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Abstract
Let 𝐸∕ℚ be an elliptic curve with full rational 2-
torsion. As 𝑑 varies over squarefree integers, we study
the behaviour of the quadratic twists 𝐸𝑑 over a fixed
quadratic extension 𝐾∕ℚ. We prove that for 100% of
twists the dimension of the 2-Selmer group over 𝐾 is
given by an explicit local formula, and use this to show
that this dimension follows an Erdős–Kac type distribu-
tion. This is in stark contrast to the distribution of the
dimension of the corresponding 2-Selmer groups overℚ,
and this discrepancy allows us to determine the distri-
bution of the 2-torsion in the Shafarevich–Tate groups
of the 𝐸𝑑 over 𝐾 also. As a consequence of our meth-
ods we prove that, for 100% of twists 𝑑, the action of
Gal(𝐾∕ℚ) on the 2-Selmer group of 𝐸𝑑 over 𝐾 is triv-
ial, and the Mordell–Weil group 𝐸𝑑(𝐾) splits integrally
as a direct sum of its invariants and anti-invariants. On
the other hand, we give examples of thin families of
quadratic twists in which a positive proportion of the 2-
Selmer groups over𝐾 have non-trivialGal(𝐾∕ℚ)-action,
illustrating that these previous results are genuinely sta-
tistical phenomena.
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1 INTRODUCTION

Let 𝐸∕ℚ be an elliptic curve with 𝐸[2] ⊆ 𝐸(ℚ), and consider the family of quadratic twists of 𝐸
over ℚ∶

{𝐸𝑑 ∶ 𝑑 ∈ ℤ squarefree}.

Let 𝐾∕ℚ be a quadratic extension. In this paper, as 𝑑 varies we study the 2-Selmer groups
Sel2(𝐸𝑑∕𝐾) of 𝐸𝑑 over 𝐾.

1.1 Erdős–Kac for 2-Selmer

Our first result, strongly reminiscent of the Erdős–Kac theorem [6], shows that the distribution
of the quantity

dimSel2(𝐸𝑑∕𝐾) − log log |𝑑|√
2 log log |𝑑|

is standard normal. That is, we have the following theorem.

Theorem 1.1 (Corollary 6.6). For every 𝑧 ∈ ℝ we have

lim
𝑋→∞

#

{|𝑑| ⩽ 𝑋 squarefree ∶
dimSel2(𝐸𝑑∕𝐾)−log log |𝑑|√

2 log log |𝑑| ⩽ 𝑧

}
#{|𝑑| ⩽ 𝑋 squarefree}

=
1√
2𝜋 ∫

𝑧

−∞
𝑒−𝑡

2∕2𝑑𝑡.

One immediate consequence is that, for any fixed real number 𝑧, the proportion of |𝑑| ⩽ 𝑋

for which dimSel2(𝐸𝑑∕𝐾) is smaller than 𝑧 tends to 0 as 𝑋 tends to infinity. We present this as
Corollary 5.11.
By contrast, if we assume that 𝐸 has no cyclic 4-isogeny defined over ℚ, it is a result of Kane

[16], building on work of Heath–Brown [13] and Swinnerton–Dyer [36], that for any fixed interger
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𝑛 ⩾ 2 a positive proportion of twists 𝑑 have dimSel2(𝐸𝑑∕ℚ) equal to 𝑛. Thus, Theorem 1.1 shows
that the groups Sel2(𝐸𝑑∕𝐾) exhibit significantly different behaviour to the corresponding groups
over ℚ. As a consequence of this discrepancy, we are able to show that, at least when 𝐸 has no
cyclic 4-isogeny defined over ℚ, Theorem 1.1 remains true when dimSel2(𝐸𝑑∕𝐾) is replaced by
dimШ(𝐸𝑑∕𝐾)[2] in the statement. We present this alternative perspective as Corollary 6.7.
The distribution in Theorem 1.1 does show up in a slightly different setting overℚ however, and

is the same form as that appearing in work of Klagsbrun–LemkeOliver [18] and Xiong–Zaharescu
[39] concerning the distribution of 2-isogeny Selmer groups in quadratic twist families of certain
elliptic curves. We discuss a precise analogy explaining this similarity in Section 1.3.

1.2 Structural results for 𝟏𝟎𝟎% of twists

The growth of the 2-Selmer group when passing from ℚ to 𝐾 apparent in Theorem 1.1 can be
explained by work of Kramer [20]. Write 𝐺 = Gal(𝐾∕ℚ) for the Galois group of 𝐾 over ℚ. For any
elliptic curve 𝐸′∕ℚ, the 2-Selmer group of 𝐸′ over 𝐾 is naturally a 𝐺-module. Roughly speaking,
the work of Kramer identifies a quotient of the invariant subgroup Sel2(𝐸′∕𝐾)𝐺 whose dimension
is controlled by purely local invariants (this is implicit in [20, Theorem 1], see also Lemmas 4.5 and
4.6). This is analogous to the situation for class groups of quadratic fields where the dimension of
the 2-torsion of the (narrow) class group admits an explicit description via genus theory.
To prove Theorem 1.1 we study, as 𝑑 varies, the discrepancy between the ‘systematic’ part of the

2-Selmer group Sel2(𝐸𝑑∕𝐾) alluded to above, and the full 2-Selmer group. Ultimately, Theorem 1.1
is a consequence of the following result, giving a precise description of the full 2-Selmer group for
100% of twists.

Notation 1.2. For each place 𝑣 of ℚ, and any place 𝑤 of 𝐾 extending 𝑣, define the local norm
map

𝑁𝐾𝑤∕ℚ𝑣
∶ 𝐸(𝐾𝑤)⟶ 𝐸(ℚ𝑣)

by the formula

𝑁𝐾𝑤∕ℚ𝑣
(𝑃) =

∑
𝜎∈Gal(𝐾𝑤∕ℚ𝑣)

𝜎(𝑃).

Theorem 1.3 (Corollary 6.4). For 100% of squarefree 𝑑 ordered by absolute value, the Gal(𝐾∕ℚ)-
action on Sel2(𝐸𝑑∕𝐾) is trivial, and we have

dimSel2(𝐸𝑑∕𝐾) = −2 +
∑

𝑣 place of ℚ
dim𝐸𝑑(ℚ𝑣)∕𝑁𝐾𝑤∕ℚ𝑣

𝐸𝑑(𝐾𝑤). (1.4)

Here𝑁𝐾𝑤∕ℚ𝑣
is defined as in Notation 1.2 . Since 𝐸𝑑(ℚ𝑣)∕𝑁𝐾𝑤∕ℚ𝑣

𝐸𝑑(𝐾𝑤) is trivial if 𝑣 splits in𝐾, the
right-hand side of (1.4) does not depend on the choice of 𝑤 ∣ 𝑣.

Remark 1.5. In Section 5, we study the behaviour of the right-hand side of (1.4). Even when 𝐸 does
not have all its 2-torsion defined over ℚ, we are still able to use this to gain partial control of the
Selmer groups Sel2(𝐸𝑑∕𝐾) as 𝑑 varies. In particular, provided that ℚ(𝐸[2]) ∩ 𝐾 = ℚ we show in
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Corollary 5.11 that for any fixed real number 𝑧, the dimension of Sel2(𝐸𝑑∕𝐾) exceeds 𝑧 for 100%
of twists 𝑑. For the remainder of the introduction however, we continue to assume 𝐸[2] ⊆ 𝐸(ℚ).

Remark 1.6. The statement of Theorem 1.3 is very reminiscent of a recent result of Fouvry–
Koymans–Pagano [7]. There it is shown that, for 100% of odd positive squarefree integers 𝑛, the
class group of the Dirichlet biquadratic field ℚ(

√
𝑛, 𝑖) has 4-rank equal to 𝜔3(𝑛) − 1, where 𝜔3(𝑛)

is the number of primes dividing 𝑛 that are congruent to 3 modulo 4 (that is, are inert in ℚ(𝑖)).
The similarity with the statement of Theorem 1.3 is made apparent by Proposition 5.6. This can
be viewed as an instance of the known analogy between 4-ranks of class groups and 2-Selmer
ranks of elliptic curves apparent in the works of Heath–Brown [12, 13] and Fouvry–Klüners [8],
and extended to higher 2-power ranks in the recent work of Smith [34].

It is natural to ask if the description in Theorem 1.3 simply holds for all 𝑑. This is, however, not
the case. We discuss examples where the Galois action is non-trivial in Section 1.4.
Since the group 𝐸𝑑(𝐾)∕2𝐸𝑑(𝐾) sits inside Sel2(𝐸𝑑∕𝐾), we can deduce some consequences for

Mordell–Weil groups from the above results. Specifically, for a squarefree integer 𝑑, writeΛ(𝐸𝑑∕ℚ)
for the finite rank free ℤ-module given by the quotient of 𝐸𝑑(ℚ) by its torsion subgroup:

Λ(𝐸𝑑∕ℚ) = 𝐸𝑑(ℚ)∕𝐸𝑑(ℚ)tors.

We view this as a 𝐺-module with trivial action. WriteΛ(𝐸𝑑∕ℚ)(−1) for the 𝐺-module with under-
lying abelian group Λ(𝐸𝑑∕ℚ) on which the generator of 𝐺 acts as multiplication by −1. Further,
write 𝐾 = ℚ(

√
𝜃). We have the following result, giving a complete description of the 𝐺-module

structure of 𝐸𝑑(𝐾) for 100% of 𝑑.

Theorem 1.7 (Corollary 6.13). For 100% of squarefree 𝑑 ordered by absolute value, we have an iso-
morphism of ℤ[𝐺]-modules

𝐸𝑑(𝐾) ≅ (ℤ∕2ℤ)2 ⊕ Λ(𝐸𝑑∕ℚ) ⊕ Λ(𝐸𝑑𝜃∕ℚ)(−1), (1.8)

where here (ℤ∕2ℤ)2 carries trivial 𝐺-action.

