternative integration policies.

Our study is part of a broader research program trying to identify the role of personality

traits in producing strategic behavior. A large literature in behavioral economics has empha-

sized in the last decades the role of individual differences in attitudes toward others. These

theories suggest that social preferences, such as trust and altruism (facets of Agreeableness,

one of the Big Five personality traits), as determining behavior in strategic environments

(see e.g. Fehr and Schmidt (2006) for a survey). Jagelka (2019) uses factor analysis to study

the connection between preferences and cognitive skills on the one hand, and choices on the

other. His model highlights the link between cognitive skills and inconsistencies of choices

in a static setup, not in a strategic repeated environment.

Here we explore a completely different mechanism based on cognitive abilities. To the

best of our knowledge, our model is the first to analyze the relationship between probability

of errors and strategic choices, where individual cognitive skills determine frequency of errors.

Heterogeneity in strategy choice in this class of games has been well documented, yet we know

very little about why subjects do not coordinate on the same strategy or what determines

the strategies selected, especially in a basic environment of perfect monitoring. Aoyagi and

Fréchette (2009) estimate how the threshold strategies change as a function of the quality in

monitoring. Fudenberg et al. (2012) show that if the action choice of players is implemented

with an error by the experimenter, then strategies become more lenient and forgiving. So

when subjects know that the error is not the responsibility of partners they might change

their attitude in a more lenient direction, possibly because punishing the partner could not

change the probability of error by inducing them to be more careful. Dal Bó and Fréchette

(2019) report that as supergames become longer in expectation, the ratio of Tit-for-Tat to

Tit-for-Tat plus Grim Trigger increases. There is also evidence that players in laboratory

settings teach others how to play efficiently (e.g. Camerer et al., 2002; Hyndman et al., 2012;

Cason et al., 2013). However, these papers do not connect the experimental findings with

differences in intelligence and do not provide a unifying theory as we do in the current work.

Furthermore, the explanation given in this paper based on evolutionary models relates to

multiple observations from prior research: i) the importance of dynamics within sessions; ii)

the predictive role of the initial conditions; and iii) the decrease in strategy implementation
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errors with experience (see Dal Bó and Fréchette, 2018, for a survey of such findings).

The paper is organized as follows: Section 2 presents the experimental design. Section

3 shows the experimental evidence. Section 4 describes the main results of a model of

evolutionary game theory; the model is examined in more detail in the appendix (section A).

Section 5 estimates the main parameters and variables of the model using our experimental

data and provides support for the model’s main assumptions and predictions. Section 6

concludes. The online appendix contains technical analysis of the model, estimation details,

robustness checks, further experimental design details, and descriptive statistics.

2 Experiment Design and Implementation

Our design involves a two-part experiment administered over two different days separated

by one day in between. Participants are allocated into two groups according to cognitive

ability, which is measured during the first part. They are then asked to return to a specific

session to play several repetitions of a repeated game. Each repeated game is played with a

new randomly determined partner. We have two treatments: the first treatment (called IQ-

Separated treatment, or separated for short) separates subjects into two groups, one with high

and one with lower cognitive ability. The second treatment (called IQ-Integrated treatment,

or integrated for short) pools together subjects into groups that do not differ one from the

other in the distribution of cognitive ability. Subjects were not informed how the grouping

was made. During the de-briefing stage (after the completion of the second day session), we

ask the subjects if they understood the basis upon which the grouping was made. Only one

subject mentioned intelligence as the possible determining characteristic.

2.1 Experimental design

Day One

On the first day of the experiment, subjects complete a Raven Advanced Progressive Matrices

(APM) test consisting of a sequence of 36 questions. They have a maximum of 30 minutes

for the entire test. For each item a 3×3 matrix of images is displayed on the subjects’ screen;

the image in the bottom right corner is missing. The subjects are then asked to complete

the pattern by selecting one out of eight possible choices presented on the screen. Before

beginning the test, the subjects are shown an example of a matrix together with the correct

answer for 30 seconds. The 36 questions are presented in order of progressive difficulty (as

sequenced in Set II of the APM). Participants are allowed to switch back and forth through

the 36 questions during the 30 minutes and they are allowed to change their answers.
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The Raven test is a non-verbal test commonly used to measure reasoning ability and gen-

eral intelligence. Matrices from Set II of the APM are appropriate for adults and adolescents

of higher-than-average intelligence. The test is able to elicit stable and sizeable differences

in performances among individuals similar to the ones in our subject pool. This test was

among others implemented in Gill and Prowse (2016) and Proto et al. (2019) that find it to

be relevant in determining behavior in cooperative or coordinating games.

Psychometric and experimental economics research seldom offers subjects rewards for

completing IQ tests such as the Raven. However, some research (e.g. Larson et al., 1994) has

found that offering a monetary reward leads to a slight increase of scores among people of

higher-than-average intelligence. Alaoui and Penta (2018) study the effects of such incentives

on performance from a theoretical point of view. We aimed to measure intelligence in a way

that would keep potential confounding with motivation at a minimum. Thus, we decided to

reward our subjects with 1 euro for the correct answer to three randomly chosen matrices

among the total 36. During the session we never mention that this is a test of intelligence

or cognitive abilities.

Following the administration of the Raven test, subjects complete an incentivized Holt-

Laury task (Holt and Laury, 2002) to measure risk attitudes. Participants also complete

a standard personality traits questionnaire, the Big Five Inventory (BFI), which includes

44 questions (with answers coded on a Likert scale).3 Participants also answer a series

of questions on demographic characteristics, subjective well-being, and previous experience

with a Raven’s test. We inform the subjects that they will not receive any monetary payment

for this section. The online appendix includes all instructions given on the first day.

Day Two

Subjects return to the lab on a later day for the second part. We allocate subjects into

two experimental sessions depending on the treatment. In the IQ-Separated treatment, we

divide subjects into two groups. Those with above-median Raven scores participate in what

we refer to as high-IQ sessions; the remaining subjects participate in what we refer to as

low-IQ sessions.4,5 In the IQ-Integrated treatment, we create groups of similar Raven scores

across pairs of sessions. To allocate subjects in second-day sessions, we rank them by their

Raven scores and separate the groups by the median. We then alternate allocating subjects

3We use the version that was developed by John et al. (1991) and was investigated by John et al. (2008).
4The attrition rate was small. Table O.1 in the online appendix provides the details.
5In cases in which there were subjects with equal scores at the cutoff, a tie rule based on whether they

reported previous experience of the Raven task was used. Participants who had done the task before (and
were tied with others who had not) were allocated to the low-IQ session.
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of either intelligence level in different sessions.6 Specifically, the two top Raven scorers of

day one are allocated in different sessions; subsequently the third and fourth are allocated

to a different session, and so on.

Subjects are asked to play several instances of a repeated Prisoner’s Dilemma (PD)

game. Table 3 reports the stage game implemented. We use a random continuation rule:

after each repetition the draw of a random number determines whether the repeated game

stops or continues to the next repetition. The continuation probability is δ = 0.75. We use

a pre-drawn realization of the random numbers; this ensures that all sessions across both

treatments face the same experience in terms of length of play at each decision point.7 We

define key terms as follows: round refers to an overall count of number of times the stage

game has been played during the session; a supergame refers to each repeated game played;

and, finally, period refers to the round within a specific supergame. The length of play of the

repeated game is either 45 minutes or until the completion of the 42nd supergame (which

entailed 151 rounds, i.e. repetitions of the stage game), depending on which comes first.

This rule was not disclosed to the participants. The game parameters are identical to the

ones used by Dal Bó and Fréchette (2011) and Proto et al. (2019). When the continuation

probability is interpreted as discount factor, the payoffs correspond to an infinitely repeated

Prisoner’s Dilemma game in which the cooperation equilibrium is both subgame perfect and

risk dominant.8

The matching of partners takes place within each session under an anonymous and ran-

dom re-matching protocol. Two participants play as partners as long as the random contin-

uation rule determines that the particular partnership is to continue. Once a match ends,

participants are again randomly and anonymously matched, and start playing the game

again. Each decision round for the game is complete when every subject has made their

decision. After all subjects make their decisions, a screen appears that reminds them of

their own decision, indicates their partner’s decision, and reports the units they earned for

that particular round. The group size of different sessions varies depending on the numbers

recruited in each week.9 The subjects are paid according to the points they earn through

all rounds of the game. The payoffs reported in Table 3 are in terms of experimental units;

each experimental unit corresponds to 0.004 Euros.10

6Again, the attrition rate was small. Table O.2 in the online appendix provides the details.
7In table O.8 in the online appendix, we list the length per supergame that was used for all sessions.

This realisation of supergame length was obtained by drawing a random sequence.
8See Dal Bó and Fréchette (2011), p. 415 for more details
9The bottom panels of tables O.1 and O.2 in the online appendix list the sample size of each session

across both treatments.
10 In the invitation email sent to potential participants we announced a maximum on earnings of 26

Euros for the entire study (including a 4 Euros participation fee). The invitation letter for the second day
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After the sequence of repeated games is completed, subjects are asked to complete a short

questionnaire about any knowledge they have of the PD game, to answer some questions re-

lated to their attitudes towards cooperative behaviour and some strategy-eliciting questions.

We include all these questions in the online appendix.

Implementation

The recruitment was conducted through the Alfred-Weber-Institute (AWI) Experimental

Lab subject pool based on the Hroot recruitment software (Bock et al., 2014). All sessions

took place at the AWI Experimental Lab in the Economics Department of the University of

Heidelberg. A total of 214 subjects participated in the experimental sessions. They earned

on average around 23 Euros, including 4 Euros for participating. The experiment used Z-Tree

(Fischbacher, 2007).

We conducted eight sessions for the separated treatment: four high-IQ and four low-IQ

sessions. There were 108 participants, with 54 in the high-IQ and 54 in the low-IQ sessions.

For the integrated treatment we conducted 8 sessions with a total of 106 participants. Tables

O.1 and O.2 in the online appendix report the dates of the sessions and the number of subjects

per session.

3 Experimental Evidence

3.1 Cooperation rates, payoffs and learning

We start by comparing cooperation rates and payoffs across the two treatments for the two

intelligence groups. Figure 1 shows that subjects increasingly choose cooperation as their

first period choice across all treatments. Subjects in the high-IQ sessions converge faster to

almost total cooperation rates, while in the low-IQ sessions the pattern emerges more slowly;

subjects in this group converge to a cooperation rate smaller than 100 per cent (left panel).

Subjects in the integrated session have higher cooperation rates than in the low-IQ sessions,

and lower cooperation rates than in the high-IQ sessions (right panel).11 Always from figure

1, we note a clear upward trend only in the 1st half of each session (i.e. about the first 20

announced a maximum 15 Euros to be earned during that second session (up to 7 plus 4 Euros could be
earned during the first day). During the second day session, no display of the accumulated amount earned up
to that point was shown on the screen to the participants. The final earnings for the whole experiment were
only communicated at the end of the experiment. The results that we report are not qualitatively affected
by excluding the data in every session when even a single subject has reached the maximum on earnings, so
the presence of the maximum earning did not affect the behavior of participants.

11In Figure O.2 of the online appendix, we present the cooperation rates by session.
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supergames), for this reason on what follows we will generally show separate estimations for

the two halves of every session.

Table 4 shows that in the first 20 supergames (roughly the first half of a session), subjects

earn about 2.5 units more, and cooperate about 10% more frequently in the high-IQ sessions

than in the integrated sessions. By contrast, they earn about 5.6 units less and cooperate

about 22% less frequently in low-IQ sessions than in the integrated sessions. After the

20th supergame, there is no longer a significant difference between high-IQ and integrated

sessions. Meanwhile in the low-IQ sessions the difference in both payoffs and cooperation

remains constant.12

In accordance with the findings in Proto et al. (2019), Table 5 shows that IQ is not

significant in determining cooperation in the first round in either of the two treatments.

This suggests that the difference in cooperation between individuals of different cognitive

skills is only due to a learning effect during the session.13 Furthermore, in columns 3, 4

and 5 of table 5 we include a dummy for the integrated treatment. As it is expected it

is non significant, confirming that subject behaviour is statistically indistinguishable across

treatments at the beginning of the session.

Figure 2 shows that the average payoff per supergame is consistently higher in the inte-

grated sessions than in the separated sessions, indicating that in the integrated treatment

subjects play on average more efficiently than in the separated treatments.14 Figure 2 sug-

gests that subjects learn to cooperate in the first half of each session, then cooperation rates

become stable in the second half.

Table 6 shows that – in the first half of the session – subjects in the high-IQ sessions

open with cooperation at a rate increasingly faster than in the integrated treatment. By

contrast, cooperation increases more slowly in the low-IQ sessions than in the integrated

sessions (columns 1 and 2). Subjects in the low-IQ sessions tend to catch-up with the others

in the second part of each session (columns 3 and 4). This provides evidence that the less

intelligent players learn to play more cooperative strategies more quickly when they mix with

the more intelligent players than when they play with players of similar intelligence level.15

12 In table O.16 of the online appendix we present the same estimation as in table 4 but using only the
data from the marginal subjects in terms of IQ by excluding the top and bottom tertiles. This gives perhaps
a cleaner estimation of the magnitude of overall treatment effect. The table shows that there is an even
bigger difference between low IQ sessions and combined sessions (30% less cooperation in the latter), while
the difference between high IQ sessions and combined seems smaller than in table 4.

13Interestingly, risk aversion is the only significant negative determinant of cooperation at the beginning
of each session; in Proto et al. (2019) the effect was negative as well, but not statistically significant.