1.3 Twists of the Weil restriction of scalars

Write 𝐴 = Res𝐾∕ℚ𝐸 for the Weil restriction of scalars of 𝐸 from 𝐾 to ℚ. This is a principally
polarised abelian surface over ℚ. For each squarefree integer 𝑑 we have (see Lemma 4.20)

Sel2(𝐸𝑑∕𝐾) ≅ Sel2(𝐴𝑑∕ℚ).

In particular, we can view Theorem 1.1 as giving the distribution of 2-Selmer groups in the
quadratic twist family over ℚ of the abelian surface 𝐴. We state this formally as Theorem 6.15.
It is also possible to use this perspective to draw parallels between our work and existing work

in the literature. Specifically, we show in Section 4.3 that for each 𝑑, the twist 𝐴𝑑 admits an
isogeny 𝜙𝑑 ∶ 𝐴𝑑 → 𝐸𝑑 × 𝐸𝑑𝜃 whose kernel is a subgroup of 𝐴𝑑[2]. The order of the Selmer group
Sel𝜙𝑑 (𝐴𝑑∕ℚ) associated to 𝜙𝑑 is then, up to a quantity bounded independent of 𝑑, a lower bound
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for the size of the Selmer group Sel2(𝐴𝑑∕ℚ). In turn, writing𝜙𝑑 for the dual isogeny, a lower bound
for the size of Sel𝜙𝑑 (𝐴𝑑∕ℚ) is given by the Tamagawa ratio

 (𝜙𝑑) = |Sel𝜙𝑑 (𝐴𝑑∕ℚ)||Sel𝜙𝑑 (𝐸𝑑 × 𝐸𝑑𝜃∕ℚ)| .
For any isogeny between abelian varieties, the Tamagawa ratio is known to admit a local formula,
and in our case this is essentially given by the right-hand side of (1.4) (see Section 4.3 for details).
Consequently, one explanation for the unbounded growth of dimSel2(𝐸𝑑∕𝐾) seen in Theorem 1.1
is that the Tamagawa ratios  (𝜙𝑑) tend to grow with 𝑑. Similarly, growth of the relevant Tama-
gawa ratios is the phenomenon underlying the behaviour of 2-isogeny Selmer groups of quadratic
twist families of certain elliptic curves seen in work of Klagsbrun–Lemke Oliver [18] and Xiong–
Zaharescu [39]. Thus, the behaviour we uncover can be viewed as an extension of those works to
a special class of abelian surfaces.

1.4 Prime twists of the congruent number curve

As a complement to our main results, we provide examples of thin subfamilies of quadratic twists
in which significantly different behaviour occurs to that exhibited by the full family. Specifically,
take 𝐸 to be the congruent number curve:

𝐸 ∶ 𝑦2 = 𝑥3 − 𝑥.

Further, take 𝐾 = ℚ(
√
𝜃) to be an imaginary quadratic extension of class number 1 in which 2

is inert. Thus, 𝜃 ∈ {−3,−11, −19, −43, −67, −163}. For a prime 𝑝, define non-negative integers
𝑒1(𝐸𝑝∕𝐾) and 𝑒2(𝐸𝑝∕𝐾) such that we have an 𝔽2[𝐺]-module isomorphism

Sel2(𝐸𝑝∕𝐾) ≅ 𝔽
𝑒1(𝐸𝑝∕𝐾)

2
⊕ 𝔽2[𝐺]

𝑒2(𝐸𝑝∕𝐾).

Theorem 1.9 (Theorem 9.13). The natural density of primes 𝑝 for which 𝑒1(𝐸𝑝∕𝐾) = 𝑒1 and
𝑒2(𝐸𝑝∕𝐾) = 𝑒2 is as follows:

lim
𝑋→∞

#
{
𝑝 ⩽ 𝑋 prime ∶ 𝑒1(𝐸𝑝∕𝐾) = 𝑒1 and 𝑒2(𝐸𝑝∕𝐾) = 𝑒2

}
#{𝑝 ⩽ 𝑋 prime}

=

⎧⎪⎪⎨⎪⎪⎩

9∕16 if (𝑒1, 𝑒2) = (4, 0),

1∕16 if (𝑒1, 𝑒2) = (2, 2),

4∕16 if (𝑒1, 𝑒2) = (2, 1),

2∕16 if (𝑒1, 𝑒2) = (2, 0).

In particular, the proportion of prime twists for which the 𝐺-action on Sel2(𝐸𝑝∕𝐾) is non-trivial is
equal to 5∕16.

1.5 Overview of the proofs

The proofs of the results outlined above require a combination of algebraic and analytic methods.
Where possible we have tried to decouple these, so that the algebraic results stand alone.
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The algebraic work is largely carried out in Setions 4 and 7, and is based on work of Kramer
[20]. For a squarefree integer 𝑑, a key role in our results is played by the group SelC𝑑

(ℚ, 𝐸𝑑[2])

of Definition 4.1. This is a subgroup of the 2-Selmer group Sel2(𝐸𝑑∕ℚ) of 𝐸𝑑 over ℚ. Our key
algebraic result is Corollary 4.8 which shows that the Selmer group Sel2(𝐸𝑑∕𝐾) admits the explicit
description of Theorem 1.3 as soon as this auxiliary Selmer group SelC𝑑

(ℚ, 𝐸𝑑[2]) vanishes.
The main statistical theorems of the paper then depend on proving Theorem 6.1, which shows

that SelC𝑑
(ℚ, 𝐸𝑑[2]) is trivial for 100% of 𝑑. To do this we draw on analytic techniques devel-

oped byHeath–Brown, and used to determine the distribution of the 2-Selmer groups of quadratic
twists of the congruent number curve [12, 13]. That work takes as a point of departure the explicit
description of 2-Selmer groups of elliptic curves with full 2-torsion provided by 2-descent. In
Proposition 7.8, we similarly give an explicit description of SelC𝑑

(ℚ, 𝐸𝑑[2]) as a subgroup of
(ℚ×∕ℚ×2)2.
In fact, for the analytic part of the argument we have opted to replace SelC𝑑

(ℚ, 𝐸𝑑[2]) with
a certain subgroup 𝑆𝑑 of ℚ×∕ℚ×2 (see Definition 8.5) whose vanishing implies the vanishing of
SelC𝑑

(ℚ, 𝐸𝑑[2]), but which admits a simpler explicit description. In Section 8.5, we give a formula
for the order of 𝑆𝑑 as a sum of Jacobi symbols in a form which can be treated by the analytic tools
of Heath–Brown mentioned above. An alternative method at this point might be to draw on the
alternative approaches of Kane [16] or Smith [34].
It is worth remarking that the passage from SelC𝑑

(ℚ, 𝐸𝑑[2]) to 𝑆𝑑 is somewhat wasteful. By
following the work of Heath–Brown [12] more closely, one can similarly describe the order of
SelC𝑑

(ℚ, 𝐸𝑑[2]) as a sum of Jacobi symbols. This would likely lead to significant improvements
to the error bounds in Theorem 6.1. We have opted not to do this in favour of working with the
simpler and more explicit sums arising from 𝑆𝑑. In this respect, the resulting analysis is much
closer to that carried out by Fouvry–Klüners in [8] to determine the distribution of 4-ranks of
class groups of quadratic fields.

1.6 Layout of the paper

In Section 2, we introduce some notation that will be in use throughout.
In Section 3, we review some basic properties of Selmer structures and their associated Selmer

groups which we use in later sections.
In Section 4, we study algebraically the behaviour of 2-Selmer groups of elliptic curves in

quadratic extensions, building on work of Kramer [20]. Along the way we give two reinterpre-
tations of Kramer’s work, one in the language of Selmer structures, and another in terms of the
Weil restriction of scalars.
In Section 5, we study the analytic properties of the function g(𝑑) of Notation 5.5 (essentially

the right-hand side of (1.4)) which gives a lower bound for dimSel2(𝐸𝑑∕𝐾). In particular, we show
in Proposition 5.8 that g(𝑑) follows an Erdős–Kac type distribution.
In Section 6, we state our main technical result, Theorem 6.1, on the vanishing of the auxiliary

Selmer group SelC𝑑
(ℚ, 𝐸𝑑[2]) for 100% of twists 𝑑. From this we deduce Theorems 1.1, 1.3 and 1.7,

along with related results.
The proof of Theorem 6.1 is carried out across Sections 7 and 8. In Section 7, we give some

algebraic preliminaries. In Section 8, we build on this by describing the order of SelC𝑑
(ℚ, 𝐸𝑑[2])

as a sum of Jacobi symbols, before following closely the strategy of [8, Section 5] to study the
behaviour of these sums as 𝑑 varies.
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In Section 9, we prove Theorem 1.9 concerning the behaviour over certain quadratic extensions
of the 2-Selmer groups of prime twists of the congruent number curve.

2 NOTATION AND CONVENTIONS

In this section, we detail some notation and conventions whichwill be used throughout the paper.

2.1 Arithmetic functions

Given a positive integer 𝑛 we write 𝜔(𝑛) for the number of distinct prime factors of 𝑛. We denote
by 𝜇 the Möbius function, and for coprime integers 𝑚 and 𝑛 with 𝑛 odd and positive, we write
(𝑚
𝑛
) for the corresponding Jacobi symbol.

2.2 Galois cohomology

For a field 𝐹 of characteristic 0, we write �̄� for a (fixed once and for all) algebraic closure of 𝐹, and
denote its absolute Galois group by 𝐺𝐹 = Gal(�̄�∕𝐹). For a positive integer 𝑛 we write 𝝁𝑛 for the
𝐺𝐹-module of 𝑛th roots of unity in �̄�, and write 𝝁 = ∪𝑛⩾1𝝁𝑛.
By a 𝐺𝐹-module𝑀 we mean a discrete module𝑀 on which 𝐺𝐹 acts continuously. For 𝑖 ⩾ 0we

write 𝐻𝑖(𝐹,𝑀) as a shorthand for the continuous cohomology groups 𝐻𝑖(𝐺𝐹,𝑀). We define the
dual of𝑀 to be

𝑀∗ ∶= Hom(𝑀, 𝝁).

This is a 𝐺𝐹-module with action given by setting, for 𝜎 ∈ 𝐺𝐹 and 𝜙 ∈ 𝑀∗,

𝜎𝜙(𝑚) = 𝜎𝜙(𝜎−1𝑚).

For 𝑖 ⩾ 0, if 𝐿∕𝐹 is a finite extension we denote the corresponding restriction and corestriction
maps by

res𝐿∕𝐹 ∶ 𝐻𝑖(𝐹,𝑀) → 𝐻𝑖(𝐿,𝑀)

and

cor𝐿∕𝐹 ∶ 𝐻𝑖(𝐿,𝑀) → 𝐻𝑖(𝐹,𝑀),

respectively. When 𝐿∕𝐹 is Galois and the action of 𝐺𝐹 on𝑀 factors through Gal(𝐿∕𝐹), we write
𝐻𝑖(𝐿∕𝐹,𝑀) as a shorthand for the cohomology group𝐻𝑖(Gal(𝐿∕𝐹),𝑀).

2.3 Number fields and completions

For a number field 𝐹 and a place 𝑣 of 𝐹, we write 𝐹𝑣 for the completion of 𝐹 at 𝑣. We implicitly
fix embeddings �̄� ↪ �̄�𝑣 for each place 𝑣 and in this way view 𝐺𝐹𝑣 as a subgroup of 𝐺𝐹 for each
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𝑣. In this way, for a 𝐺𝐹-module𝑀, we obtain restriction maps on cohomology res𝑣 ∶ 𝐻𝑖(𝐹,𝑀) →

𝐻𝑖(𝐹𝑣,𝑀) for each 𝑣. When 𝑣 is non-archimedean we denote by 𝐹nr𝑣 the maximal unramified
extension of 𝐹𝑣, and write

𝐻1
nr(𝐹𝑣,𝑀) ∶= ker

(
𝐻1(𝐹𝑣,𝑀)

res
⟶ 𝐻1(𝐹nr𝑣 ,𝑀)

)
for the subgroup of unramified classes in𝐻1(𝐹𝑣,𝑀).

2.4 The Kummer image for abelian varieties

Still taking𝐹 to be a number field, for an abelian variety𝐴 over𝐹, and for a place 𝑣 of𝐹, we denote
byS (𝐴∕𝐹𝑣) the image of the coboundary map

𝛿𝑣 ∶ 𝐴(𝐹𝑣)∕2𝐴(𝐹𝑣) ↪ 𝐻1(𝐹𝑣, 𝐴[2]) (2.1)

arising from the short exact sequence of 𝐺𝐹𝑣 -modules

0⟶ 𝐴[2]⟶ 𝐴(�̄�𝑣)
2

⟶ 𝐴(�̄�𝑣)⟶ 0. (2.2)

2.5 Quadratic twists

For a field 𝐹 of characteristic 0, and for an element 𝑑 of 𝐹×∕𝐹×2, we write 𝜒𝑑 for the associated
quadratic character. Thus, 𝜒𝑑 is the function from 𝐺𝐹 to {±1} defined by, for 𝜎 ∈ 𝐺𝐹 , the formula

𝜒𝑑(𝜎) = 𝜎(
√
𝑑)∕
√
𝑑.

Given an abelian variety 𝐴 over 𝐹 we write 𝐴𝑑 for the quadratic twist of 𝐴 by 𝑑. That is, 𝐴𝑑 is an
abelian variety over 𝐹, equipped with an �̄�-isomorphism

𝜓𝑑 ∶ 𝐴
∼
⟶ 𝐴𝑑 (2.3)

such that for all 𝜎 in 𝐺𝐹 , 𝜓−1𝑑 ◦𝜎𝜓𝑑 is multiplication by 𝜒𝑑(𝜎) on 𝐴. Here 𝜎𝜓𝑑 is the unique iso-
morphism𝐴 → 𝐴𝑑 sending any 𝑃 ∈ 𝐴(�̄�) to 𝜎𝜓𝑑(𝜎−1𝑃). Note in particular that 𝜓𝑑 is defined over
𝐹(
√
𝑑), so that 𝐴 is isomorphic to 𝐴𝑑 over 𝐹(

√
𝑑).

3 SELMER STRUCTURES

In this section, we review the properties of Selmer structures and their associated Selmer groups
which will be used later. For details see, for example, [25, 37], and the references therein.
Throughout this section, we take 𝐹 to be a number field. We take𝑀 to be a finite 𝐺𝐹-module

annihilated by 2, so that𝑀 is a finite-dimensional 𝔽2-vector space. All dimensions will be taken
over 𝔽2.
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3.1 Local duality

For each place 𝑣 of 𝐹, we have the local Tate pairing

⟨ , ⟩𝑣 ∶ 𝐻1(𝐹𝑣,𝑀) × 𝐻1(𝐹𝑣,𝑀
∗)⟶ 𝐻2(𝐹𝑣, 𝝁2) = Br(𝐹𝑣)[2] ↪ ℚ∕ℤ

given by the composition of cup-product and the local invariant map.

Theorem 3.1 (Tate local duality). For each place 𝑣 of 𝐹 the pairing ⟨ , ⟩𝑣 is non-degenerate.
Moreover, for each non-archimedean place 𝑣 ∤ 2 such that the inertia group 𝐼𝐹𝑣 acts
trivially on 𝑀, 𝐻1

nr(𝐹𝑣,𝑀) and 𝐻1
nr(𝐹𝑣,𝑀

∗) are orthogonal complements under this
pairing.

Proof. See [29, Corollary 7.2.6] for non-archimedean 𝑣 and [29, Theorem 7.2.17] for archimedean
𝑣. The claim concerning the unramified subspaces is [29, Theorem 7.2.15]. □

Example 3.2. Take 𝑀 = 𝝁2, which is self-dual. For each place 𝑣 of 𝐹, Kummer theory gives a
canonical isomorphism𝐻1(𝐹𝑣, 𝝁2) ≅ 𝐹×𝑣 ∕𝐹

×2
𝑣 (andwehave the corresponding isomorphism glob-

ally also). For any non-archimedean place 𝑣 ∤ 2 of 𝐹 we have

𝐻1
nr(𝐹𝑣, 𝝁2) = ×

𝐹𝑣
∕×2

𝐹𝑣
⊆ 𝐹×𝑣 ∕𝐹

×2
𝑣 .

The local Tate pairing

𝐹×𝑣 ∕𝐹
×2
𝑣 × 𝐹×𝑣 ∕𝐹

×2
𝑣 ⟶ ℚ∕ℤ

is the Hilbert symbol (𝑥, 𝑦) ↦ (𝑥, 𝑦)𝑣 ∈ {±1} ≅ 1

2
ℤ∕ℤ.

3.2 Selmer structures

Definition 3.3. A Selmer structure  = {𝑣}𝑣 for𝑀 is a collection of subspaces

𝑣 ⊆ 𝐻1(𝐹𝑣,𝑀)

for each place 𝑣 of 𝐹, such that 𝑣 = 𝐻1
nr(𝐹𝑣,𝑀) for all but finitely many places. The associated

Selmer group Sel(𝐹,𝑀) is defined by the exactness of

0⟶ Sel(𝐹,𝑀)⟶ 𝐻1(𝐹,𝑀)⟶
∏

𝑣 place of 𝐹

𝐻1(𝐹𝑣,𝑀)∕𝑣.

It is a finite-dimensional 𝔽2-vector space.
For each place 𝑣 wewrite∗

𝑣 for the orthogonal complement of𝑣 under the local Tate pairing,
so that ∗

𝑣 is a subspace of 𝐻
1(𝐹𝑣,𝑀

∗). We define the dual Selmer structure ∗ for𝑀∗ by taking
∗ = {∗

𝑣}𝑣. We refer to Sel∗(𝐹,𝑀) as the dual Selmer group.
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3.3 The Greenberg–Wiles formula

The following theoremdue toGreenberg andWiles describes the difference in dimension between
a Selmer group and its dual.

Theorem 3.4. Let  = {𝑣}𝑣 be a Selmer structure for𝑀. Then we have

dimSel(𝐹,𝑀) − dimSel∗(𝐹,𝑀∗)

= dim𝑀𝐺𝐹 − dim(𝑀∗)𝐺𝐹 +
∑

𝑣 place of 𝐹

(dim𝑣 − dim𝑀𝐺𝐹𝑣 ).

Proof. This is [38, Proposition 1.6]. See also [37, Theorem 2]. □

Example 3.5 (The 2-Selmer group of an elliptic curve). Let 𝐸∕𝐹 be an elliptic curve. For each
place 𝑣 of 𝐹 we have the Kummer image

S (𝐸∕𝐹𝑣) ⊆ 𝐻1(𝐹𝑣, 𝐸[2])

defined in Section 2.4. The collection S = {S (𝐸∕𝐹𝑣)}𝑣 defines a Selmer structure for 𝐸[2]. This
is a consequence of the fact that, for a non-archimedean place 𝑣 ∤ 2 of 𝐹 at which 𝐸 has good
reduction, we have

S (𝐸∕𝐹𝑣) = 𝐻1
nr(𝐹𝑣, 𝐸[2]).

Using theWeil pairing ( , )𝑒2 ∶ 𝐸[2] × 𝐸[2] → 𝝁2 to identify𝐸[2]with its dual, the resulting Selmer
structure is self-dual (see, for example, [30, Proposition 4.10]). That is, eachS (𝐸∕𝐹𝑣) is amaximal
isotropic subspace of𝐻1(𝐹𝑣, 𝐸[2])with respect to the local Tate pairing.We note that Theorem 3.4
gives ∑

𝑣 place of 𝐹

(dim𝐸(𝐹𝑣)∕2𝐸(𝐹𝑣) − dim𝐸(𝐹𝑣)[2]) = 0. (3.6)

One can also give an elementary proof of this by computing the local terms individually (see, for
example, [31, Proposition 3.9]).