14Table O.3 in the online appendix also underscores this trend, with total earnings and average payoff
per round significantly higher in the integrated sessions than in the separated sessions.

15 In table O.17 of the online appendix we present the same estimation as in table 6 but using only the
data from the marginal subjects in terms of IQ by excluding the top and bottom tertiles. The table shows
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Why do higher levels of cooperation emerge earlier in the session with a larger number

of high-IQ players? One driver appears to be subjects’ beliefs, which change on the basis

of the experience with previous partners’ opening plays. As columns 2 and 4 of Table 6

show, partners’ past cooperation in the first periods significantly increases the probability

of cooperation; in agreement with established results in the repeated games literature. In

other words, subjects whose partners opened with cooperation in previous supergames are

more likely to open with cooperation in subsequent games.

It is reassuring to observe that the results so far confirm the results in Proto et al. (2019)

with the same payoff matrix, but using a different subject pool in a different country.16 We

summarize these findings as follows: Average cooperation rates and aggregate payoffs are

higher when high- and low-IQ subjects play in integrated, rather than separated groups. Low

IQ individuals learn to cooperate faster when they play in integrated, rather than separated

groups.

In what follows we will ask and study the fundamental question of how the interaction

between IQ distributions, strategy choice and implementation errors materializes.

3.2 Individual choice determinants

There is widespread and robust evidence (e.g. Dal Bó and Fréchette, 2018; Proto et al.,

2019) that subjects in the repeated Prisoner’s Dilemma game with perfect monitoring play

memory one strategies, where the choices in every period of a supergame depend only on

the action profile of the previous period.17 Let chi,t represent the subject’s choice (1 for

cooperate and 0 for defect), Partn.Chi,t represent partner’s choice and pi,t represent the

probability of chi,t = 1 (conditioned on the set of independent variables), we then have the

following model:

pi,t = Λ(αi + β[Chi,t−1;Partn.Chi,t−1] + εi,t); (1)

where [Chi,t−1;Partn.Chi,t−1] is a 3-dimensional vector of dummy variables representing the

different outcomes, where (1,0,0) represents Chi,t−1 = 0;Partn.Chi,t−1 = 1, (0,1,0) repre-

sents Chi,t−1 = 1;Partn.Chi,t−1 = 0 and (0,0,1) represents Chi,t−1 = 0;Partn.Chi,t−1 = 0;

with mutual cooperation, Chi,t−1 = 1;Partn.Chi,t−1 = 1, being the baseline category. αi

are time-invariant individual fixed-effects (taking into account time-invariant characteristics

of both individuals and sessions) and εi,t is the error term. We estimate Model 1 separately

that there is an even bigger difference between the cooperation trend of low IQ and combined sessions.
16And are generally consistent with the findings in the experimental economics literature (see e.g. Dal Bó

and Fréchette, 2018)
17 Common examples of memory one strategies are Tit for Tat or Grim trigger. Defecting after two

periods of defection of the partner (as in Tit for Two Tats) illustrates a memory two strategy.
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for the first block of 20 and the second block of 20 supergames by using a logit estimator.

In Table 7, we present the estimates of Model 1 for the first and the second half of the

session. Results are reported in odds ratios and taking the outcome (C,C)t−1 as baseline. In

panel A, we note that, conditional on deviation from mutual cooperation (i.e. after (D,D)t−1;

(D,C)t−1; (C,D)t−1), the odds of cooperating at time t by high-IQ are higher when subjects

play with other high-IQ players than when they play in the integrated treatment. This

difference is, if anything, even larger in the second part of the session (as seen in panel B of

Table 7). In particular, a lower coefficient of (C,D)t−1 suggests that subjects are less lenient

(see the definition in the introduction), and a lower coefficient of (D,C)t−1 suggests that

subjects play less forgiving strategies.18 Overall, we can interpret this evidence by saying

that in the integrated sessions high-IQ adopt harsher strategies.

Table 8 shows results of a direct test on whether high-IQ players are less harsh when

they interact amongst each other than when they are in the integrated treatment.19 We note

that the high-IQ players are significantly less likely to cooperate whenever the other subject

unilaterally defects. By contrast, the low-IQ subjects do not seem to play significantly differ-

ently – regardless of the setting, whether playing only with other low-IQ or in the integrated

treatment after an unilateral defection. We summarize this section as follows: High-IQ play-

ers are significantly less likely to cooperate after an unilateral deviation of the partner when

playing in the integrated treatment than when playing in the separated treatment.

The evidence we report shows that subjects learn to cooperate, and their choice of strate-

gies depends on their own cognitive skills as well as the distribution of cognitive skills within

the group. The high-IQ players seem to be more lenient when they play only with other high-

IQ players than when they also play with low-IQ players. Therefore, a complex mechanism

is in place and the following model allows us to analyze this in detail.

4 Errors and Evolution of Strategies

Proto et al. (2019) found that cognitive skills are inversely correlated to the probability of

defaulting after mutual cooperation in a strategic dynamics setting, suggesting the existence

18However, such a coefficient could also be an indication of reverting back after an error at period t− 1.
In a similar vein, the interpretation of a lower coefficient of (D,D)t−1 is more ambiguous: it might suggest
that a player is less keen to re-establish cooperation, that is, they are playing an non-cooperative strategy
like Always Defect or a Grim-trigger. At the same time this might also suggest, to the contrary, that players
adopt Always Cooperate more often and are reverting to that after an error at period t− 1.

19 Given our between-subjects treatments, we could not estimate this model by using individual fixed
effects to control for individual heterogeneity. As a result, we needed to introduce correlated random effects
in the model; a probit estimator is a more correct choice in this case (Wooldridge, 2010, sections 15.8.2 and
15.8.3)). However, note that the logit estimator would still be a good approximation, and using it instead
would give qualitatively similar estimations.
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of a link between cognitive skills and strategic mistakes. Our results rely on a precise

model and show support for this suggestion. In this section we precisely define two types

of errors that take place in our environment and describe a formal model of the role that

the probability of these errors have on the evolution of strategies. We assume that error

rates are related to the intelligence of players, particularly errors that are due to ineffective

information processing: thus, the model provides a link between intelligence and strategic

behavior in groups. In section 5, we provide empirical evidence of this assumption in our

data.

4.1 Two types of error

In our model of strategy evolution, subjects can make two types of errors when implementing

their strategies. As a first possibility, errors may occur in the complex process of observing

the action of the others, recalling the rules of the game and their plan of action, and deciding

what to do in the future as a consequence of the observed action. We model subjects’ plans

as automata, and the complex process we have just described as the transition to the next

period state in their automaton. An error produces a transition to a state which is different

from the one prescribed by the automaton and the observed sequence of actions. We call

this an error in transition and denote its probability of occurring in each instance by εT . We

also consider the second possibility that they make an error in their choice of action, error

in action for short, which is the selection of an action different from the one prescribed by

the strategy at the current state. This error occurs with probability εA.

Note that the error in action is the only type of error which is possible when a player

uses simple strategies such as Always Defect or Always Cooperate, in which the automaton

has a single state. Thus, when we estimate error rates in our data analysis, if the strategy

considered is, say, AD, and only errors in transition are allowed, an observed path of actions

of a player has either probability one (when only defection is observed) or probability zero (if

ever a cooperation is observed). Thus, allowing this second type of error is necessary to allow

the possibility of errors with simple strategies such as Always Defect. We believe that the

distinction between these two types of error is important, because it corresponds to different

processes and different individual characteristics. From the cognitive point of view, an error

in transition is typically an error in working memory implementation of the strategy; an

error in action choice is an oversight, and more likely to be induced by distraction or lack of

focus. This distinction is likely to be even more important in future research investigating

the link between individual characteristics of players and strategic behavior.
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4.2 Errors and Strategy evolution

We now examine in broad lines the link between the frequency of errors and the evolution

over time of strategic behavior. For clarity of exposition we focus in the main text on the

simple case of transition errors only, and extend the analysis in section A.3 of the appendix,

where we consider the general case in which both errors in action choice and in transition are

possible. Focusing on transition error considerably simplifies the exposition, and the results

in section A.3 show that this case contains all the essential features. Our data analysis tests

the complete model with both types of errors.20 In section A.4 of the appendix we present

a model of population learning that allows us to establish a link with social learning models

of the type used in Dal Bó and Fréchette (2011).

We use the model to study the effect of error probabilities on the frequency of strategies

adopted by players. It is useful to have in mind the order of magnitude of error probabilities

that is actually observed in our data.21 The range of error probabilities in our data is for

almost all participants within the range of 0 to 0.3. The mean is between 0.02 and 0.1,

but Figure O.5 (in the online appendix) shows that in earlier supergames the mean can be

much higher, up to 0.25 or even larger. Overall, it seems reasonable to focus our attention

conservatively (to consider all possible relevant cases) to the range 0 to 0.25.

4.3 Sequences of Repeated Games

In our experiment and in our model, subjects play consecutively several instances of a re-

peated game, with a different partner randomly chosen in each repeated game. The two-

players stage game with action set Ai for each player, A ≡ A1 × A2, of each repeated game

is a Prisoner’s Dilemma with payoff in every period given by:

Table 1: Stage Payoff u

C2 D2

C1 c, c s, t
D1 t, s d, d

where we assume:

t > c, d > s, t+ s < 2c. (2)

20The estimation method is presented in section E of the online appendix.
21In Figures O.3 and O.4 in the online appendix, we report the histograms of errors in transition and

action, respectively, by treatment. The dispersion of transition error probabilities across individuals is
reported in Figures O.5 (for early supergames) and O.6 (for all supergames).
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These conditions are satisfied by the payoffs in our experimental design (c = 48, s = 12,

t = 50, d = 25). We denote by u the payoff in Table 1, dropping the index using the

symmetry of the payoff matrix.

In the following an automaton is a representation of repeated game strategies of a player.

An automaton m is a tuple (X, x0, f, P ) where X is the set of states of the automaton,

x0 ∈ X the initial state, f is a function X → Ai, where Ai is the set of actions of player

i. When we refer to an automaton we may omit the index of the row or column player

who is using that automaton, relying on the symmetry of the game. Finally, P defines the

transition probability P : X × A→ ∆(X), and write:

P (·;x, (a1, a2)) ∈ ∆(X) (3)

We adopt the notation in terms of transition probability rather than functions (in spite of the

fact that transitions are deterministic) to allow a smooth transition to the case, considered

later, in which we introduce errors.

We assume that in the repeated game subjects only play one of the following three

strategies: Always Defect, Tit-for-Tat and Grim Trigger strategies. This assumption relies

on by now established findings in the experimental study of the repeated Prisoner’s Dilemma,

which are replicated in our own data.22 In the data analysis of section 5 we also consider the

possibility that some players use the strategy Always Cooperate (AC). Since this strategy

is weakly dominated and with errors would be eventually eliminated from the population,

a model including AC would give conclusions similar to those we reach here. To lighten

notation, in the current section we denote these strategies as {A,G, T}, where A stands

for Always Defect strategy, G for Grim Trigger and T for Tit-for-Tat. Note that in our

description of strategies as automata, there is a single state for A, and two states for G and

T .

We can use conceptual tools from evolutionary and learning game theory in our setup, in

which a game is a repeated game, by considering the normal form game where the strategy

set for each player is the set of strategies or equivalently automata:

M ≡ {A,G, T} (4)

The normal form game is defined as follows: before the beginning of each repeated game,

players choose simultaneously an element in M , and the payoff is the one induced in the

22For example, Dal Bó and Fréchette (2019) show that subjects mostly adopt these strategies. Dal Bó
and Fréchette (2011) and Proto et al. (2019) find evidence that the frequency of use of these strategies by
their participants ranges between 66% and 90%.
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repeated game by the chosen pair of strategies. At the end of each repeated game they play

another one, by again choosing a possibly different repeated game strategy, and so on: so

players play a sequence of repeated games. We call the normal form game induced by the

choice of strategies in a repeated game the strategy choice game. We describe now the payoffs

when the set of strategies is as in (4).

When strategies are implemented by both players with no error (so εT = εA = 0), the

precise values of the payoff matrix are reported for convenience in table 2.

Table 2: Payoff Matrix in the Strategy Choice Game with No Errors.

A G T
A d, d (1− δ)t+ δd, (1− δ)s+ δd (1− δ)t+ δd, (1− δ)s+ δd
G (1− δ)s+ δd, (1− δ)t+ δd c, c c, c
T (1− δ)s+ δd, (1− δ)t+ δd c, c c, c

We denote by U the payoff in Table 2. When one of the two error probabilities, or both,

are strictly positive then the matrix assigning payoffs to each pair of strategy choice by

the players changes. For example, if εT > 0 and εA = 0, then the payoff from the choice

of grim trigger by both players is no longer (c, c): with probability εT in every round a

player will transit to the wrong state, choose defect, thus inducing retaliation of the other.

The computation of the payoff matrix corresponding to the simple Table 2 when errors are

possible is slightly more complex, but it produces a payoff matrix similar to Table 2, where

entries are a function of the pair (εT , εA). In the appendix section A.2 we describe precisely

how this new payoff matrix is computed when εT > 0, εA = 0. The general case is analyzed

in section A.3.

4.4 Evolutionary Models

We study the effect on the frequency of strategies in the population for different values of

the error rates at the evolutionary equilibria of two models: the proportional imitation model

(Schlag, 1998), which produces the replicators dynamics equation described in equation (5)

below, and the best response model (Gilboa and Matsui, 1991), which produces the best

response dynamics described in equation (6) below. Finally we consider a rational learning

model (see section A.4 for details), which is very close to the best response model, and is

also a realistic description of learning in our setup of consecutive repeated instances of a

repeated game with randomly matched opponents.

There are several reasons to consider each of these models: each one has its merits.

First, the replicator dynamics is the most widely used in evolutionary game theory, and it is

therefore a natural benchmark. Its behavioral foundation, proportional imitation, does not

15



require the knowledge of the strategies’ distribution by the player, who observes after the

fact the partners’ strategy and payoff, and chooses whether to imitate it or not.23 But the

behavior assumed (imitation of a more profitable strategy) is crude; the assumption that

the player gets to know the strategy the other played is not natural in our setup, where the

game is the normal form of a repeated game. The best response dynamics is based on a

more realistic behaviour in our environment, but it requires players to know at any time the

distribution of the strategies in the same experimental session. A model which is useful and a

reasonable description of behavior in our experimental environment is the model of rational

learning that we present in section A.4 of the appendix. This model assumes that players

have a belief over the strategy distribution of the subjects in the session, update it on the

basis of the observation of the partner’s behavior, and choose an optimal response at each

time. This model allows us to predict behavior during the learning process, and not only at

the steady state. The price of this model is its complexity: so the other two, proportional

imitation and best response, are very useful to provide an introductory tractable setup. They

also provide a useful approximation because (as we show) the qualitative results are robust

to different specifications of the evolutionary model (see Proposition A.2), in particular the

main conclusion, that harsher strategies are more likely when the average error probability

is higher is common in all three models.

We now present the details. We let µ ∈ ∆(M) denote a mixed strategy and also a

frequency of choice of strategy in the population (as usual: see Sandholm, 2010; Weibull,

1997). To describe the evolution over time of the frequency, we let µ(t,m) denote the

frequency of strategy m in the population at time t. We denote the payoff to a player

adopting m when the frequency in the population is µ as U(m,µ), and for any τ ∈ ∆(M),

the average payoff in the population as:

U(τ, µ) ≡
∑
m∈M

τ(m)U(m,µ).

The time evolution of the frequency under proportional imitation is the replicator dy-

namics equation:

∀m ∈M,
dµ(t,m)

dt
= µ(t,m) (U(m,µ(t, ·))− U(µ(t, ·), µ(t, ·))) . (5)

A model of matching and imitation justifying the proportional imitation in (5) is standard

(Sandholm, 2010). Equation (5) states that the change in a short time interval of a frequency

of a strategy is proportional to the difference between average payoff from that strategy and

23See Schlag (1998) and Sandholm (2010) for more details.
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the overall average payoff in the environment, times the current frequency of the strategy.

To define the best response model, we first need to define the best response correspon-

dence, taking values in mixed strategies:

BR(µ) ≡ {τ ∈ ∆(M) : ∀m ∈M,U(τ, µ) ≥ U(m,µ)}. (6)

Let λ > 0 be a fixed parameter, controlling the speed of adjustment. The time evolution of

the frequency under best response dynamics 24 is described by any solution of the differential

inclusion:

∀m ∈M :
dµ(t,m)

dt
= λ (τ(m)− µ(t,m)) , for some τ ∈ BR(µ(t, ·)). (7)

To clarify this equation we note that µ(t, ·) is a probability measure on M ; the best response

correspondence BR is then applied to µ(t, ·). If for a time t and an element τ ∈ BR(µ(t, ·))
equation (7) holds, then the function of time described by µ(t,m) is a solution at that time.

In summary, a solution of the best response model is an absolutely continuous function for

which equation (7) holds at every time t.25 This model is simpler than it may look. Figure

3 describes the dynamics in the best response model, and illustrates that the analysis is

simplified in our case because when the error probability is strictly positive the best response

correspondence is single valued in the interior of each the three basins of attraction. Thus,

the differential inclusion is, for “most values”, a simple differential equation. Equation (7)

states that at every point in time the frequency of the strategy which is the best response to

the current frequency increases, that of the other decreases, at an overall speed regulated by

the parameter λ. Since the best response dynamics is closer than the proportional imitation

dynamics to our environment, we provide for it a justification in the next section.

4.5 A Model of Adjustment of the Best Response

A population of players (like the subjects in our sessions) know the distribution µ and can

compute the best response, but do not adapt immediately the best response. For example,

they may need time to think through the best response, or can pay attention to the current

situation only at some prescribed time. In a small time interval dt a fraction λdt of the

population revises their strategy; the complement 1 − λdt does not. Those who do, adapt

the best response to the current µ(t, ·); each player does so taking the current µ as given,

24We follow Sandholm (2010)’s formulation.
25See Aubin and Cellina (1984) for technical details on differential inclusions; in particular chapter 2,

section 1 on differential inclusions where the correspondence is convex valued and upper-hemicontinuous,
which by the properties of the best reply correspondences for normal form games is the relevant case for our
analysis.
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and ignoring (correctly, since he is negligible) his effect on the frequency of strategies. So

for every m we have:

µ(t+ dt,m) = (1− λdt)µ(t,m) + λ τ(m) dt, for τ ∈ BR(µ(t, ·)), (8)

which in the limit gives the differential inclusion (7). In this version of the model, players

in a large population know exactly, at every point in time, the frequency of strategies in

the population; they just cannot or do not adjust immediately. The best response dynamics

is one step closer to a model of rational learning, so it is a useful intermediate step to

build our intuition. It differs from a full rational learning model because it requires that

all players have the same belief and the belief is correct. The exposition of results for the

rational learning model is harder because a simple two-dimensional dynamic is impossible.

The rational learning model is defined in appendix section A.4, and estimated in section A.5.

4.6 Summary of Main Results

We now outline our main results. As we mentioned already, the reader may focus on the

case in which εA = 0, that is there are no errors in action, and the only error possible is error

in transition.

First, the limit behavior of the fraction of strategies is determinate (that is, the steady

states are locally unique) only if the probability of error is positive.26 When there are no

errors, typically the equilibria of the strategy choice game, as well as the steady states of

the evolutionary model and of the learning process, are not locally unique. The unique

exception is the (A,A) equilibrium, which is locally unique for all values of the parameters.

Instead, when errors occur, even of arbitrarily small size, then there are three locally unique,

and locally stable steady states corresponding to the pure strategy equilibria of the game in

which players choose strategies in the repeated game. With small errors, there are overall

seven steady states, three stable, one unstable, and three saddle points.

Second, thanks to the previous result, when errors are positive, however small, we can

define basins of attraction for each of the strategies. The basin of attraction of a strategy

is a useful quantitative indicator of how profitable on average a strategy is, given a specific

environment (which includes payoffs and error probabilities). It may also provide a theo-

retical basis to predict relative frequency of strategies as a function of the error probability.

The link between frequency of the strategy and basin of attraction is provided by the fol-

lowing thought experiment. The initial condition of the system is the initial distribution

26The role of mistakes in evolutionary stability has been explored, extending the research on Nash refine-
ments, by Boyd (1989).
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of strategies in the population. We may think that this is chosen randomly with a fixed

probability, that is, independent of the environment, in particular of the error probability

and continuation probability. For example, to fix ideas, we can take this probability as the

uniform probability over the strategies’ frequencies. This probability may represent the ran-

dom factors affecting the initial behavior of subjects in an experimental session. Given an

initial condition, the evolution of distribution of strategies and its limit frequency is then

provided by the evolutionary model. If we keep this initial probability fixed, and we change

the model’s parameters, in particular the error probability, a larger basin of attraction of a

strategy will be associated with a larger frequency of that strategy. Thus, the size of basin

of attraction gives us a measure of the probability that the final distribution of strategies is

A or G. The size of these basins changes with the probability of errors. As players become

more error prone, the basin of attraction of harsher strategies become larger: that is, the

size of the basin of the A strategy becomes larger than that of G and T together, and that

of G becomes larger than that of T .

Third, which strategies survive in the long run depends on the discount factor δ; in

all cases, for low probabilities of errors all strategies may survive depending on the initial

condition. For high probabilities of error, only A survives. For intermediate probabilities,

the two surviving strategies are A and G for low δ, and A and T for high δ. As δ tends to

1, keeping error probabilities fixed, the opposite happens: the basin of attraction of the G

and T strategies becomes larger; and when strategies are limited to {G, T}, the basin of T

increases to cover the entire interval. This is in line also with the experimental finding in

Dal Bó and Fréchette (2019) that as the probability of continuation increases subjects tend

to choose shorter punishments (i.e. T over G).

The results described so far are independent of the specific model of evolution we adopt,

(Proportional Imitation or Best Response). In Section A.4 of the appendix we develop

a model of learning in a population of players with heterogeneous beliefs, who hold and

update beliefs as in the model underlying our data analysis. We show that the resulting

dynamics are close to those described by the best response dynamics.

4.7 An Illustration

Figure 3 provides a first intuitive understanding of the way in which the error probability

affects the basins of attraction of the three strategies.27 The figure reports the phase portrait

of the vector field for the Best Response dynamics described in equation (7). We set in all

panels the probability of error in action εA = 0, and we considered different error probabili-

27The Matlab code producing the analysis reported in this figure and those considered later is available
upon request.
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ties, ranging from εT = 0 (no error, top left panel) to εT = 0.25 (bottom right panel). Payoffs

in the stage game are set as in our experimental design in Table 3. The discount factor (or

equivalently, the continuation probability) is the same (0.75) as in our experimental design.

The triangle in each panel of figure 3 is the two-dimensional projection of the simplex.

Each point in the triangle represents points (µ(G), µ(T )), where µ(G) is the probability of

G, such that µ(G) +µ(T ) ≤ 1, and so the frequency of the strategies, in the order (A,G, T ),

is equal to (1− µ(G)− µ(T ), µ(G), µ(T )). The lines in the triangular regions represent the

isoclines: an isocline is the set of points at which the time derivatives of a variable contains

zero.28 The red line indicates the set of points at which dµ(T )
dt

= 0, the blue ones the set
dµ(G)
dt

= 0. These lines separate the triangular region into three subsets, each containing the

point corresponding to a pure strategy.

The top right panel shows the case with a very small error probability (εT = 0.0001).

The two top panels illustrate the sudden change of the dynamic as soon as the error becomes

positive although still very small. The interior of each of these three subsets consists entirely

of points that are attracted to the pure strategy that is contained in the boundary of the

subset. For example, the basin of attraction of A is the triangular subset at the bottom left

of the triangle. The fact that the boundaries of the regions are straight-lines follows from

the special nature of the Best Response dynamics. This figure can be compared with Figure

O.9 in the online appendix, reporting results for the Proportional Imitation model.

Several points that appear clearly in Figure 3 are worth pointing out. First, for all error

probabilities, each of the three strategies has a basin of attraction in the interior of the

triangular region. In other words, all strategies survive in the range of the error probability

we are considering in this example. Second, the size of the region attracted to A increases

monotonically with the error probability. Finally, if we consider the complementary region

of points that are not attracted to A, but to G or T , we note that the relative fraction that

converges to G (the strategy which is second in order of strictness) is increasing as the error

probability is increasing. Note that as a result, whereas at the lowest error probability (top

left) the T region is the largest, at the highest (bottom right) it is the smallest.

We can summarize this section by saying that as the error probability increases, harsher

strategies become more frequent. The next section tries to explain the reason for the result.

28More precisely, since we define the Best Response dynamics as a differential inclusion, the set of points
at which zero is in the set of derivatives. In the discretization used to produce Figure 3, the distinction
between differential inclusion and differential equation is irrelevant.
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4.8 Why Harsher Strategies Thrive with Larger Errors

When no error is possible, the strategies G and T produce the same outcome when matched

with A, and the same outcome when matched with each other. So with no error both

equilibria and dynamic behavior are indeterminate, because G and T are interchangeable.

When errors are possible, the first crucial fact is that the A strategy is for every error

probability the unique best response to itself (see Lemma A.4). Hence, no matter what the

error is, the profile (A,A) remains a Nash equilibrium and a locally stable steady state. Thus,

if some strategy is eliminated, it is not A. The second crucial fact is that at εT = 1/2 under

some condition on payoffs, which is satisfied by the payoffs in our experimental design, the

pair (A,A) is the unique Nash equilibrium (see Lemma A.6). These two facts together with

the continuity of the value function in εT (see Lemma A.3) imply that the set of strategies

that survive change from the entire set to the strict strategy A. What is left to study is

what happens during the transition.

With a small probability of error the value for (say) player 1 of using G when matched

with G in the repeated game (call it V (G,G)) and the similarly defined values V (T,G),

V (G, T ), V (T, T ) are no longer equal. Small changes of the values are sufficient to break the

indeterminacy, and in fact we will see that locally unique, locally stable equilibria emerge.

Two forces are now in place. To clarify them we consider as example how the relative size

of the basin of attraction between G and T changes. As previously mentioned, in the model

with no errors the basin of attraction of G and T are not clearly defined. For infinitesimally

small errors, the value of the steady state that separates the unit interval into the two

regions of attraction is determined by the ratio of the derivatives of the gains in values for

the strategy profiles (see appendix A). However the gains (coming from small changes in

error) for T are larger than those for G, hence the basin of attraction of T is larger for small

errors. This is the first force, that pins down the relative fraction of the two strategies, and

establishes (in the limit of error tending to zero) the benchmark for the “almost no error”

model. However, there is a second force: as the error becomes larger, the difference in gains

becomes smaller, and thus the fraction of T declines. If we consider the limit case of a 50-50

probability of error, one can see that the only surviving strategy is the harshest strategy, A.

4.9 The Role of the Discount Factor

The effect of the discount factor on the basin of attraction follows naturally from the effects

of δ on payoffs. Let us consider first the case of δ close to 1. Consider players starting from

mutual cooperation. A small transition error can lead a player to defect. In this case the

long run loss induced by a small error in the transition of the G strategy is large: with Grim
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Trigger, the state can go back to a cooperative state only by another mistake of the player.