4 2-SELMER GROUPS OVER QUADRATIC EXTENSIONS

For the rest of the paper, we fix a quadratic extension 𝐾∕ℚ. Write 𝐾 = ℚ(
√
𝜃) for a squarefree

integer 𝜃, and write𝐺 = Gal(𝐾∕ℚ). Moreover, we fix an elliptic curve 𝐸∕ℚ. Note that at this point
we make no assumption on the 2-torsion of 𝐸. In later sections (Section 6 onwards) it will be
necessary to reduce to the case of full 2-torsion but we shall be clear when this restriction is made.
Denote by Sel2(𝐸∕𝐾) the 2-Selmer group of 𝐸∕𝐾. The conjugation action of 𝐺 on 𝐻1(𝐾, 𝐸[2])

makes Sel2(𝐸∕𝐾) into an 𝔽2[𝐺]-module.
The structure of Sel2(𝐸∕𝐾) has been studied by Kramer in [20]. In this section, since it will be

useful for what follows, we give a reinterpretation of part of this work in the language of Selmer
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structures (see also work of Mazur–Rubin [23, 26] for a similar perspective). The results in this
section can be adapted in a straightforward way to general quadratic extensions of number fields
(and this is the setting in which Kramer proves his results). However, we stick to quadratic exten-
sions of ℚ since this is the setting in which all our applications are carried out.
As in Section 2.5, associated to the squarefree integer 𝜃 is the quadratic twist 𝐸𝜃, which comes

equipped with the isomorphism 𝜓 = 𝜓𝜃 from 𝐸 to 𝐸𝜃. While this isomorphism is only defined
over 𝐾, it restricts to an isomorphism of 𝐺ℚ-modules from 𝐸[2] to 𝐸𝜃[2]. We use this to identify
𝐻1(ℚ𝑣, 𝐸[2]) and 𝐻1(ℚ𝑣, 𝐸𝜃[2]) for each place of 𝑣, and identify the corresponding global coho-
mology groups similarly. In particular, for each place 𝑣 ofℚwemay view both theKummer images
S (𝐸∕ℚ𝑣) and S (𝐸𝜃∕ℚ𝑣) (cf. Section 2.4) as subgroups of 𝐻1(ℚ𝑣, 𝐸[2]). Similarly, we view both
Sel2(𝐸∕ℚ) and Sel2(𝐸𝜃∕ℚ) as subgroups of𝐻1(ℚ, 𝐸[2]).

4.1 Selmer structures associated to 𝑬∕𝑲

We begin by defining two Selmer structures for 𝐸[2] over ℚ, each of which will capture a part of
Sel2(𝐸∕𝐾).

Definition 4.1. Define the Selmer structureF for the 𝐺ℚ-module 𝐸[2] by setting, for each place
𝑣 of ℚ,

F𝑣 = F (𝐸∕ℚ𝑣) ∶= res−1
𝐾𝑤∕ℚ𝑣

(S (𝐸∕𝐾𝑤)) ⩽ 𝐻1(ℚ𝑣, 𝐸[2]),

where 𝑤 is any choice of place of 𝐾 extending 𝑣 (the definition does not depend on this choice).
Let SelF (ℚ, 𝐸[2]) ⩽ 𝐻1(ℚ, 𝐸[2]) denote the resulting Selmer group. We further define the Selmer
structureC for 𝐸[2] as the dual ofF , and denote the local conditions by C (𝐸∕ℚ𝑣). We denote the
resulting Selmer group SelC (ℚ, 𝐸[2]).

Lemma 4.2. We have SelF (ℚ, 𝐸[2]) = res−1
𝐾∕ℚ

(Sel2(𝐸∕𝐾)).

Proof. This follows from the compatibility of local and global restriction maps. □

Recall the definition of the local norm map from Notation 1.2.

Lemma 4.3. The following properties hold for the Selmer structure C .

(i) For each place 𝑣 of ℚ, we have

C (𝐸∕ℚ𝑣) = cor𝐾𝑤∕ℚ𝑣
(S (𝐸∕𝐾𝑤)) ⩽ 𝐻1(ℚ𝑣, 𝐸[2]),

where 𝑤 is any choice of place of 𝐾 extending 𝑣.
(ii) For each place 𝑣 of ℚ, we moreover have

C (𝐸∕ℚ𝑣) = 𝛿𝑣(𝑁𝐾𝑤∕ℚ𝑣
𝐸(𝐾𝑤)) = S (𝐸∕ℚ𝑣) ∩S (𝐸𝜃∕ℚ𝑣),

where 𝛿𝑣 ∶ 𝐸(ℚ𝑣)∕2𝐸(ℚ𝑣) ↪ 𝐻1(ℚ𝑣, 𝐸[2]) is the local Kummer map (2.1) and the intersection
takes place in𝐻1(ℚ𝑣, 𝐸[2]).
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(iii) Globally, we have SelC (ℚ, 𝐸[2]) = Sel2(𝐸∕ℚ) ∩ Sel2(𝐸𝜃∕ℚ). Moreover, we have

cor𝐾∕ℚ
(
Sel2(𝐸∕𝐾)

)
⊆ SelC (ℚ, 𝐸[2]).

Proof.

(i) That cor𝐾𝑤∕ℚ𝑣
(S (𝐸∕𝐾𝑤)) and res−1𝐾𝑤∕ℚ𝑣

(S (𝐸∕𝐾𝑤)) are orthogonal complements under the
local Tate pairing is noted by Kramer in the paragraph following [20, Equation (10)]. Specif-
ically, it follows from [1, Proposition 9; 29, Corollary 7.1.4] that res𝐾𝑤∕ℚ𝑣

and cor𝐾𝑤∕ℚ𝑣
are

adjoints with respect to the local Tate pairings. It follows that we have inclusions

cor𝐾𝑤∕ℚ𝑣
(S (𝐸∕𝐾𝑤)) ⊆ F ∗

𝑣

and

res𝐾𝑤∕ℚ𝑣

(
cor𝐾𝑤∕ℚ𝑣

(S (𝐸∕𝐾𝑤))
∗
)
⊆ S (𝐸∕𝐾𝑤)

∗.

Since S (𝐸∕𝐾𝑤) is its own orthogonal complement, the result follows.
(ii) The first equality follows from the fact that the coboundary maps arising from the respective

Kummer sequences (2.2) over 𝐾𝑤 and ℚ𝑣 commute with corestriction. The second equality
is [20, Proposition 7].

(iii) The claim that SelC (ℚ, 𝐸[2]) = Sel2(𝐸∕ℚ) ∩ Sel2(𝐸𝜃∕ℚ) is a formal consequence of (ii). The
inclusion

cor𝐾∕ℚ
(
Sel2(𝐸∕𝐾)

)
⊆ SelC (ℚ, 𝐸[2])

follows from (i) and compatibility of the local and global corestriction maps. □

Remark 4.4. Let 𝑣 be a place of ℚ. Since the Selmer structure F is dual to C , it follows formally
from Lemma 4.3 and the fact thatS (𝐸∕ℚ𝑣) is its own orthogonal complement, that we have

F (𝐸∕ℚ𝑣) = S (𝐸∕ℚ𝑣) +S (𝐸𝜃∕ℚ𝑣),

where the sum is taken inside𝐻1(ℚ𝑣, 𝐸[2]).

We may use Theorem 3.4 to determine the difference between the dimensions of the Selmer
groups SelF (ℚ, 𝐸[2]) and SelC (ℚ, 𝐸[2]).

Lemma 4.5. We have

dimSelF (ℚ, 𝐸[2]) − dimSelC (ℚ, 𝐸[2]) =
∑

𝑣 place of ℚ

dim𝐸(ℚ𝑣)∕𝑁𝐾𝑤∕ℚ𝑣
𝐸(𝐾𝑤).

Proof. Since for each place 𝑣 ofℚ, the groupsC (𝐸∕ℚ𝑣) andF (𝐸∕ℚ𝑣) are orthogonal complements
under the local Tate pairing, we have

dimF (𝐸∕ℚ𝑣) = dim𝐻1(ℚ𝑣, 𝐸[2]) − dimC (𝐸∕ℚ𝑣).
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Moreover, sinceS (𝐸∕ℚ𝑣) is its own orthogonal complement we have

dim𝐻1(ℚ𝑣, 𝐸[2]) = 2 dim𝐸(ℚ𝑣)∕2𝐸(ℚ𝑣).

Along with Lemma 4.3(ii) this gives

dimF𝑣 = 2 dim𝐸(ℚ𝑣)∕2𝐸(ℚ𝑣) − dim𝑁𝐾𝑤∕ℚ𝑣
𝐸(𝐾𝑤)∕2𝐸(ℚ𝑣)

= dim𝐸(ℚ𝑣)∕2𝐸(ℚ𝑣) + dim𝐸(ℚ𝑣)∕𝑁𝐾𝑤∕ℚ𝑣
𝐸(𝐾𝑤).

Theorem 3.4 then gives

dimSelF (ℚ, 𝐸[2]) − dimSelC (ℚ, 𝐸[2]) =
∑

𝑣 place of ℚ

dim𝐸(ℚ𝑣)∕𝑁𝐾𝑤∕ℚ𝑣
𝐸(𝐾𝑤)

+
∑

𝑣 place of ℚ

(dim𝐸(ℚ𝑣)∕2𝐸(ℚ𝑣) − dim𝐸(ℚ𝑣)[2]).

and the result follows from (3.6). □

4.2 The 2-Selmer group of 𝑬∕𝑲

We now apply the results above to study the 2-Selmer group of 𝐸∕𝐾.