Instead, the effects of such an error with Tit-for-Tat are not as durable. Hence the relative

fitness of T increases, and its basin of attraction is larger.

The increase in the error probability εT reduces the comparative advantage of the for-

giving strategy. In the limit case of an equal probability of error and correct choice, the

difference between the two strategies disappears. Thus, as the error probability increases,

the basin of attraction of Tit-for-Tat decreases as compared to that of Grim Trigger (the

harsher strategy). For a graphical illustration of the role of the discount factor, compare

Figure 3 (where δ = 0.75) with Figure O.8 in the online appendix (where δ = 0.6); in both

cases payoffs are the same as in our experimental design.

The intuitive arguments we have provided so far to explain the reason for our main result

– that a higher probability of error leads to a wider use of strict strategies – are independent

of the specific evolutionary model adopted. What dictates the relative fitness of strategies is

their relative profitability. In all the models, the effect of the frequency of errors is mediated

by its effect on the payoff structure. This link is examined in detail in appendix A.

In the next section we test our model in our experimental data.

5 Errors and strategic choices in our data

In the previous section we have shown that in evolutionary game theoretic models, as the

frequency of errors increases, players play harsher strategies more often. If we assume that

the error probability is negatively correlated with cognitive ability, we should observe harsher

strategies more frequently in the low-IQ separated sessions compared to the integrated, and

also in the integrated sessions compared to the high-IQ separated. In this section we show

that our experimental data provide support for the assumption on the relationship between

error probabilities and intelligence, as well as for the predictions of the model. As we mention

in section 4.3, the model considers the three strategies Always Defect, Grim Trigger and Tit-

for-Tat, but the conclusions are easily extended to the case in which players may also choose

Always Cooperate. In the data analysis below we allow subjects to use Always Cooperate.

Our analysis rests on an algorithm identifying the set of error histories consistent with

the observed sequence of actions. The algorithm is described precisely in section E of the

online appendix.29 We assume that subjects choose a strategy at the beginning of a finite

sequence of one or more consecutive supergames (that we will call block of supergames) and

implement this strategy, possibly with errors (in action or in transition).

29The Matlab code computing the sequence of errors in action choice and transition consistent with the
observed sequence of action choices, and that computing the maximum likelihood, is available upon request.

22



For each block of supergames we identify the strategy or strategies most likely to have

been utilized given the decision sequence and implied possible error histories. We define

the variable ties as the number of strategies having maximum likelihood. The number of

strategies at the maximum ranges from 1 (and in this case the data allow us to precisely

identify a single strategy) up to 4 where four strategies have the same likelihood. Thus,

observed data do not always allow to precisely identify a strategy.30

In determining the block size to be used in the estimation we are faced with a trade-

off. By increasing the block size, we are able to use additional information than can help

disentangle across the strategies considered. Table O.20 in the online appendix shows that

indeed the number of times the most likely strategy is unique (i.e. the variable ties is 1)

decreases with block size. However, increasing block size is also costly for the estimation.

By including more supergames within a block, we are more likely to pool supergames across

which participants may have switched strategies. This causes a reduction on the likelihood

obtained for all strategies. This is clear from figure O.10 in the online appendix, where we

show the average likelihood of the most likely strategy across the session for varying block

sizes. The average likelihood decreases with block size.

In the discussion of our analysis below we focus on the estimation results with blocks of

five supergames. The analysis yields qualitatively similar results if we use alternative block

sizes, three for example. Note how in figure O.10 of the online appendix, after the first third

of blocks, the average likelihood is around 80 percent in all three panels. This suggests that

subjects are overwhelmingly playing the four strategies that we consider in our model, as

has already been noted previously (e.g. Aoyagi et al., 2019).

The assumption that higher errors are associated with lower intelligence is empirically

tested in table 9.31 In columns 1 and 4, we can observe that both error probabilities are

negatively correlated with IQ. The correlation is significant at a higher significance level for

the errors in transitions than for the errors in actions as it is perhaps natural to expect

given our errors’ definitions. In columns 2 and 5, where we control for length of play, the

significantly negative coefficients for block of supergame indicate that experience reduces

error probabilities; we will return to this effect in the next subsection. Finally, in columns 3

and 6, we introduce a dummy for integrated sessions, showing that this relationship is not

significantly different in the separated and integrated treatments.

In Table 10 we present a summary of the results of these estimations, where all most

likely strategies and the frequency of errors in transition and errors in action for each treat-

30For example, take a sequence of mutual cooperation (C1, C2) over the entire supergame. This sequence
is consistent with three strategies, i.e. AC, TfT,GT , with no errors. In this case the likelihood for each
strategy would be equal to one.

31 The error estimation algorithm is described in section E of the online appendix.
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ment group are reported. The lower the proportion of high-IQ subjects in the treatment

is, the higher the probabilities of errors are (εT and εA in the model). The high-IQ ses-

sions have a lower error frequency than the low-IQ sessions and integrated sessions and the

integrated sessions have a lower error frequency than the low-IQ sessions. The error proba-

bilities are significantly different between low-IQ separated sessions and integrated sessions.

The comparison of the error rates between low-IQ in the separated and integrated sessions

show that low-IQ individuals learn to commit fewer errors in action (last column of table

10), potentially because in this treatment they are more focused since the high-IQ players

use more harsh strategies. We will elaborate more on this point below. The convergence

of error probabilities between intelligence groups when mixed together is also evident from

the comparison of high-IQ and low-IQ groups within the integrated sessions where no sta-

tistically significant differences appear (bottom two rows of column ‘Diff. 4 - 5’ in Table

10). Interestingly, there is little difference in the transition and action errors of the high-IQ

subjects.

We now turn to the frequency of strategies depending on their harshness. There are

significant differences in frequency among the various types of sessions. Sessions with more

high-IQ subjects tend to feature less harsh strategies, high-IQ choose AC, TfT and GT

more often than low-IQ, and AD less often. Similar tendencies are evident when comparing

integrated sessions with low-IQ sessions: subjects in integrated sessions choose cooperative

strategies (AC, TfT , GT ) more often than in low-IQ sessions. The opposite is true, when we

compare high-IQ sessions with integrated sessions: in this case subjects in high-IQ sessions

choose cooperative strategies more often. In summary, we observe that a higher share of

high-IQ subjects is associated with lower error frequency and less harsh strategies.

Comparing subjects with similar IQ across the different treatments, we note that High-IQ

subjects are more lenient in the separate sessions by playing AC more often (column ‘Diff 1

- 4’ of table 10) than in the integrated sessions. On the other hand, low-IQ are significantly

more lenient (more AC) and more forgiving (more TfT and less AD) in the integrated

sessions.

When we have strategies GT and TfT tied (in terms of estimated likelihood), we cannot

determine which of the two the subject is following. Table O.21 in the online appendix,

shows that for blocks in which strategy GT is the most likely strategy, strategy TfT is also

in 85 percent of the cases (943/1,107), and for blocks in which strategy TfT is the most

likely strategy, GT is also in 88 percent of the cases (943/1,070). This is not of course a sign

of weakness either of our estimation method or of our design: with no errors, and all players

using GT or TfT , the two strategies would be the most likely strategies in all cases.
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5.1 Dynamics of Errors over the Session

The model described in section 4 and appendix A, and its extension in section A.3 to two

types of errors, assumes that the probabilities εT and εA, are fixed. In our data instead,

these probabilities decrease as subjects gain experience, as suggested by the regression results

reported in columns 2 and 4 of Table 9. In Table 11 we analyze and compare the first and

the second part of the session for each treatment (consisting of 20 supergames each). The

error probability εA is significantly smaller in the second part of all treatments compared to

the first part. For εT , the decline between the two parts seems less steep, as perhaps one

should expect for a more complex operation.

Looking at Table 11 we note that, if we consider separately the first and the second half

of each treatment, the changes in strategies follow the model’s predictions. In general, less

harsh strategies become more frequent in the second part when errors become less frequent:

AC, TfT and GT frequencies increase and AD frequency decreases. Table 11 shows that

our data follow the predictions of the model, but also reveals additional complexity in the

evolution and the structure of the errors. We argue that a view of their decline as exogenous

processes of learning by doing will not qualitatively change the model’s conclusions.

As we have shown earlier, in our data the error frequency decreases as subjects gain

experience. The bottom panels of Figure 4 show this pattern in more detail. Both transition

and action error probabilities decline over the session. Both types of error start from similar

values in the two treatments and the patterns are not different across the two treatments. In

the integrated treatment low IQ subjects converge closer to behavior of high IQ, suggesting

that low IQ subjects learn from the high IQ subjects. If we consider the entire range of error

probabilities that we observe in our data (see in particular figures O.3 and O.4 in the online

appendix), we find an average change is in the range of 0 to 0.03.

Thus, we need to adjust the analysis for this situation, which is more complex than the

simple case of constant error probabilities in our model. Looking at Figure 3, consider first

the region in the simplex obtained as intersection of the basins of attraction for a strategy

(for example that of Always Defect, AD), over the error probability in that range. Then do

the same for the two other strategies. When we take the collection of these subsets of the

simplex, we obtain all together a (likely strict) subset of the simplex. On this subset, we

can make precise predictions: when the initial condition is in one of these sub-regions (say

the one for AD), then the time path of frequencies will converge to AD even if the error

probabilities change. When an initial condition is not in any of the sub-regions obtained in

this way, then the analysis depends on the two speeds of adjustment, one of the strategy

frequency and the other of the error probabilities. In summary, the long run behavior is

ultimately determined by the limit values of the error probabilities, which in our data are
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very low. However, starting with a higher error probability, the set of initial conditions on

the fraction of strategies that eventually converge to AD will become larger, because of the

initial movement in direction of AD.

We focus now on the evolution of strategies in our data. The top panels of Figure 4

report the frequency of strategies over time in the different treatments: high-IQ separated,

low-IQ separated and integrated. As we said in several instances the data do not always

allow to univocally identify the strategies. Therefore, to avoid counting strategies multiple

times we make two additional assumptions:

1. Given our payoff structure and continuation probability, the Always Cooperate (AC)

strategy is weakly dominated (see section 4.3), hence we assume that subjects are

unlikely to choose this strategy and so rule it out every time this strategy is tied to

others. Accordingly, Figure 4 presents the evolution of the share of subjects choosing

AC, only when this strategy is uniquely identified.

2. To estimate the frequencies in each period of the remaining three strategies (i.e.

AD,GT, TfT ), we assume that they are played with the same probability when most

likely and equally likely. Therefore, in periods where each of them is equally likely

with at least another strategy, we estimate their respective frequency by dividing the

total by the number of ties with other strategies. For example if TfT and GT are

most likely and equally likely, we take the total frequency and divide by 2.

Comparing the two top panels of Figure 4 we note that the low-IQ tend to choose AD,

more often when separated than when they are integrated with high-IQ subjects. The

fraction of AD in the low-IQ separated sessions tends to stabilize just above a level of

0.20 in the long run, but initiates at a higher level (just above 0.40) in the first block of

5 supergames. As we argued in the preceding paragraph, the initial and transitory levels

of error frequency can affect the long-run trajectory. In fact, an initially high frequency of

errors can bring the fraction of strategies during the early part of the session closer to high

values of AD (see Figure 3), and, thus, in the basin of attraction of AD. The ensuing decline

of error probabilities may not be able to reverse this initial drift towards the direction of

Always Defect. The total frequency of Grim Trigger, GT , and Tit-for-Tat, TfT , converges

to almost 100 per cent in the high-IQ separated and integrated sessions. The fraction of

uniquely identified AC players is always small.
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6 Conclusions

In spite of the many forces in society that tend to segregate individuals according to simi-

lar characteristics, a large part of social interaction occurs among individuals who are very

different from one another in many respects. An important difference is that of their in-

telligence levels. This suggests that research on cooperation rates among individuals with

different characteristics, in particular intelligence, may be illuminating and provide helpful

guidance for policy.

It seems clear from several earlier experimental results, which have been replicated in

the present paper, that higher cognitive skills tend to result in higher rates of cooperation.

So we addressed here a natural question: What are the outcomes of strategic interactions

among people of heterogeneous levels of intelligence? Our research offers three main results.

The first is that, in our experimental setting, cooperation rates in heterogeneous groups

are closer to the higher cooperation rates that occur within groups composed exclusively by

those of high intelligence, although the payoff for high-IQ players is lower than would be

the case when playing only with their high-IQ peers. The aggregate payoff is higher when

heterogeneous groups play together than when they play separately, but the interaction in

heterogeneous pools is more advantageous to players of lower intelligence.

The second is that the higher cooperation rates of players of lower intelligence in inte-

grated groups are generally due to the influence of the choices of the more intelligent players,

who are more consistent in their implementation of strategies.

The third and final result concerns the observed shift towards harsher strategies of high

intelligence players, when interacting with subjects of lower intelligence and higher error

probabilities. We have argued that this is an instance of a more general phenomenon which

can be explained by models of social learning.

The second and third main results are likely to be more general because they derive from

the analysis of our model as well as by observing the experimental data.

To analyze the relation between error probabilities and distribution of strategies we pro-

pose an evolutionary game theory model where a population of players play a sequence of

repeated games, and the frequency of strategies in the population is adjusted after every

supergame. Studying the long run distribution of strategies and the size of their basins of

attraction, we show that players choose more cooperative and forgiving strategies in environ-

ments where subjects commit few mistakes, and instead shift to harsher strategies when the

error probabilities increase. The analysis of the data testing the model finds support for the

main assumption, namely that error probabilities are negatively correlated with intelligence.