Lemma 4.6 (cf. [20, Lemma 3]).We have an exact sequence

0⟶ 𝐻1(𝐾∕ℚ, 𝐸(𝐾)[2])
inf
⟶ SelF (ℚ, 𝐸[2])

res𝐾∕ℚ
⟶ Sel2(𝐸∕𝐾)

cor𝐾∕ℚ
⟶ SelC (ℚ, 𝐸[2]). (4.7)

Proof. We first claim that the sequence

𝐻1(ℚ, 𝐸[2])
res
⟶ 𝐻1(𝐾, 𝐸[2])

cor
⟶ 𝐻1(ℚ, 𝐸[2])

is exact. To see this, consider the exact sequence of 𝐺ℚ-modules

0⟶ 𝔽2 ⟶ 𝔽2[𝐺]
𝜖

⟶ 𝔽2 ⟶ 0,

where 𝜖 is the augmentationmap (sending
∑

g∈𝐺 𝜆gg to
∑

g∈𝐺 𝜆) and𝐺ℚ acts on𝐺 via the quotient
map 𝐺ℚ ↠ 𝐺. Taking the tensor product over 𝔽2 with 𝐸[2], and then taking Galois cohomology
over ℚ, gives an exact sequence of 𝐺ℚ-modules

𝐻1(ℚ, 𝐸[2])⟶ 𝐻1(ℚ, 𝐸[2] ⊗𝔽2
𝔽2[𝐺])⟶ 𝐻1(ℚ, 𝐸[2]).

Using Shapiro’s Lemma to identify 𝐻1(ℚ, 𝐸[2] ⊗𝔽2
𝔽2[𝐺]) with 𝐻1(𝐾, 𝐸[2]) yields the sought

exact sequence.
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Having shown the claim, the result now follows by combining the inflation-restriction exact
sequence with Lemmas 4.2 and 4.3(iii). □

Corollary 4.8. If SelC (ℚ, 𝐸[2]) = 0, then all of the following hold.

(i) There is a short exact sequence

0⟶ 𝐻1(𝐾∕ℚ, 𝐸(𝐾)[2])
inf
⟶ SelF (ℚ, 𝐸[2])

res𝐾∕ℚ
⟶ Sel2(𝐸∕𝐾)⟶ 0,

where the first map is inflation.
(ii) We have

dimSel2(𝐸∕𝐾) = −dim

(
𝐸(ℚ)[2]

𝑁𝐾∕ℚ(𝐸(𝐾)[2])

)
+

∑
𝑣 place of ℚ

dim𝐸(ℚ𝑣)∕𝑁𝐾𝑤∕ℚ𝑣
𝐸(𝐾𝑤).

(iii) The 𝐺-action on Sel2(𝐸∕𝐾) is trivial.

Proof.

(i) Follows immediately from Corollary 4.6.
(ii) Follows from (i) and Lemma 4.5 upon noting that, since Gal(𝐾∕ℚ) is cyclic, we have

𝐻1(𝐾∕ℚ, 𝐸(𝐾)[2]) ≅
𝐸(ℚ)[2]

𝑁𝐾∕ℚ(𝐸(𝐾))[2]
.

(See, for example, [1, Section 8] for the description of the cohomology of cyclic groups we are
using in the above.)

(iii) Follows from (i) and the fact that the image of the restriction map from 𝐻1(ℚ, 𝐸[2]) to
𝐻1(𝐾, 𝐸[2]) is contained in the invariant subspace 𝐻1(𝐾, 𝐸[2])𝐺 . □

For a similar result to Corollary 4.8(ii) which holds when 𝐾∕ℚ is replaced by a cyclic degree 𝑝
extension for an odd prime 𝑝, see [3, Theorem 1.2].

Remark 4.9. Combining Lemma 4.5 with Corollary 4.6 allows one to recover the formula for the
rank of𝐸∕𝐾 given in [20, Theorem 1]. In the second part of that theorem,Kramer studies the group
SelC (ℚ, 𝐸[2])∕cor𝐾∕ℚ(Sel

2(𝐸∕𝐾)), which he refers to as the everywhere local/global norms group,
and shows that it carries a non-degenerate alternating pairing given by the sum of the Cassels–
Tate pairings on Sel2(𝐸∕ℚ) and Sel2(𝐸𝜃∕ℚ) (recall from Lemma 4.3(iii) that SelC (ℚ, 𝐸[2]) =
Sel2(𝐸∕ℚ) ∩ Sel2(𝐸𝜃∕ℚ)). In particular, this group has even dimension.

When SelC (ℚ, 𝐸[2]) is not necessarily trivial we still get a lower bound for the dimension of the
2-Selmer group of 𝐸 over 𝐾.

Lemma 4.10. We have

dimSel2(𝐸∕𝐾) ⩾ −2 +
∑

𝑣 place of ℚ

dim𝐸(ℚ𝑣)∕𝑁𝐾𝑤∕ℚ𝑣
𝐸(𝐾𝑤).
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Proof. From Corollary 4.6 we find

dimSel2(𝐸𝑑∕𝐾) ⩾ dimSelF𝑑
(ℚ, 𝐸𝑑[2]) − dimSelC𝑑

(ℚ, 𝐸[2]) − dim𝐻1(𝐾∕ℚ, 𝐸(𝐾)[2]).

The result now follows from Lemma 4.5, noting that

dim𝐻1(𝐾∕ℚ, 𝐸(𝐾)[2]) ⩽ 2,

which is a consequence of the explicit description of cohomology of cyclic groups. □

4.3 TheWeil restriction of scalars

Here we give a slight reinterpretation of the above material in terms of the restriction of scalars
of 𝐸 from 𝐾 to ℚ. The material of this section is closely related to, and inspired by, that appearing
in [26, Section 3]. Following Milne [27, Section 2], the restriction of scalars may be described as
a special case of a general construction of twists of powers of 𝐸, which we now recall. In what
follows, for abelian varieties 𝐴 and 𝐵 defined over ℚ, we endow Homℚ̄(𝐴, 𝐵) (the group of ℚ̄-
homomorphisms from𝐴 to 𝐵) with the 𝐺ℚ action 𝜑 ↦ 𝜎𝜑, where for 𝜎 ∈ 𝐺ℚ the homomorphism
𝜎𝜑 sends 𝑃 ∈ 𝐴(ℚ̄) to 𝜎𝜑(𝜎−1𝑃).

Definition 4.11. Let 𝑛 ⩾ 1. To each matrix𝑀 = (𝑚𝑖,𝑗) inMat𝑛(ℤ)we can associate an endomor-
phism of 𝐸𝑛 given by

(𝑃1, … , 𝑃𝑛)⟼

(
𝑛∑
𝑗=1

𝑚1,𝑗𝑃𝑗, … ,

𝑛∑
𝑗=1

𝑚𝑛,𝑗𝑃𝑗

)
.

In this way we view GL𝑛(ℤ) as a subgroup of Autℚ̄(𝐸𝑛). Now suppose that Λ is a free rank-𝑛
ℤ-module equipped with a continuous 𝐺ℚ-action. Choosing a basis for Λ gives rise to a homo-
morphism

𝜌Λ ∶ 𝐺ℚ ⟶ GL𝑛(ℤ),

which we view as a 1-cocycle valued in Autℚ̄(𝐸
𝑛). The class of 𝜌Λ in 𝐻1(ℚ,Autℚ̄(𝐸

𝑛)) does not
depend on the choice of basis. Associated to this cocycle class is a twist of 𝐸𝑛, which we denote
Λ⊗ 𝐸. This is an abelian variety over ℚ of dimension 𝑛, equipped with a ℚ̄-isomorphism 𝜑Λ ∶

𝐸𝑛 → Λ⊗ 𝐸 satisfying 𝜑−1
Λ
◦𝜎𝜑Λ = 𝜌Λ(𝜎) for all 𝜎 ∈ 𝐺ℚ.

The relevant restriction of scalars can then be defined as follows.

Definition 4.12. Denote by ℤ[𝐺] the integral group ring of 𝐺 = Gal(𝐾∕ℚ). We define the restric-
tion of scalars of 𝐸 relative to 𝐾∕ℚ to be the abelian surface 𝐸 ⊗ ℤ[𝐺] . We denote it Res𝐾∕ℚ𝐸. By
the above, it comes equipped with an isomorphism 𝜑 ∶ 𝐸 × 𝐸 → Res𝐾∕ℚ𝐸, defined over 𝐾, and
such that for all 𝜎 ∈ 𝐺ℚ, and all 𝑃,𝑄 ∈ 𝐸(ℚ̄), we have

(𝜑−1◦𝜎𝜑)(𝑃, 𝑄) =

{
(𝑃, 𝑄) 𝜒𝜃(𝜎) = 1,

(𝑄, 𝑃) 𝜒𝜃(𝜎) = −1.
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In particular, 𝜑−1 composed with projection onto the first coordinate gives an isomorphism

Res𝐾∕ℚ𝐸(ℚ) ≅ 𝐸(𝐾).

Remark 4.13. The restriction of scalars Res𝐾∕ℚ(𝐸) is more typically defined as the unique scheme
over ℚ representing the functor on ℚ-schemes

𝑇 ⟼ 𝐸(𝑇 ×ℚ 𝐾).

As in [26, Section 2], this is equivalent to the construction given above.

Notation 4.14. To ease notation, in what follows we write𝐴 = Res𝐾∕ℚ(𝐸). Thus, 𝐴 is an abelian
surface defined over ℚ.

One has

Sel2(𝐸∕𝐾) ≅ Sel2(𝐴∕ℚ). (4.15)

Indeed, the corresponding result for Shafarevich–Tate groups is given in [27, Proof of Theorem 1],
and the same argument works here (see also [26, Proposition 3.1]). In particular, in the case that
SelC (ℚ, 𝐸[2]) = 0, Corollary 4.8 can be interpreted as giving a description of the 2-Selmer group
over ℚ of the abelian surface 𝐴.
Moreover, it turns out that the groups SelC (ℚ, 𝐸[2]) and SelF (ℚ, 𝐸[2]) are the Selmer groups

associated to a certain isogeny between 𝐴 and 𝐸 × 𝐸𝜃 as we now explain.

Definition 4.16. Consider the isogeny 𝜙0 ∶ 𝐸 × 𝐸 → 𝐸 × 𝐸 given by the formula

𝜙0(𝑃, 𝑄) = (𝑃 + 𝑄, 𝑃 − 𝑄).

Let 𝜑 ∶ 𝐸 × 𝐸 → 𝐴 be as in Definition 4.12, and let 𝜓 = 𝜓𝜃 ∶ 𝐸
∼
⟶ 𝐸𝜃 be as in (2.3). Now define

the isogeny (a priori over 𝐾)

𝜙 = (1 × 𝜓)◦𝜙0◦𝜑
−1 ∶ 𝐴 ⟶ 𝐸 × 𝐸𝜃.

One readily computes that in fact 𝜙 is defined over ℚ.
We denote by Sel𝜙(𝐴∕ℚ) the Selmer group associated to 𝜙. For each place 𝑣 of ℚ, we denote by

𝛿𝜙,𝑣 the coboundary map

𝛿𝜙,𝑣 ∶ 𝐸(ℚ𝑣) × 𝐸𝜃(ℚ𝑣) → 𝐻1(ℚ𝑣, 𝐴[𝜙])

associated to the short exact sequence

0⟶ 𝐴[𝜙]⟶ 𝐴(ℚ̄𝑣)
𝜙

⟶ (𝐸 × 𝐸𝜃)(ℚ̄𝑣)⟶ 0.

Then the collection {im(𝛿𝜙,𝑣)}𝑣 defines a Selmer structure for𝐴[𝜙], whose associated Selmer group
is Sel𝜙(𝐴∕ℚ).
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Lemma 4.17. We have a canonical isomorphism Sel𝜙(𝐴∕ℚ) ≅ SelF (ℚ, 𝐸[2]).

Proof. With 𝜑 ∶ 𝐸 × 𝐸 → 𝐴 as in Definition 4.12, one readily checks that 𝜑−1 restricts to a 𝐺ℚ-
isomorphism between𝐴[𝜙] and the diagonal embedding of 𝐸[2] into 𝐸 × 𝐸. In this way, we iden-
tify𝐻1(ℚ,𝐴[𝜙]) and𝐻1(ℚ, 𝐸[2]). We make corresponding identifications locally at each place of
ℚ also. We will show that this identification maps Sel𝜙(𝐴∕ℚ) onto SelF (ℚ, 𝐸[2]).
For 𝑖 = 1, 2 write Δ𝑖 ∶ 𝐸 → 𝐸 × 𝐸 for the homomorphisms defined by

Δ1(𝑃) = (𝑃, 𝑃) and Δ2(𝑃) = (𝑃, −𝑃).

This gives maps

𝜑◦Δ1 ∶ 𝐸 ⟶ 𝐴 and 𝜑◦Δ2◦𝜓
−1 ∶ 𝐸𝜃 ⟶ 𝐴,

which are readily checked to be defined over ℚ. For each place 𝑣 of ℚ these maps fit into a com-
mutative diagram

where the right-most vertical maps are induced by the natural inclusions into the respective fac-
tors. On cohomology this induces a commutative diagram

The result now follows from Remark 4.4. □

Remark 4.18. One can show that the product polarisation on 𝐸 × 𝐸 descends to a polarisation on
𝐴 defined over ℚ rather than just 𝐾 as is a priori the case (this follows from the material in [15,
Section 2]). Thus, 𝐴 is a principally polarised abelian surface. We can then view the dual isogeny
to 𝜙 as an isogeny

𝜙 ∶ 𝐸 × 𝐸𝜃 ⟶ 𝐴.
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Denote by Sel𝜙(𝐸 × 𝐸𝜃∕ℚ) the associated Selmer group. It follows formally from Lemma 4.17 and
the fact that the Selmer structure C is dual to F , that we have

Sel𝜙(𝐸 × 𝐸𝜃∕ℚ) ≅ SelC (ℚ, 𝐸[2]).

With more work, one can show that the composition (in either direction) of 𝜙 and 𝜙 is multipli-
cation by 2, and that the maps

𝐴
𝜙

⟶ 𝐸 × 𝐸𝜃
𝜙

⟶ 𝐴

induce the sequence (4.7).

Remark 4.19. In the terminology of [17, Section 2], the quantity

|Sel𝜙(𝐴∕ℚ)||Sel𝜙(𝐸 × 𝐸𝜃∕ℚ)|
Lemma 4.17

=
|SelF (ℚ, 𝐸[2])||SelC (ℚ, 𝐸[2])|

is called the Tamagawa ratio associated to the isogeny 𝜙. That the Tamagawa ratio for elliptic
curves is given by a local formula goes back to Cassels [4, Theorem 1.1]. The corresponding result
for abelian varieties, which in particular can be applied to 𝐴 and 𝜙, is given by Milne in [28, Sec-
tion I.7]. This gives an alternative approach to the local formula of Lemma 4.5. We remark though
that Milne’s result is very closely related to Theorem 3.4, so this is not really a different proof.

In the next section, we will consider the 2-Selmer groups Sel2(𝐸𝑑∕𝐾) associated to quadratic
twists of 𝐸 by squarefree integers 𝑑. As the next lemma shows, this is equivalent to considering
the 2-Selmer groups associated to the quadratic twist family over ℚ of 𝐴.

Lemma 4.20. Let 𝑑 be a square free integer. Let 𝐸𝑑 denote the quadratic twist of 𝐸 by 𝑑, and let 𝐴𝑑

denote the quadratic twist of 𝐴 by 𝑑. Then we have a ℚ-isomorphism

Res𝐾∕ℚ(𝐸𝑑) ≅ 𝐴𝑑

of abelian surfaces. In particular, we have

Sel2(𝐸𝑑∕𝐾) ≅ Sel2(𝐴𝑑∕ℚ).

Proof. Both Res𝐾∕ℚ(𝐸𝑑) and 𝐴𝑑 are twists of 𝐸 × 𝐸, so we need only show that the resulting
classes in 𝐻1(𝐺ℚ,Autℚ̄(𝐸 × 𝐸)) agree. Write 𝜒𝑑 and 𝜒𝜃 for the quadratic characters associated
to ℚ(

√
𝑑)∕ℚ and 𝐾∕ℚ, respectively.

Fix 𝜎 ∈ 𝐺ℚ. Fix an isomorphism 𝜙1 ∶ 𝐸
∼
⟶ 𝐸𝑑 such that 𝜑−11 ◦𝜎𝜑1 = 𝜒𝑑(𝜎), and write 𝜑2 for

the isomorphism 𝐸𝑑 × 𝐸𝑑
∼
⟶ Res𝐾∕ℚ(𝐸𝑑) of Definition 4.12. This gives a ℚ̄-isomorphism

Υ = 𝜑2◦(𝜑1 × 𝜑1)∶ 𝐸 × 𝐸
∼
⟶ Res𝐾∕ℚ(𝐸𝑑).
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The resulting cocycle satisfies, for 𝑃,𝑄 ∈ 𝐸(ℚ̄) × 𝐸(ℚ̄),

(Υ−1◦𝜎Υ)(𝑃, 𝑄) =

{
(𝜒𝑑(𝜎)𝑃, 𝜒𝑑(𝜎)𝑄) 𝜒𝜃(𝜎) = 1,

(𝜒𝑑(𝜎)𝑄, 𝜒𝑑(𝜎)𝑃) 𝜒𝜃(𝜎) = −1.

On the other hand, fix 𝜓1 ∶ 𝐸 × 𝐸
∼
⟶ 𝐴 as in Definition 4.12, and fix also 𝜓2 ∶ 𝐴

∼
⟶ 𝐴𝑑 such

that 𝜓−1
2
𝜓2 = 𝜒𝑑. Writing Υ′ = 𝜓2◦𝜓1, one readily computes that Υ′−1◦𝜎Υ′ is given by the same

formula as Υ−1𝜎Υ, giving the result. □

Remark 4.21. For each squarefree integer 𝑑, Definition 4.16 gives an isogeny

𝜙𝑑 ∶ Res𝐾∕ℚ(𝐸𝑑)⟶ 𝐸𝑑 × 𝐸𝑑𝜃.

Via Lemma 4.20, we view 𝜙𝑑 as an isogeny from 𝐴𝑑 to 𝐸𝑑 × 𝐸𝑑𝜃. One readily checks that the
standard identification of 𝐴[2] with 𝐴𝑑[2] identifies 𝐴[𝜙] and 𝐴𝑑[𝜙𝑑].

5 QUADRATIC TWISTS AND A DISTRIBUTION RESULT

Recall that 𝐾 = ℚ(
√
𝜃)∕ℚ is a quadratic extension, 𝐺 = Gal(𝐾∕ℚ) and 𝐸∕ℚ is an elliptic curve.

We now consider the effect of replacing 𝐸∕ℚ by its quadratic twist 𝐸𝑑∕ℚ, for a squarefree integer
𝑑. We denote by F𝑑 and C𝑑 the Selmer structures of the previous section with local conditions
F (𝐸𝑑∕ℚ𝑣) and C (𝐸𝑑∕ℚ𝑣), respectively. We have associated Selmer groups SelF𝑑

(ℚ, 𝐸𝑑[2]) and
SelC𝑑

(ℚ, 𝐸𝑑[2]). For a squarefree integer 𝑑 we write 𝜒𝑑 ∶ 𝐺ℚ → {±1} for the associated quadratic
character defined by

𝜒𝑑(𝜎) = 𝜎(
√
𝑑)∕
√
𝑑.