It also provides evidence in favor of the main predictions of the model that the distribu-
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tion of strategies depends on the error probability, with harsher strategies more frequent in

populations with higher error probability.

These results may provide useful guidance for policies affecting social interactions among

groups that are heterogeneous in income or education levels, such as, for example, the in-

teractions fostered by Moving to Opportunity (MTO) policies. In particular, we show that

social interactions are likely to be mediated by differences in cognitive skills, which are likely

to occur as consequences of these policies. Hence, our design can be considered a controlled

MTO policy experiment, in which we can compare rates of cooperation and differences in

strategies in groups separated according to cognitive skills with those rates that emerge in

groups with different levels of cognitive skills.

Interesting extensions of these results should examine (in experiments and in theory)

whether and how these results also emerge in more general games than Prisoner’s Dilemma,

and for more comprehensive sets of repeated game strategies. In repeated Prisoner’s Dilemma

games, the association between smaller error probabilities and less harsh strategies follows

from the way in which the value function associating payoffs to strategies changes with the

error probability. For example, Tit-for-Tat and Grim Trigger give the same payoff (and so

are equivalent) in an evolutionary model with no errors. For a similar reason these two

strategies are equivalent in a rational learning model with no active experimentation. This

conclusion changes dramatically even for very small errors, because the loss of payoff for

Grim Trigger is higher than the loss for Tit-for-Tat; hence, the result is that the basin of

attraction of Tit-for-Tat is larger. With stage games in the repeated game different from

the Prisoner’s Dilemma the value function associating payoffs to errors is easy to determine.

But how this affects the relative fitness properties, and, thus, the predicted frequency of

different strategies in evolutionary models, is an open problem. The same is true for models

of rational learning with experimentation and errors. This seems to be an important question

if we want to understand how game theoretic predictions extend to a world in which players

make mistakes, perhaps with a frequency associated with cognitive skill levels.

Further important insights could be gained by conducting a direct test of the best response

evolutionary and rational learning models. This could be accomplished with an experimental

design gathering appropriate measurement of the belief process. Such a study would require

belief elicitation from participants during the session, either by direct observation (for exam-

ple, by using eye-tracking measurements) or by surveys. Also, initial conditions on beliefs

could be manipulated. This could be accomplished, for instance, by providing subjects at the

beginning of the session with some information on the behavior of participants in a previous

session, and checking with belief elicitation as to whether and how much this manipulation

has been effective. This is a topic for current and future research.
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7 Figures and Tables

Figure 1: Period 1 Cooperation for each supergame in all the Separated and Integrated
sessions. Average first period cooperation in each supergame and session. High- and low-IQ separated
sessions are the black and grey lines respectively in the left panel. Integrated treatment sessions correspond
to the middle grey lines in the right panel.
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Figure 2: Average payoffs per interaction in the Separated and Integrated sessions. The average
is computed over observations in successive blocks of five supergames, of all Separated and Integrated sessions,
aggregated separately. Bands represent 95% confidence intervals.
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Figure 3: Basin of attraction of A, G and T , with positive probability of transition
error, and Best Response dynamics. The probability of error in transition is as displayed
at the top of each panel, and is ranging from 0 (top left panel) to 0.25 (bottom right panel).
Payoff and discount factor are as in our experimental design.
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Figure 4: Frequency of strategies and error probabilities over time.
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Table 3: Prisoner’s Dilemma. C: Cooperate, D: Defect.

C D

C 48,48 12,50

D 50,12 25,25

Table 4: Effect of high-IQ and low-IQ session on choice of cooperation and payoffs.
The dependent variables are average cooperation and average payoff across all interactions
(OLS estimator). Integrated sessions are the baseline. Robust standard errors clustered at
the session level in brackets; ∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01

Supergame ≤ 20 Supergame > 20

Cooperate Payoff Cooperate Payoff
b/se b/se b/se b/se

High IQ Session 0.0990** 2.5238** 0.0691 1.7259
(0.0354) (0.9217) (0.0542) (1.4115)

Low IQ Session –0.2180*** –5.5977*** –0.2152*** –5.7067***
(0.0524) (1.3339) (0.0612) (1.5712)

# Subjects –0.0112 –0.3063 –0.0062 –0.1812
(0.0071) (0.1815) (0.0107) (0.2766)

r2 0.203 0.407 0.152 0.320
N 214 214 214 214
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Table 5: Effects of IQ and other characteristics on the cooperative choice in first
round of each session. The dependent variable is the choice of cooperation in round
1. Logit estimator. Note that coefficients are expressed in odds ratios. Robust
standard errors clustered at the session level; p − values in brackets; ∗ p − value < 0.1, ∗∗

p− value < 0.05, ∗∗∗ p− value < 0.01.

Round 1 Round 1 Round 1 Round 1 Round 1
Cooperate Cooperate Cooperate Cooperate Cooperate

b/p b/p b/p b/p b/p
choice
IQ 1.00889 1.00942

(0.6444) (0.6396)
High IQ Group 1.76893 0.59242

(0.1401) (0.1358)
Integrated Treatment 1.20968 1.17291 0.15483

(0.6170) (0.6737) (0.6560)

Extraversion 0.87817 –0.09111
(0.5544) (0.6628)

Agreeableness 0.66879* –0.39716*
(0.0681) (0.0851)

Conscientiousness 1.21574 0.20213
(0.4599) (0.4356)

Neuroticism 0.75337 –0.26813
(0.3709) (0.4035)

Openness 1.32202 0.27873
(0.4504) (0.4562)

Risk Aversion 0.79190*** –0.23160***
(0.0063) (0.0095)

Age 0.99517 –0.00198
(0.9051) (0.9605)

Female 1.04458 –0.00533
(0.8941) (0.9872)

Size Session 1.03245 0.02822
(0.6398) (0.6375)

N 214 214 214 214 214

33



Table 6: Effects of separated treatment on the evolution of cooperative choice in
the first periods of supergames. The dependent variable is the choice of cooperation
in the first periods of all supergames. Integrated sessions are the baseline. Logit with
individual fixed effects estimator. Coefficients are expressed in odds ratios. Note that
in the second part of each session many subjects made the same choice throughout, and for
this reason their observations needed to be excluded from the estimations of the model in
columns 3 and 4 (this is also the reason why the estimated odds are very large). Similar
regressions with random effects (which does not need variability of choices at the individual
level avoiding this loss of observations) would deliver similar results. Standard errors in
brackets; ∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01.

Superg. ≤ 20 Superg. > 20

Cooperate Cooperate Cooperate Cooperate
b/se b/se b/se b/se

choice
High IQ Session*Supergame 1.16022*** 1.17081*** 0.96562 1.02712

(0.0582) (0.0611) (0.0643) (0.0695)
Low IQ Session*Supergame 0.93705** 0.95825 1.09379** 1.11408**

(0.0260) (0.0273) (0.0468) (0.0500)
Supergame 1.13538*** 1.09608*** 0.99093 0.93260*

(0.0283) (0.0281) (0.0296) (0.0341)
1st Per. Part. Coop. Rates until s-1 33.09363*** 168284.00972**

(15.4975) (1.01e+06)
Partner Coop Rates until t-1 0.77164 19513.03094**

(0.2548) (9.50e+04)
Average Supergame Length 2.00252*** 2.23329*** 5.70321** 8.25299**

(0.2402) (0.2921) (4.5775) (6.9723)

N 2280 2280 654 654
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Table 7: Outcomes at period t−1 as determinants of cooperative choice at period
t. The dependent variable is the cooperative choice at time t; the baseline outcome is mutual
cooperation at t − 1, (C,C)t−1. Panel A relates to the first block of 20 supergames, panel
B to the last 22 supergames. Logit with individual fixed effect estimator. Coefficients are
expressed in odds ratios. p− values in brackets; ∗ p− value < 0.1, ∗∗ p− value < 0.05,
∗∗∗ p− value < 0.01.

Panel A: #Supergame ≤ 20
Low IQ High IQ Low IQ High IQ

Separated Separated Integrated Integrated
b/p b/p b/p b/p

choice
(C,D)t−1 0.00860*** 0.01038*** 0.00885*** 0.00533***

(0.0000) (0.0000) (0.0000) (0.0000)
(D,C)t−1 0.01069*** 0.01485*** 0.00731*** 0.01039***

(0.0000) (0.0000) (0.0000) (0.0000)
(D,D)t−1 0.00353*** 0.00339*** 0.00397*** 0.00172***

(0.0000) (0.0000) (0.0000) (0.0000)

N 2499 2448 2499 2448

Panel B: #Supergame > 20
Low IQ High IQ Low IQ High IQ

Separated Separated Integrated Integrated
b/p b/p b/p b/p

choice
(C,D)t−1 0.00301*** 0.00527*** 0.00426*** 0.00153***

(0.0000) (0.0000) (0.0000) (0.0000)
(D,C)t−1 0.00402*** 0.03468*** 0.00270*** 0.01450***

(0.0000) (0.0000) (0.0000) (0.0000)
(D,D)t−1 0.00121*** 0.00318*** 0.00157*** 0.00044***

(0.0000) (0.0000) (0.0000) (0.0000)

N 1718 1201 1771 1379
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Table 8: Outcomes at period t−1 as determinants of cooperative choice at period
t. The dependent variable is the cooperative choice at time t; the baseline outcome is mutual
cooperation at t− 1, that is, (C,C)t−1. Integrated is a dummy for the integrated treatment.
Probit with correlated random effect estimator: the variables average cooperation in 1st

periods and cooperation in the 1st round are included in the regression but not reported.
Robust standard errors clustered at the session level in brackets ∗ p − value < 0.1, ∗∗

p− value < 0.05, ∗∗∗ p− value < 0.01.

High IQ Low IQ
All All

b/se b/se
choice
Integrated*(C,C)t−1 0.15679 –0.03105

(0.1888) (0.1134)
Integrated*(D,D)t−1 –0.32689* 0.01411

(0.1807) (0.2423)
Integrated*(D,C)t−1 –0.15450 –0.18132

(0.1554) (0.1626)
Integrated*(C,D)t−1 –0.28643** 0.06988

(0.1283) (0.1873)
(D,D)t−1 –3.43989*** –3.40710***

(0.1919) (0.1714)
(D,C)t−1 –2.37170*** –2.74250***

(0.2053) (0.0851)
(C,D)t−1 –2.67842*** –2.79165***

(0.0886) (0.1517)

N 10343 10003

Table 9: Determinants of error probabilities across individuals. Dependent variables
are the error probabilities. The variable Integrated is a dummy for the integrated treatment.
GLS estimator with random-effects. Errors are clustered at the session level; ∗ p− value <
0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01.

Err. in Action Err. in Transition

Prob. Prob. Prob. Prob. Prob. Prob.
b/se b/se b/se b/se b/se b/se

IQ –0.0011* –0.0010 –0.0015** –0.0005** –0.0005** –0.0007***
(0.0007) (0.0007) (0.0007) (0.0002) (0.0002) (0.0002)

Integrated –0.1025 –0.0439
(0.1355) (0.0344)

IQ * Integrated 0.0009 0.0004
(0.0013) (0.0003)

Block of Superg. –0.0128*** –0.0127*** –0.0031*** –0.0031***
(0.0012) (0.0012) (0.0008) (0.0008)

N 1540 1540 1540 1540 1540 1540
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Dal Bó, P. and Fréchette, G. R. (2011). The evolution of cooperation in infinitely repeated games:
Experimental evidence, American Economic Review 101(1): 411–429.
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A Evolution of Strategies with Errors

In this section we study in detail the evolution of strategies with errors, in the general model both
with errors in action and in transition. Our ultimate aim is to present, in the final section A.4, a
model of learning in games that is close to the experimental environment we adopt. The section will
first consider the simple case in which there are no errors (section A.1) to establish a benchmark.
This will be used later to demonstrate that the model with errors, even of arbitrarily small size,
is qualitatively different from the no-error case. In section A.2 we give a complete analysis of the
model described verbally in the main text, where errors in transition only are considered. In the
following section A.3 we extend the analysis to both types of error. Finally in section A.4 we
consider a rational learning model. We estimate the learning model in the data, providing a link
between the evolutionary models and the data analysis. As in section 4.3, to lighten notation we
shorten the names of the strategies as A,G, T , where A stands for Always Defect strategy, G for
Grim Trigger, and T for Tit-for-Tat.

A.1 No Errors

We begin our analysis with the benchmark case of no errors; in our notation, we require εT = εA = 0.
In this case, the payoff matrix for the strategy choice game is the one reported earlier in table 2
of the main text. This game is special, because the two “actions” G and T are interchangeable.
Thus, the analysis of the game with three actions can be reduced to the analysis of the reduced
game obtained by collapsing G and T into a single action, denoted SC (sophisticated cooperation),
and producing a game with two actions {A,SC}, and payoff matrix:

Table A.1

A SC
A d, d (1− δ)t+ δd, (1− δ)s+ δd

SC (1− δ)s+ δd, (1− δ)t+ δd c, c

We denote by µR the strategies in the reduced game, and introduce an important threshold
value for δ:

δ ≡ t− c
t− d

. (A-1)

.

Proposition A.1. When δ > δ the reduced game has two equilibria in pure strategies (namely
(A,A) and (SC, SC)) and a mixed strategy equilibrium denoted µR(·, δ)∗. For any such equilibrium
there is a corresponding continuum of equilibria in the strategy choice game, where each equilibrium
is obtained by assigning the probability µR(GT, δ)∗ arbitrarily to the strategies G and T .

Proof. By the assumption stated in equation (2), d > s and so d > (1 − δ)s + δd. When c <
(1 − δ)t + δd, A is a dominant strategy in the reduced game, so there is a unique equilibrium of
the reduced game (and thus of the original strategy choice game) at (A,A). Multiple equilibria are
possible when instead c > (1− δ)t+ δd, that is when δ > δ. In this case there are three equilibria,
with the mixed strategy equilibrium assigning a probability to A for the given δ given by:

µR(A, δ)∗ ≡ µ∗ =
c− (1− δ)t− δd

c− (1− δ)t− δd+ (1− δ)d
(A-2)
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Corresponding to these equilibria, there is a set of steady states in the evolutionary dynamic.
The dynamic under proportional imitation has a natural long run behavior: when the initial pro-
portion of players choosing A is large enough only A survives in the long run; conversely when
the initial fraction of A is sufficiently low, only cooperative strategies (G and T ) survive. In this
second case, however, the long run relative weight of G and T is entirely determined by the initial
conditions, and a small change in initial conditions alters the long run behavior. More precisely:

Proposition A.2. Under both proportional imitation and best response dynamics the following
hold:

1. the set of steady states consists of the union of singleton (1, 0, 0), the interval

{(µ∗, (1− µ∗)p, (1− µ∗)(1− p)) : p ∈ [0, 1]} (A-3)

and the edge
{(0, p, (1− p)) : p ∈ [0, 1]}; (A-4)

2. the paths with initial condition µ(0, A) > µ∗ converge to the steady state (1, 0, 0); the paths
with initial conditions where µ(0, A) < µ∗ converge to a steady state in the set (A-4) above;

3. the steady states in the set (A-3) are all unstable.

In the proportional imitation dynamic, paths with initial condition (µ(0, A), µ(0, G), µ(0, T )) are
straight-lines where for every time t:

µ(t, G)

µ(t, T )
=
µ(0, G)

µ(0, T )
.

Thus a path with initial condition µ(0, A) < µ∗ converges to the steady state given by:(
0,

µ(0, G)

µ(0, G) + µ(0, T )
,

µ(0, T )

µ(0, G) + µ(0, T )

)
In conclusion, evolutionary dynamics in the case we are considering (automata with no error)

cannot select among possible relative frequencies of G and T , and thus cannot address the issue of
whether a strategy such as T is more or less frequent in the long run than the harsher strategy G.
The long-run relative frequency is whatever frequency happened to be there in the initial condition.
We will show in the analysis below that the frequency is precisely determined in the long run when
an error of arbitrarily small size is possible. Figure A.1 illustrates the dynamic behavior of the
proportional imitation model when no errors occur. The dynamics are drawn on the projection of
the simplex representing the frequency of the three strategies A, G and T on the triangular region
with points (µ(G), µ(T )), so that the vertex denoted by the letters correspond to the pure strategy
denoted by that letter. The vertex A indicates the only locally unique, locally stable equilibrium,
with basin of attraction the entire triangular region below the shorter segment (labelled U) in the
interior of the triangular region. Any point on the line joining G and T is an equilibrium of the
strategy choice game and a steady state. Similarly all the points on U are unstable states.

The dynamic behavior with Best Response dynamics is very similar (see the first panel of Figure
3), but in such a degenerate case (in which the payoffs for the strategies G and T are the same) there
is a large multiplicity of solutions of the differential inclusion, and the dynamic is very sensitive to
the tie-breaking rule.

42



Figure A.1: Proportional Imitation dynamics with no error. All points on the segment
joining sAG and sAT (denoted by U in the figure) are unstable steady states. All points in
the segment joining G and T are stable steady states. All lines joining A with points on the
latter segment are invariant. Only few of these lines are illustrated here.

G

TA sAT

sAG

U

1

A.2 Errors in Transition

We now introduce in our benchmark model the possibility of errors in transition, allowing εT > 0.
We first have to define how errors affect the payoff matrix introduced in table 2 for the case of

no errors. To compute the payoff from the choice of the strategy when transition errors are possible
we need to extend the state space to explicitly include the automata that are produced by errors,
distinguishing two automata on the basis of the initial internal state. So we introduce automata
Gc and Gd, defined as having the same transition and same action choice function as G, but having
c and d respectively as initial state, where c is the state in which cooperation is chosen. So Gd is
different from A because the state of the automaton Gd may transit back to c (although this can
only happen by mistake), whereas the state of A can never transit to a state in which the action
C is chosen. With no errors, Gd and A are the same because for any action profile the transition
in Gd from the defect state is back to the defect state. With errors in transition, there may by
mistake a transition from the initial defect state into the cooperate state. Tc and Td are defined
similarly.

We then introduce an extended strategy set S (to distinguish it from the set M defined in
equation (4)) which includes these two new automata:

S ≡ {A,Gc, Gd, Tc, Td} (A-5)

where Gc is the G (Grim Trigger) automaton with c as initial state, (d initial state for Gd). There
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is a unique action determined by an automaton s ∈ S, denoted by a(s). The payoff from a pair of
choices of initial automata made by the two players is determined by a simple recursive equation
on functions defined on the product space Ω:

Ω ≡ S × S (A-6)

with generic element ω = (s1, s2). With this notation we can write the transition of the automaton
G in state c to the same automaton in state d as the transition from Gc to Gd. So we can define
the transition on the set S (still denoted by P ) with P (s′; s, a1, a2) describing the probability of
transiting to s′ if the current state is s and the action profile is (a1, a2).32

We now turn to the definition of the transition function with errors. We let Q be the set of
stochastic matrices on Ω, that is Q ∈ Q if Q : Ω → ∆(Ω). First, we let the transition with no
errors to be denoted by Q0, where

∀ω = (s1, s2), ω′ = (r1, r2), if a(ω) ≡ (a1(s1), a2(s2)),

Q0(ω′;ω) ≡ P (r1; s1, a(ω))P (r2; s2, a(ω)) (A-7)

We denote by qi(ω) the state in S for player i to which player i transits given the current pair
ω, taking into account the corresponding action choice. Finally, we let QεT ∈ Q at error rate εT to
be:

QεT ((r1, r2), (s1, s2)) = (1− εT )2 if for all i : ri = qi(s1, s2)

= εT (1− εT ) if for exactly one i : ri = qi(s1, s2)

= ε2T if for all i : ri 6= qi(s1, s2)

The stage game payoff function u was introduced in section 4.3, immediately following table 1.
We can now define a payoff function Ω→ R, still denoted by u, defined at ω = (s1, s2) by:

u(ω) = u(a1(s1), a2(s2)); (A-8)

A.2.1 Value Function

Players in the strategy choice game choose an element in the set {A,G, T}, but due to the presence
of errors the value function must be defined for all elements in the set of pairs of extended states,
Ω. The payoff to a player for each such ω ∈ Ω is given by a value function V : Ω → R. We write
V (ω; εT , δ) when we want to emphasize that the value depends on the parameters.

Lemma A.3. For fixed u, the function (εT , δ) −→ V (·; εT , δ) is analytic, and hence continuous
and differentiable.

Proof. The function V is the unique solution of the functional equation with the two parameters

32More precisely, we can write this transition for player 1’s automaton:

1. ∀a ∈ A1 ×A2 : P (A;A, a) = 1;

2. P (Gc;Gc, (C
1, C2)) = 1, and ∀(a1,a2)6=(C1,C2)P (Gd;Gc, (a

1, a2)) = 1;

3. ∀a1 ∈ A1 and t ∈ {Tc, Td}: P (Tc; t, (a
1, C2)) = 1;P (Td; t, (a1, D2)) = 1.
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(u,QεT ):
V = (1− δ)u+ δQεT V (A-9)

Since δ < 1, the inverse matrix (I − δQεT )−1 exists and therefore:

V (·; δ, εT ) = (I − δQεT )−1(1− δ)u

=

+∞∑
k=0

(δQεT )k(1− δ)u

The derivative of V with respect to the error parameter is

dV

dεT
= −(I − δQεT )−1δ

dQεT
dεT

(I − δQεT )−1(1− δ)u

= −(I − δQεT )−1δ
dQεT
dεT

V

The analysis of the function V is considerably simplified if we observe that Ω is partitioned into
invariant sets under the transition QεT . We say that a subset Ωi of Ω is invariant under QεT if and
only if:

∀ω ∈ Ωi, QεT (Ωi;ω) = 1.

For example the set ΩAG ≡ {(A,Gc), (A,Gd)} is invariant, because the automaton of the first player
can only be A, and the automaton of the second player can only transit to Gc or Gd. The other
eight sets are denoted in a similar, natural, way. Overall we have the following partition of Ω:

P(Ω) ≡ {ΩAG,ΩAA,ΩAT ,ΩGA,ΩGG,ΩGT ,ΩTA,ΩTG,ΩTT }. (A-10)

each of which is invariant. The cardinality of every element in this partition is either 2 or 4.
Correspondingly, the vector V is partitioned into component Vi : i ∈ P(Ω), and each satisfies
equation (A-9) with (u,QεT ) replaced by (ui, QεT ,i). These equations can be solved and analyzed
independently.

The next lemma tells us that no matter what the probability of error, the choice of the profile
(A,A) in the strategy choice game is an equilibrium:

Lemma A.4. For all εT > 0, (A,A) is a strict Nash equilibrium of the strategy choice game, hence
a locally stable equilibrium of the PI and BR dynamics.

Proof. The transition matrix restricted to the set ΩAG is in table A.2.

Table A.2

Gc, A Gd, A
Gc, A εT 1− εT
Gd, A εT 1− εT
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Using equation (A-9), we can solve for V (Gc, A); after some algebraic manipulations we find:

V (Gc, A) = (1− δ(1− εT ))u(Gc, A) + δ(1− εT )u(Gd, A)

= (1− δ(1− εT ))s+ δ(1− εT )d

Therefore for all εT > 0,
V (Gc, A) < d = V (A,A). (A-11)

The transition matrix restricted to ΩAT is the same as the one we reported in table A.2 for ΩAG,
and so we similarly conclude:

V (Tc, A) < V (A,A). (A-12)

Lemma A.5. The value function equation can be decomposed into nine independent equations, one
for each of the invariant sets of the set Ω. Also the following equations hold:

1. V (A,A) = d

2. V (A,G) = V (A, T ) = t(1− δ(1− εT )) + dδ(1− εT )

3. V (G,A) = V (T,A) = s(1− δ(1− εT )) + dδ(1− εT )

Proof. The equation for the value of V (A,A) follows from the fact that the singleton {(A,A)} is
invariant. The equations for the values of V (A,G) and V (A, T ) follow from the computations in
the proof of lemma (A.4).

Uniform Errors Using the invariant sets allows us to compute the payoff on the case of uniform
error, that is when εT = 1/2. This case gives us a boundary condition for the study of the dynamic
behavior. In particular the analysis will tell us when it is impossible that (G,G) is an equilibrium
profile in the strategy choice game.33

Lemma A.6. When εT = 1/2 the payoff in the strategy choice game with M ×M action set is:

A G T
A d, d mt,ms mt,ms

G ms,mt mc,mc mc,mc

T ms,mt mc,mc mc,mc

where we have denoted:

ms ≡ (1− δ)s+ δ
s+ d

2
,mt ≡ (1− δ)t+ δ

t+ d

2
, (A-13)

mc ≡ (1− δ)c+ δ

(
c+ s+ t+ d

4

)
.

Thus at εT = 1/2 the game has a unique Nash equilibrium, (A,A).

33We consider here the case in which no transition error is possible when no transition has occurred yet,
that is at the first round of the game. In the alternative formulation where an automaton is chosen, and an
error in the choice of the initial state is possible, the conclusion of lemma (A.6) is even easier to prove.
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Proof. For any element i ∈ P(Ω) (the latter set is defined in (A-10), so i is a subset of Ω), we have
that the transition restricted to i is:

Q(1/2),i =
1

#i
Ui ≡Mi (A-14)

where Ui is a square matrix of 1’s of dimension #i (the cardinality of the set i). Note:

M2
i = Mi. (A-15)

The value function equation restricted to states in i is:

Vi = (1− δ)ui + δMiVi (A-16)

Given equation (A-15), equation (A-16) implies

MiVi = (1− δ)Miui + δMiVi

which in turn implies, since 1− δ > 0:

MiVi = Miui (A-17)

Now (A-16) and (A-17) give the formula for the value in terms of the payoffs:

Vi = (1− δ)ui + δMiui (A-18)

The rest follows from simple algebra.
For the last statement, since t > c and d > s (from our assumption in equation (2) on the stage

game payoffs) we conclude that mt > mc. From d > s we get that d > ms holds for any δ. Thus A
is a dominant action in the strategy choice game.

Small Errors We now know that for “large” errors (that is, when εT = 1/2) the strategy choice
game has a unique equilibrium, namely (A,A). The dynamic behavior for small εT on the sides
µ(T ) = 0 and µ(G) = 0 is similar to that of the no error model, with a unique steady state that
changes continuously in εT around εT = 0. Instead, in the portion of the interior of the simplex
where A is not the attractor, and on the line µ(A) = 0 the behavior is radically different, because
the only stable states are either T or G. Consequently, in this case we have well defined basins
of attraction for the two strategies G and T and we can compare the two basins for the forgiving
strategy T and the harsher strategy G.