5.1 The cokernel of the local normmap

It turns out that the cokernel of the local normmap varies in a predictable way as we vary 𝑑. First,
we fix some notation.

Notation 5.1. Fix a choice Σ of a finite set of places of ℚ containing the real place, 2, all primes
which ramify in 𝐾∕ℚ, and all primes at which 𝐸 has bad reduction.

We begin with the following observation.

Lemma 5.2. Let 𝑝 ∉ Σ be a prime divisor of 𝑑. Then 𝐸𝑑(ℚ
nr
𝑝 ) has no points of exact order 4. In

particular, the same is true of 𝐸𝑑(ℚ𝑝).

Proof. By assumption 𝐸 has good reduction at 𝑝, so 𝐸[4] is unramified at 𝑝 (that is, the iner-
tia group 𝐼𝑝 at 𝑝 acts trivially on 𝐸[4]). Thus, any element 𝜎 of 𝐼𝑝 acts on 𝐸𝑑[4] as multiplica-
tion by 𝜒𝑑(𝜎). Since 𝜒𝑑 is ramified at 𝑝 by assumption, the restriction of 𝜒𝑑 to 𝐼𝑝 is non-trivial
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and one has

𝐸𝑑[4]
𝐼𝑝 = {𝑃 ∈ 𝐸𝑑[4] ∣ 𝑃 = −𝑃} = 𝐸𝑑[2],

giving the result. □

Lemma 5.3. Let 𝑑 be a squarefree integer, let 𝑝 ∉ Σ be a prime, and let 𝔭 be a prime of 𝐾 lying over
𝑝. Then

dim𝐸𝑑(ℚ𝑝)∕𝑁𝐾𝔭∕ℚ𝑝
𝐸𝑑(𝐾𝔭) =

{
2 𝑝 ∣ 𝑑, 𝑝 inert in 𝐾∕ℚ, dim𝐸(ℚ𝑝)[2] = 2,

0 otherwise.

Proof. If 𝑝 splits in𝐾, then the local extension𝐾𝔭∕ℚ𝑝 is trivial, so that𝑁𝐾𝔭∕ℚ𝑝
is the identity map

on 𝐸𝑑(ℚ𝑝).
Next, suppose that 𝑝 ∤ 𝑑. Since also 𝑝 ∉ Σ, 𝐸𝑑 has good reduction at 𝑝, and 𝐾𝔭∕ℚ𝑝 is unrami-

fied. It follows from [24, Corollary 4.4] that 𝑁𝐾𝑤∕ℚ𝑝
is surjective, giving the result.

Now suppose that𝑝 ∣ 𝑑 and𝑝 is inert in𝐾∕ℚ. In particular, the local extension𝐾𝔭∕ℚ𝑝 is unram-
ified of degree 2. Lemma 5.2 and a dimension count then show that the horizontal maps (induced
by the inclusion of 𝐸𝑑(𝐾𝔭)[2] into 𝐸𝑑(𝐾𝔭)) in the commutative square

are isomorphisms. Let 𝜎 denote the non-trivial element of Gal(𝐾𝔭∕ℚ𝑝). Since −1 acts trivially on
𝐸𝑑(𝐾𝔭)[2], we have a short exact sequence

0 → 𝐸𝑑(ℚ𝑝)[2]⟶ 𝐸𝑑(𝐾𝔭)[2]
1+𝜎
⟶ 𝑁𝐾𝔭∕ℚ𝑝

(
𝐸𝑑(𝐾𝔭)[2]

)
→ 0.

We thus have

dim𝐸𝑑(ℚ𝑝)∕𝑁𝐾𝔭∕ℚ𝑝
𝐸𝑑(𝐾𝔭) = dim𝐸𝑑(ℚ𝑝)[2]∕𝑁𝐾𝔭∕ℚ𝑝

(
𝐸𝑑(𝐾𝔭)[2]

)
= 2dim𝐸𝑑(ℚ𝑝)[2] − dim𝐸𝑑(𝐾𝔭)[2]

= 2 dim𝐸(ℚ𝑝)[2] − dim𝐸(𝐾𝔭)[2].

It remains to break into cases according to dim𝐸(ℚ𝑝)[2] = 0, 1, 2. If dim𝐸(ℚ𝑝)[2] ≠ 1 then
dim𝐸(ℚ𝑝)[2] = dim𝐸(𝐾𝔭)[2] since the 2-torsion field ℚ𝑝 or is the splitting field of an irreducible
cubic. In the case that dim𝐸(ℚ𝑝)[2] = 1, since 𝐸 has good reduction at 𝑝 the field extension
ℚ𝑝(𝐸[2])∕ℚ𝑝 is unramified. Thus we have dim𝐸(𝐾𝔭)[2] = 2, completing the proof. □

Remark 5.4. At primes𝑝 ∈ Σ the cokernel of the local normmap ismore complicated and depends
on the reduction type of 𝐸𝑑∕ℚ𝑝. See [20] or [19] for more details. However, since the isomorphism
class of 𝐸𝑑 over ℚ𝑝 depends only on the class of 𝑑 in ℚ×

𝑝∕ℚ
×2
𝑝 , the same is true of the cokernel of

the local norm map.
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To ease notation in what follows, we make the following definition.

Notation 5.5. For a squarefree integer 𝑑, write

g(𝑑) ∶=
∑

𝑣 place of ℚ

dim𝐸𝑑(ℚ𝑣)∕𝑁𝐾𝑤∕ℚ𝑣
𝐸𝑑(𝐾𝑤)

where for a place 𝑣 of ℚ, we denote by 𝑤 a choice of extension of 𝑣 to 𝐾. Further, write

𝜔𝐸,𝐾(𝑑) ∶= #

{
𝑝 ∣ 𝑑 ∶

𝑝∉Σ
𝑝 inert in 𝐾∕ℚ
dim𝐸(ℚ𝑝)[2]=2

}
.

Note that by Lemma 4.10, the function g(𝑑) − 2 gives a lower bound for dimSel2(𝐸𝑑∕𝐾).

Proposition 5.6. As 𝑑 varies in squarefree integers, we have

g(𝑑) = 2𝜔𝐸,𝐾(𝑑) + 𝑂(1)

where the implied constant depends only on the initial curve 𝐸 and the quadratic field 𝐾.

Proof. Since the places in Σ contribute 𝑂(1) to g(𝑑), we may ignore them. The result now follows
from Lemma 5.3. □

5.2 The distribution of g(𝒅)

Notation 5.7. Let 𝛿𝐸,𝐾 be the natural density of primes 𝑝 such that 𝜔𝐸,𝐾(𝑝) = 1.

The possible values of 𝛿𝐸,𝐾 may be computed by applying the Chebotarev density theorem to
the extension 𝐾(𝐸[2])∕ℚ and are given by the following table:

𝐆𝐚𝐥(ℚ(𝑬[𝟐])∕ℚ) {𝟏} ℤ∕𝟐ℤ
𝑲≠ℚ(𝑬[𝟐])

ℤ∕𝟐ℤ
𝑲=ℚ(𝑬[𝟐])

ℤ∕𝟑ℤ
𝑺𝟑

𝑲⊈ℚ(𝑬[𝟐])
𝑺𝟑

𝑲⊆ℚ(𝑬[𝟐])

𝛿𝐸,𝐾 1∕2 1∕4 0 1∕6 1∕12 0

In the following result of Erdős–Kac type, we determine the asymptotic distribution of the func-
tion g(𝑑)when the 2-torsion field of 𝐸 does not interact with 𝐾. Since dimSel2(𝐸𝑑∕𝐾) ⩾ g(𝑑) − 2

by Lemma 4.10, this shows that dimSel2(𝐸𝑑∕𝐾) is (in a precise sense) typically at least as large as
a constant times log log(𝑑).

Proposition 5.8. Suppose that ℚ(𝐸[2]) ∩ 𝐾 = ℚ. Further, for a squarefree integer 𝑑 write

𝜇(𝑑) ∶= 2𝛿𝐸,𝐾 log log |𝑑| and 𝜎(𝑑) ∶=
√
4𝛿𝐸,𝐾 log log |𝑑|.

Then the quantity

g(𝑑) − 𝜇(𝑑)

𝜎(𝑑)
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follows a standard normal distribution. That is, for all 𝑧 ∈ ℝ we have

lim
𝑋→∞

#
{|𝑑| ⩽ 𝑋 squarefree ∶

g(𝑑)−𝜇(𝑑)

𝜎(𝑑)
⩽ 𝑧
}

#{|𝑑| ⩽ 𝑋 squarefree}
=

1√
2𝜋 ∫

𝑧

−∞
𝑒−𝑡

2∕2𝑑𝑡.

Proof. Let 𝛾(𝑑) ∶= 2𝜔𝐸,𝐾(𝑑). Since by Proposition 5.6 this differs from g(𝑑) by a bounded amount,
it is enough to prove the same assertionwith g replaced by 𝛾.Moreover, since this function satisfies
𝛾(𝑑) = 𝛾(−𝑑), it is enough to prove that 𝛾 has this distribution on the positive squarefree integers.
We will do this by combining the method of moments with [10, Proposition 4]. Specifically, in the
notation of that proposition, take

 ∶= {𝑑 squarefree ∶ 1 ⩽ 𝑑 ⩽ 𝑋}

and

 ∶=
{
𝑝 prime ∶ 𝑝 ⩽ 𝑋𝜖(𝑋)

}
for a function 𝜖(𝑋) = 𝑜(1) to be chosen later. Further, let 𝛾 be the strongly additive function
which agrees with 𝛾 for 𝑝 ∈  , and takes the value 0 on primes 𝑝 ∉  . Note that, still using the
notation of [10, Proposition 4] we can take

ℎ(𝑑) =
∏
𝑝∣𝑑

𝑝

𝑝 + 1
, 𝑟𝑑 ≪ 𝑑

√
𝑋, 𝑥 =

6𝑋

𝜋2
+ 𝑂(

√
𝑋), and 𝑀 = 2,

along with

𝜇 (𝛾) =
∑
𝑝∈

2𝜔𝐸,𝐾(𝑝)
1

𝑝 + 1

and

𝜎 (𝛾)2 =
∑
𝑝∈

4𝜔𝐸,𝐾(𝑝)
𝑝

(𝑝 + 1)2
.