In our analysis, “small εT ” means smaller than a critical value that we introduce now. Note
that this critical value might not be numerically small. We let:

εT ≡ sup{εT : min{V (G,G), V (T,G)} > V (A,G) (A-19)

and min{V (T, T ), V (G,T )} > V (A, T )}

Lemma A.7. For any payoff of the stage game defined in section 4.3 that satisfies the condition
in equation (2), εT > 0. If it is finite, then the value is achieved. There are payoffs satisfying the
standing assumption on stage game payoffs stated in equation (2) for which εT is finite.
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Proof. Note that at εT = 0,

V (G,G) = V (T,G)

= c

> t(1− δ) + dδ

= V (A,G)

where the strict inequality follows from our assumption in equation (2). Similarly at εT = 0,
V (T, T ) = V (G,T ) > V (A, T ). Thus we conclude that εT > 0 from lemma (A.3). The second
claim also follows from lemma (A.3). The last claim follows from lemma (A.6), which gives as
simple sufficient condition for εT to be finite.

In particular εT is finite for the stage game with payoffs as in our experimental design. The
next lemma describes the dynamic for small εT in PID. Equation (5) makes clear that the edges
of the simplex are invariant under PID; if an initial condition has the probability of G equal to 0,
the entire path from that initial condition has the probability of G equal to 0.

Lemma A.8. For the proportional imitation model, and for 0 < εT < εT :

1. on the side µ(G) = 0 (and, respectively, µ(T ) = 0) there is a unique steady state corresponding
to the mixed strategy equilibrium of the game when strategies are restricted to {A, T} for both
players (and respectively to {A,G});

2. there is a unique steady state on the side µ(A) = 0, and this is determined in the limit εT → 0
by the ratio:

µ(G)∗ =
VεT (T, T )− VεT (G,T )

VεT (T, T )− VεT (G,T ) + VεT (G,G)− VεT (T,G)
(A-20)

where VεT is the derivative with respect to εT .

Proof. Point (1) follows from the equation describing the dynamics. For point (2), note first that
for εT > 0 then the steady state is determined by a frequency of the strategy G, µ(G)∗ such that

µ(G)∗ =
V (T, T )− V (G,T )

V (T, T )− V (G,T ) + V (G,G)− V (T,G)
(A-21)

As εT → 0 both numerator and denominator in the right hand side of (A-21) tend to zero. Now
the conclusion follows from l’Hôpital rule.

With small errors, there are seven steady states. The three corresponding to the pure strategy
profiles are locally stable.

The other four steady states are unstable.
We now turn to the main question we posed, namely the relationship between the probability

of error (modeled by the εT parameter) and the frequency of strict and harsh strategies, with the
strict harshness order:

A � G � T (A-22)

For any evolutionary dynamics, we denote the steady states (when they exist) which are located
on the edges of the simplex as sA,T , sA,G and sG,T respectively, where the subscript indicates the
extreme points of the edge. For example, in the case of the PID, sA,T is the point in the simplex
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of the form (p, 0, 1−p) with p ∈ (0, 1) at which the time derivative in equation (5) is equal to 0. As
we indicate in section A.2.3 in our discussion and figures we consider the projection of the simplex
of the coordinates indicating the probability of G and T : we do not distinguish in the notation
between the steady state as element of the simplex and its projection on the plane. For illustration
of sA,T , sA,G and sG,T we refer to Figures A.1 and O.7.

A.2.2 Proportional Imitation Dynamics

In the following analysis we will examine the size of the basin of attraction of a strategy under
PID, using the location of the three points sA,T , sA,G and sG,T to provide orientation.

As we noted earlier, the edges of the simplex are invariant under PID. Let us now consider the
dynamic of the process restricted to the edges. It is clear that this evolution is determined only by
the value function restricted to the product of the two strategies at the vertices of the edge; so we
can focus on the corresponding two actions game.

Consider now a symmetric game with action set {a, b} where each action is a best response to
itself, that is, the gains g(a) ≡ u(a, a) − u(b, a) and g(b) ≡ u(b, b) − u(a, b) satisfy g(a) > 0 and
g(b) > 0. This game has two pure strategy Nash equilibria and a mixed strategy one; the mixed

strategy equilibrium has the probability of action a given by p∗ = g(b)
g(a)+g(b) . If we consider the PID

in this simple two-action game, the basin of attraction of the action a is the set {(p, 1 − p) : 1 ≥
p > p∗}, a sub-interval of the unit interval of length

1− p∗ =
g(a)

g(a) + g(b)
(A-23)

which we call the size of the basin of attraction of A. As intuition may suggest, the size of the
basin of attraction of strategy a is increasing in the ratio of the gain of action a over that of action
b.

We apply this analysis to our three actions game.34 To illustrate consider the edge of the simplex
between the vertices A and T , with steady state within the edge (if it exists) sA,T . The size of the
basin of attraction of A (the harshest of the two strategies) within the edge will be denoted sbaA,T ,
and is equal to 1− sA,T (A). Similarly we denote sbaA,G ≡ 1− sA,G(A) and sbaG,T ≡ 1− sG,T (G),
taking in each case the harshest of each pair of strategies (A and G respectively) as reference. When
we want to emphasize the dependence of the steady state on parameters, we write sbaA,T (εT , δ, u)
and so on.

An increase in the values of sbaA,T , sbaA,G corresponds to an increase in the basin of attraction
of A at the expense of those of G and T ; an increase in the value of sbaG,T increases that of G at
the expense of T . The following proposition summarizes what we know for the two extreme values
of εT = 0 and εT = 1/2:

Proposition A.9. Under proportional imitation,

sbaA,G(0, δ, u) = sbaA,T (0, δ, u) =
(1− δ)(d− s)

c− (1− δ)t− (1− δ)s− δd+ (1− δ)d
(A-24)

sbaA,G(1/2, δ, u) = sbaA,T (1/2, δ, u) = sbaG,T (1/2, δ, u) = 1 (A-25)

Proof. Use the values in table A.1 and apply (A-23).

34Figures A.1 or O.7 may provide a useful illustration.
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At εT = 0 the basin of A is the triangular region below the straight-line segment joining sA,G
and sA,T . As εT reaches the value 1/2 any point in the simplex (except the side between G and
T ) converges to A over time. The strategy A may become the only strategy surviving for values of
the error probability smaller than 1/2, as we next demonstrate.

We analyze the basin of attraction for the specific numerical values of the payoffs used in the
experiment. In section C of the online appendix we report numerical values of the payoff matrix
with errors and figures portraying the basin of attraction. To see how the size of the basin of
attraction changes when the stage game payoffs are those we used in the experiment, we can use
the lemmas (A.3) and (A.5), to compute the value function and analyze equilibria and dynamic
behavior.

Figure A.2 uses the simple formula for the size of the basin of attraction. The figure reports the
three values sbaA,G, sbaA,T , sbaG,T as indicated in the legend: these are the three lines within each
panel. The comparison is made for different values of εT (moving along the x-axis in each panel)
and δ (along the three panels). The value of εT at which the line reaches the value 1 is the value
at which the steady state giving positive probability to the less harsh strategy disappears, and the
entire interval converges to the harsher strategy. For instance, the value of εT at which the line
reporting the size of the basin for A within the pair {A, T} is the value at which sA,T disappears,
sbaA,T becomes equal to 1, and the entire interval converges to A.

It is clear from the figure that the steady state sA,T disappears last for all the values of δ
considered. Instead the order of disappearance of sA,G and sG,T switches: sG,T before sA,G for low

δ, sG,T after sA,G for higher δ. We denote as δ̂ the value of δ at which sG,T and sA,T disappear at

the same value of εT ; with the payoffs used in the experimental design, the value of δ̂ is 0.82.
More in detail, the initial conclusions we draw from Figure A.2 is:

Conclusion A.10.

1. The values sbaA,G and sbaA,T are monotonically increasing in εT .

2. For any value of the continuation probability, as the error probability becomes larger, the basin
of attraction of less harsh strategies (G and T ) vanishes. The relative size of the basin of
attraction of T declines compared to that of G as the error probability increases.

3. With sufficiently high continuation probability and small error, the basin of attraction of A
is arbitrarily small.

The intermediate value δ̂ marks the boundary of an interesting division of the set of δ’s into two
sub-regions. We define precisely δ̂ and its significance, focusing on the interior of the projection of
the simplex:

Conclusion A.11.

1. As εT increases from 0 to 1/2, the interior of the simplex is initially partitioned into three
regions (with attractors A, G and T ); then into two regions with two attractors, and finally
only into a single region (with attractor A);

2. If δ > δ̂ - in the intermediate region of εT - the two attractors are A and T ; if δ < δ̂ instead
the two attractors are A and G.

For lower values (δ < δ̂) the basin of attraction of T disappears entirely as sGT collapses into
the vertex T , and the entire edge between the vertices G and T of the simplex converges to G.
With lower continuation probability (δ < δ̂) but high probability of errors the strategy T does not
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survive. For higher values both G and T survive, but both lose frequency at the expense of A. In
conclusion:

Conclusion A.12. Strategy T can survive only with low εT or with high δ.

With small errors, an appropriately modified Poincare-Hopf index can be calculated. The index
of the three stable pure strategies is 1 in all cases; the others (the two mixed strategies on the edge
between A and T and the edge between A and G), with an overall index 1. Note that the pure
strategy profile (T, T ) is a steady state of the proportional imitation, and a Nash equilibrium of
the game restricted to {A, T} but it is not a Nash equilibrium of the complete game. Also with
higher errors all the steady states are isolated, and thus an appropriately modified Poincare-Hopf
index can be calculated. The index of the two stable pure strategies (A and T ) are 1; the mixed
strategy in the interior of the simplex has index 1. The index of the two steady states on the sides
(sAT and sGT ) is −1. The index of G is 0.

Figure A.2: Size of basin of attraction of strategies A and G on the sides of the
simplex. Top to bottom panel: values of δ equal to 0.75, 0.82, 0.9 respectively.
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A.2.3 Best Response Dynamics

The best response dynamic allows us to identify clearly the basin of attraction of the three strategies
by simple inspection of the phase portrait. To understand the difference between this case and the
proportional imitation dynamics, it is useful to keep in mind that there may be steady states for
the PID on the boundary of the simplex that are not Nash equilibria of the entire game; in this
case a steady state for PID may fail to be a steady state of the BRD.

To be precise, let NE({A,G, T}) be the set of Nash equilibria of the strategy choice game
where the player can choose any strategy in {A,G, T}. We will refer to this as the unrestricted
game. For any two-strategy subset {r, s} of the set {A,G, T}, let N({r, s}) be the Nash equilibria
of the reduced game, where players can only choose from {r, s}. It may occur that a steady state
of the PID at the boundary is not a Nash equilibrium of the unrestricted game, although it may
be a Nash equilibrium of the game restricted to the strategies that have positive probability at
that steady state. For example, in the game induced by εT = 0.35 and δ = 0.9 35 the strategy T
is weakly dominated by G and V (G,T ) > V (T, T ). Thus, sAT (which is a mixed strategy of the
unrestricted game, assigning 0 to G) is not part of a Nash equilibrium of the unrestricted game,
so it is not a steady state of BRD but it is a steady state of the PID. The same may be true for
pure strategies: for example, the strategy G is a steady state in the game induced by εT = 0.3 and
δ = 0.9 in Table O.19 of the online appendix, the pure strategy G is a steady state of the PID, but
is not a Nash equilibrium of the complete game, because V (A,G) > V (G,G).

In the interior of the projection of the simplex the situation is considerably simpler:

Proposition A.13. With best response dynamics,

1. for εT < εT , all three strategies survive in the long run (that is, they have a basin of attraction
with non-empty interior); the intersection of the boundaries of the regions with the sides of
the simplex are the same as in the proportional imitation dynamics;

2. The conclusions (A.10), (A.11) and (A.12) hold in the case of BRD as well; in particular,
for εT > εT only two strategies survive in the long run: they are {A,G} for δ < δ̂, and {A, T}
for δ > δ̂.

The lines marking the boundary of the basins of attraction in the BRD and PID may be
different (for example, those in BRD are straight lines, while those in PID are not) but the end
points are common, hence qualitatively the basins are similar. In particular the analysis in the
previous section identifying different transitions for values of δ above and below δ̂, as εT changes,
holds.

A.3 Errors in Transition and in Action

In this section we analyze the more complete (and more complex) model in which errors of both
types (in action choice and in transition) are possible. The main innovation with respect to the
analysis in the previous sections is the introduction of the error in action transition matrix. Recall
that εA is the probability of an error in the choice of the action at a state in the automaton, and
A ≡ A1 × A2. Let Pr(a;ω, εA) denote the probability of choice of the action profile a by the two
players when the current state is ω and the probability of an error in action choice is εA. The action
choice with errors at a state is a stochastic matrix AεA : Ω→ ∆(Ω×A) defined by

AεA(ω)(ω′, a) ≡ δω(ω′)Pr(a;ω, εA) (A-26)

35The precise values are reported in the third panel of Table O.19 of the online appendix.
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Note that the ω coordinate in the image space of A is only required as a placeholder. This role
turns out to be essential in the next step, the definition of QεT ,εA in equation (A-27). To illustrate
the definition of AεA consider for example:

AεA(Gc, Gd)(Gc, Gd, C
1, D1) = (1− εA)2

The transition with errors TεT : Ω×A→ ∆(Ω) is defined by taking TεT (ω, a)(ω′) as the probability
that the next period state is ω′ given that the current state is ω and current action profile is a.
Overall the stochastic matrix QεT ,εA ∈ S(Ω,Ω), the set of stochastic matrices, is the composition
of the two transitions:

QεT ,εA(ω′;ω) ≡
∑
a∈A

AεA(ω)(ω, a)TεT (ω, a)(ω′) (A-27)

We denote by uεA(a) the one period payoff when the intended action profile is a but errors
in action choice are possible and occur independently for the two players with probability εA. To
illustrate, if the intended action profile is (C1, D2) then uεA(C1, D2) = (1− εA)2s+ εA(1− εA)(d+
c) + ε2At. We also let VεT ,εA(ω) the value function at the state ω

VεT ,εA = (1− δ)uεA + δQεT ,εAVεT ,εA (A-28)

The analysis of the properties of the value function presented in the main text holds with little
adjustments in the current case where errors in actions and transition are possible. The following
lemma holds as in the case of errors in transition only:

Lemma A.14. The function (εT , εA, δ) −→ V (·; εT , εA, δ) is analytic, hence continuous and differ-
entiable.

The decomposition of the state space described in the main text into invariant sets holds in the
current case as well. Similarly, with easy computations, one gets:

Lemma A.15. The value function equation can be decomposed into nine independent equations,
one for each of the invariant sets of the set Ω.

1. VεT ,εA(A,A) = uεA(D,D)

2. VεT ,εA(G,A) = (1− δ(1− εT ))uεAu(C,D) + δ(1− ε)uεA(D,D)

3. VεT ,εA(A,G) = (1− δ(1− ε))uεAu(D,C) + δ(1− ε)uεA(D,D)

Note that:

uεA(D,D) = (1− εA)2d+ εA(1− εA)(s+ t) + ε2Ac

uεA(C,D) = (1− εA)2s+ εA(1− εA)(d+ c) + ε2At

uεA(D,C) = (1− εA)2t+ εA(1− εA)(d+ c) + ε2As

In the case of the two errors the best response to A is A for the interesting values of the
parameter εA:

Lemma A.16. For all εT > 0 and εA < 1/2, (A,A) is a strict Nash equilibrium of the strategy
choice game, hence a locally stable equilibrium of the PI and BR dynamics.
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Proof. An easy computation gives:

VεT ,εA(A,A)− VεT ,εA(G,A) = (1− 2εA)(1− εA)(d+ t− s− c).

Hence, also in the case of the two errors A survives for all values of the parameters.

A.3.1 Basin of Attraction and Error Rates

From our analysis it is clear that the behavior of the basin of attraction as function of the two error
rates will broadly follow a behavior similar to that already observed in the case of the simple error
in transition, examined in the main text. Figure A.3 reports the sizes of the basin as function of
the two error rates. These are the three dimensional versions of the Figure A.2.

One can consider also the exact analogue of Figure A.2, but for the error in action choice, by
setting the transition probability to zero. This makes clear that the basin of attraction of the strict
strategies in the sides of the simplex (analyzing the size of the basin when players are playing only
{G,T}, {A, T} and {A, T}) is strictly increasing in the probability of the error in action choice.

In the case of the subset {A, T}, at zero transition error the effect of the error in action is still
strictly increasing, but of limited size: at δ = 0.75 the largest size of the basin of attraction of A is
approximately 25 per cent; at δ = 0.9 the maximum is smaller than 10 per cent.

A.4 Rational Learning Model

In this final section we show how the best response model can be interpreted as a model of Bayesian
learning. This model will be used in section A.5 to analyze our data.

Each player has a belief on the distribution of strategies in the population. The belief has
the same functional form for all players, a Dirichlet distribution of the three dimensional simplex,
∆({A,G, T}). A player with concentration parameter α ∈ N3 has a density on beliefs given by:

D(αi) =
1

B(αi)
µ(A)α

i
A−1µ(G)α

i
G−1µ(T )α

i
T−1 (A-29)

where B is the multivariate beta function. The assignment of the belief described by an α to each
player induces a population distribution over belief of players on the strategy of others, described
by a probability distribution on the countable set N3 with generic term π.

At time t, a fraction λdt of the population is randomly selected to adjust the strategy. This sub-
population is representative of the total population, so the distribution on N3 in the sub-population
is the same as in the total population. For convenience, we will consider in the following the
extension of the measure π to a measure on Z3, set equal to 0 on all three dimensional vectors of
integers that have a negative value in some coordinate; we keep the same symbol:

π ∈ ∆(Z3) (A-30)

We now consider players in the selected sub-population who are revising the strategy. Given
the distribution on the strategy of the other selected players, each player computes and chooses a
mixed strategy in the set of his best responses, given his belief D(α):

BR(α) = argmaxσ∈∆(M)ED(α)U(σ, ·). (A-31)
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Figure A.3: Size of basin of attraction of strict strategies with two types of error.
Probability of error in transition and action choice as displayed. δ = 0.75. Top to bottom
panel: values of the basin of attraction in the indicated subsets of strategies (basin of G in
(G, T ); A in (A,G); A in (A, T ); respectively).

By the property of the Dirichelet distribution, the mean frequency of m ∈M :

ED(α)µ(m) =
αm∑
r∈M αm

≡ E(m;α) (A-32)

The best response set of a player with belief indexed by α is:

BR(α) = argmaxσ∈∆(M)

∑
r∈M

E(m;α)U(σ,m). (A-33)

When we add over N3 with weights given by π, the best response of each player we get an
element φ(·;π) ∈ ∆(S) which is the true distribution in the population of the strategies. Note that
the function φ depends on the value function of the repeated game at the corresponding error rate.
We will make this dependence explicit later on when we need to study its effects, but we ignore it
for the moment for clarity of notation.36

36We assume that when the best response of a player with belief α is not a pure strategy, then players
choose according to the uniform distribution over the best response set, so when we aggregate over the

55



We consider first the evolution in discrete time. In each period, all players are randomly matched
with probability corresponding to the frequency.

Proposition A.17. The fraction of each α belief in the model described in Section (A.4) follows
the difference equation:

π(k + 1, α) = Sπ(k, ·), k = 0, 1, . . . . (A-34)

where S defined in (A-36).

Proof. Let 1m denote the three dimensional vector equal to 1 at the mth coordinate, and 0 oth-
erwise. Given a π ∈ ∆(N3), a players hold a belief D(α) next period if and only if in the current
period he holds a belief α− 1m and meets an opponent playing m, which happens with probability
φ(m,π). Each player then updates his belief; since priors are Dirichlet, he changes the α to the
new value:

α′m = αm + δm(bi) (A-35)

where δs is the indicator function.37 Define:

(Sπ)(t, α) ≡
∑
r∈M

π(t, α− 1m)φ(m,π(t, ·)) (A-36)

Recall our discussion before (A-30), so the definition (A-36) is meaningful even when αm = 0.
Equation (A-34) follows.

We now show that the time evolution of the fraction of beliefs in the population follows a
dynamic very similar to the one described by the best response presented in Section 4.5, with the
distribution on beliefs π replacing the distribution on strategies µ:

Proposition A.18. The time derivative of the fraction of each α belief in the model described in
section A.4 follows the equation:

dπ(t, α)

dt
= λ

(∑
r∈M

π(t, α− 1m)φ(s, π(t, ·))− π(t, α)

)
(A-37)

Proof. The players who are matched to play observe a strategy bi of the opponent with probability
φ(bi;π). Each player in the sub-population updates his belief according to (A-35). The new
population after the time interval dt is a combination of the population of players that did not
play, that is a fraction 1−λdt, with frequency π(t, ·) unchanged; and the sub-population of selected
players, a fraction λdt, with frequency Sπ(t, ·). Thus, the frequency next period is

π(t+ dt, α) = (1− λdt)π(t+ dt, α) + λdtSπ(t, α),

and therefore (A-37) follows.

The analysis of the evolution over time is more difficult to visualize than it is in the simple two
dimensional case of the best response dynamic, but the logic is the same. In particular consider the
best response function φ as depending on the value function V for a given vector of parameters,
(εT , εA, δ, U). As the error in action becomes large, the best response assigns for the same π(·, t) a
larger weight to the strategy A, until the frequency converges to the consensus on A.

sub-population of such players we get the expected value of the strategy choice.
37That is, δs(b

i) = 1 if s = bi and = 0 otherwise.
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A.5 Estimation of beliefs’ updating under best response

We now estimate the evolutions of the beliefs under best response dynamics described above for
each strategy, s, at the beginning of each supergame t, αis,t.

A.5.1 Method

For simplicity we limit ourselves to the case of no errors in the implementation of strategies (tran-
sition or action), where G and T have the same expected utility and for this reason we refer to this
strategy as sophisticated cooperation or SC. Therefore, we assume that subjects in the first repeated
game hold beliefs that other players either use A or a cooperative strategy that we already defined
SC. Let the probability of player i in supergame s to play A be αiA,t/(α

i
A,t + αiSC,t). In the first

supergame, t = 1, subjects have beliefs charaterized by αiA,1 and αiSC,1, from the second supergame
onward, t > 1. We follow Dal Bó and Fréchette (2011), reporting here their setup for convenience,
and assume that they update their beliefs as follows:

αik,t+1 = θiαik,t + 1(ajk), (A-38)

where k is the action (A or SC) and 1(akj ) takes the value 1 if the action of the partner j is k. The

discounting factor of past belief, θi, equals 0 in the so-calleld Cournot Dynamics and is 1 in the
fictitious play. Therefore the closer is θ to 1 the slower will player update their beliefs. Since we
assume that subjects chose a strategy at the beginning of the supergame, they will play cooperation,
C, in period 1 of supergame if they expect that the partner plays SC, defect, D, otherwise. The
expected utility each player obtains for each action, a, is

U ia,t =
αiA,t

αiA,t + αiSC,t
ua(a

j
A) +

αiSC,t
αiA,t + αiSC,t

ua(a
j
SC) + λiεsa,t (A-39)

where ua(a
j
k) is the payoff from taking action a when j takes the action k.

A.5.2 Estimation Results

The estimation of the model above generates choices of the first period of each supergame that in
average fit well our data as shown in Figure A.4. We now analyze the two parameters of interest:
θi, measuring the inverse of the speed by which subjects update their beliefs, and λi, measuring
the inverse of the capacity of best responding given the beliefs.38

In Table A.5 we show the correlation between IQ and the parameters of interest. IQ significantly
negatively correlated with θi, implying that higher IQ subjects update their beliefs faster. Higher
intelligence does not significantly affect the capacity of best responding, modelled by the parameter
λi. In the top panels of Figure A.5 we can compare the cumulative distribution of the θi in the
different treatments. θi is smaller for high-IQ than for low-IQ, confirming that low-IQ update
they beliefs slower than high-IQ (top left panel). The differences in the integrated treatment are
drastically reduced (top right panel). Considering panel A of Table A.4 we note that the differences
between high-IQ and low-IQ in the separated treatment is statistically significant, while the same
difference in the integrated treatment is only weakly significant at the best. The bottom left panel

38Details on estimation procedures are in the online appendix of Dal Bó and Fréchette (2011) at page
6-8. We follow that procedure closely.
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of Figure A.5 shows that low-IQ improve their speed (i.e. θi is lower) when integrated with the high-
IQ, while there is no much difference among high-IQ subjects in the different treatments. Panel
B of A.4 confirm that the differences among the low-IQ in the integrated and in the separated
treatments are statistically significant. We can summarise this discussion as follows:

1. higher intelligence subjects update their beliefs at a faster rate. Higher intelligence does not
significantly affect the capacity of best responding;

2. less intelligent subjects learn to update their beliefs faster when they are mixed with more
intelligent;

3. the way the subjects best respond to their beliefs does not depend on their intelligence.

A possible explanation of why lower IQ subjects update their first period beliefs faster when
mixed with the higher IQ is that, in the latter environment, they receive a clearer signal from the
other players playing more consistent strategies.

Figure A.4: Simulated Evolution of Cooperation Implied by the Learning Esti-
mates Solid lines represent experimental data, dashed lines the average simulated data, and
dotted lines the 90 percent interval of simulated data.
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Figure A.5: Distribution of the beliefs’ updating speed within the different groups
and treatments. Distribution of the parameter θi as defined in equation A-38, where 1
correspond to slowest speed (fictitious play) and 0 to the fasted speed (Cournot dynamics)
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Table A.3: IQ and Simulated Parameters

Variable Mean Std. Dev. Min. Max. N
IQ 103.516 10.203 69.338 127.231 182
θi 0.58 0.357 0 1 129
λ0 5.67 11.683 0 93.275 129
λ20 7.28 12.941 0.154 93.275 128
λ40 6.846 12.913 0.141 93.275 128
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Table A.4: Differences in the beliefs’ updating speed within the different groups
and treatments. Tests of the differences of the estimated parameter θi as defined in
equation A-38, where 1 correspond to slowest speed (fictitious play) and 0 to the fastest
speed (Cournot dynamics)
∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01.

Panel A: Tests between IQ groups

Treatment Separated Integrated
θLowIQ - θHighIQ θLowIQ - θHighIQ

t test t −2.9623∗∗∗ −1.3777∗

Mann-Witney z −2.488∗∗ -1.411

Panel B: Tests between treatments

Treatment Separated vs Integrated Separated vs Integrated
θLowIQ θHighIQ

t-test t 1.9647∗∗ −0.3909
Mann-Witney z 1.849∗ −0.350

Table A.5: Correlation between IQ, beliefs updating and capacity of best respond-
ing to own beliefs Correlations between IQ, updating speed, θi, capacity of best responding
to beliefs in supergame s, λs. p− values in brackets

Variables IQ θi λ0 λ20 λ40

IQ 1.000

θi -0.345 1.000
(0.000)

λ0 -0.032 -0.242 1.000
(0.746) (0.006)

λ20 -0.047 -0.196 0.887 1.000
(0.635) (0.026) (0.000)

λ40 0.001 -0.205 0.899 0.988 1.000
(0.992) (0.020) (0.000) (0.000)
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