Using the explicit form of the Chebotarev density theorem given in [21], standard arguments give

𝜇 (𝛾) = 2𝛿𝐸,𝐾 log log(𝑋) + 𝑂(log 𝜖(𝑋)) and 𝜎 (𝛾)2 = 4𝛿𝐸,𝐾 log log(𝑋) + 𝑂(log 𝜖(𝑋)).

Taking 𝑋 sufficiently large in the conclusion of [10, Proposition 4] shows that for any 𝑘 ⩾ 0 we
have

1

#
∑
𝑑∈

(𝛾 (𝑑) − 𝜇 (𝛾))𝑘

{
= (𝑘 − 1)!!𝜎 (𝛾)𝑘 + 𝑂𝑘

(
𝜎 (𝛾)𝑘−2 + log log(𝑋)𝑘𝑋2𝑘𝜖(𝑋)−1∕2

)
𝑘 even,

≪𝑘 𝜎 (𝛾)𝑘−1 + log log(𝑋)𝑘𝑋2𝑘𝜖(𝑋)−1∕2 𝑘 odd.
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In particular, the 𝑘th moments of (𝛾 − 𝜇 (𝛾))∕𝜎 (𝛾) converge to those of a normal random vari-
able with mean 0 and variance 1. Note that for 𝑛 ⩽ 𝑋 we have

𝛾(𝑛) − 𝛾 (𝑛) ⩽ 2#
{
𝑝 ∣ 𝑛 ∶ 𝑝 > 𝑋𝜖(𝑋)

}
⩽

log(𝑛)

𝜖(𝑋) log(𝑋)
⩽ 𝜖(𝑋)−1.

Induction on 𝑘 (cf. [10, Deduction of Theorem 1]) now shows that, taking 𝜖(𝑋) = log log log(𝑋)−1,
we have

1

#
∑
𝑑∈

(𝛾(𝑑) − 2𝛿𝐸,𝐾 log log(𝑋))
𝑘 =

1

#
∑
𝑑∈

(𝛾 (𝑑) − 𝜇 (𝛾))𝑘 + 𝑜(log log(𝑋)𝑘∕2).

Thus, the 𝑘th moments of (𝛾 − 2𝛿𝐸,𝐾 log log(𝑋))∕
√
4𝛿𝐸,𝐾 log log(𝑋) converge as 𝑋 → ∞ to those

of the standard normal distribution. It then follows from [2, Theorem 30.2 and Example 30.1] that
𝛾 becomes normally distributed with mean 2𝛿𝐸,𝐾 log log(𝑋) and variance 4𝛿𝐸,𝐾 log log(𝑋) in the
limit 𝑋 → ∞, that is,

lim
𝑋→∞

#

{|𝑑| ⩽ 𝑋 squarefree ∶
𝛾(𝑑)−𝛿𝐸,𝐾 log log(𝑋)√

4𝛿𝐸,𝐾 log log(𝑋)
⩽ 𝑧

}
#{|𝑑| ⩽ 𝑋 squarefree}

=
1√
2𝜋 ∫

𝑧

−∞
𝑒−𝑡

2∕2𝑑𝑡.

The result now follows. □

Remark 5.9. In the last step of the proofwe have used the standard result that a function𝑓 becomes
normal as 𝑋 → ∞ with mean 𝜇(𝑋) ∶= 𝐶0 log log(𝑋) and variance 𝜎2(𝑋) ∶= 𝐶1 log log(𝑋) for
some constants 𝐶0, 𝐶1 > 0 if and only if the function (𝑓(𝑑) − 𝜇(𝑑))∕𝜎(𝑑) becomes normal as
𝑋 → ∞ with mean 0 and variance 1. This can be proved directly.

Remark 5.10. In the case that 𝐾 ⊆ ℚ(𝐸[2]), the function 𝛾(𝑑) in the proof of Proposition 5.8 is 0.
In particular, by Proposition 5.6, we have that the 𝑘th moments of g(𝑑) are bounded.

We have the following basic corollary showing that, for 100% of 𝑑, dimSel2(𝐸𝑑∕𝐾) is larger
than any fixed integer whenever the 2-torsion field of 𝐸 does not interact with 𝐾. This is in stark
contrast with the situation for the Selmer groups Sel2(𝐸𝑑∕ℚ), whose distribution is determined
by Kane in [16, Theorem 3].

Corollary 5.11. If 𝐾 ∩ ℚ(𝐸[2]) = ℚ, then for any 𝑧 ∈ ℝ we have

lim
𝑋→∞

#{|𝑑| ⩽ 𝑋 squarefree ∶ dim(Sel2(𝐸𝑑∕𝐾)) ⩽ 𝑧}

#{|𝑑| ⩽ 𝑋 squarefree}
= 0.

Proof. By Lemma 4.10, we have dimSel2(𝐸𝑑∕𝐾) ⩾ g(𝑑) − 2. The result now follows from Propo-
sition 5.8. □

Remark 5.12. By Lemma 4.20, Corollary 5.11 also applies with Sel2(𝐸𝑑∕𝐾) replaced by the Selmer
groups Sel2((Res𝐾∕ℚ𝐸)𝑑∕ℚ) associated to the quadratic twists of the Weil restriction of 𝐸 from 𝐾

to ℚ.
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6 MAIN RESULTS

Recall that 𝐾 = ℚ(
√
𝜃)∕ℚ is a quadratic extension with 𝐺 = Gal(𝐾∕ℚ). From this sec-

tion onwards, we make the restriction that our choice of elliptic curve 𝐸∕ℚ has 𝐸[2] ⊆ 𝐸(ℚ).
For a squarefree integer 𝑑, a consequence of Lemmas 4.5 and 4.6 is that, roughly speaking, the

auxiliary Selmer group SelC𝑑
(ℚ, 𝐸𝑑[2]) controls the discrepancy between dimSel2(𝐸𝑑∕𝐾) and the

function g(𝑑) of Notation 5.5. Thus, to improve on Proposition 5.8 and gain full control of the
Selmer groups Sel2(𝐸𝑑∕𝐾) as 𝑑 varies, it suffices to control these auxiliary groups. We achieve this
under the assumption that all 2-torsion of 𝐸 is defined over ℚ. Specifically, across Sections 7 and
8 we will prove that, under this assumption, the Selmer group SelC𝑑

(ℚ, 𝐸𝑑[2]) is trivial for 100%
of 𝑑.

Theorem 6.1. We have

lim
𝑋→∞

#{𝑑 squarefree ∣ |𝑑| < 𝑋, SelC𝑑
(ℚ, 𝐸𝑑[2]) = 0}

#{𝑑 squarefree ∣ |𝑑| < 𝑋}
= 1.

Remark 6.2. We will in fact show that the number of squarefree 𝑑 with |𝑑| < 𝑋 for which
SelC𝑑

(ℚ, 𝐸𝑑[2]) ≠ 0 is ≪ 𝑋 log(𝑋)−0.0394. See Theorem 8.2. It is likely that with more work this
bound could be improved significantly, however we have not attempted to do so.

Remark 6.3. By Lemma 4.3, we have

SelC𝑑
(ℚ, 𝐸𝑑[2]) = Sel2(𝐸𝑑∕ℚ) ∩ Sel2(𝐸𝑑𝜃∕ℚ)

where the intersection is taken inside 𝐻1(ℚ, 𝐸[2]). Thus, Theorem 6.1 shows that for 100% of
squarefree 𝑑, the groups Sel2(𝐸𝑑∕ℚ) and Sel2(𝐸𝑑𝜃∕ℚ) share only the identity element.

Before embarking on the proof, we use the results of previous sections to draw several conse-
quences of this theorem.

6.1 Statistical results for 2-Selmer groups

An immediate consequence of Theorem 6.1 is that the conclusion of Corollary 4.8 holds for 100%
of squarefree 𝑑 when we have full 2-torsion.

Corollary 6.4. For 100% of squarefree 𝑑 (ordered by absolute value), the Gal(𝐾∕ℚ)-action on
Sel2(𝐸𝑑∕𝐾) is trivial, and we have

dimSel2(𝐸𝑑∕𝐾) = −2 +
∑

𝑣 place of ℚ

dim𝐸𝑑(ℚ𝑣)∕𝑁𝐾𝑤∕ℚ𝑣
𝐸𝑑(𝐾𝑤). (6.5)

As a consequence, we can upgrade Proposition 5.8 to the following Erdős–Kac type result deter-
mining the distribution of the full 2-Selmer group.
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Corollary 6.6. The quantity

dimSel2(𝐸𝑑∕𝐾) − log log |𝑑|√
2 log log |𝑑|

follows a standard normal distribution. That is, for every 𝑧 ∈ ℝ we have

lim
𝑋→∞

#

{|𝑑| ⩽ 𝑋 squarefree ∶
dimSel2(𝐸𝑑∕𝐾)−log log |𝑑|√

2 log log |𝑑| ⩽ 𝑧

}
#{|𝑑| ⩽ 𝑋 squarefree}

=
1√
2𝜋 ∫

𝑧

−∞
𝑒−𝑡

2∕2𝑑𝑡.

Proof. By Corollary 6.4, among all squarefree integers 𝑑 with |𝑑| < 𝑋, outside a set of cardinality
𝑜(𝑋) we have

dimSel2(𝐸𝑑∕𝐾) = −2 +
∑

𝑣 place of ℚ

dim𝐸𝑑(ℚ𝑣)∕𝑁𝐾𝑤∕ℚ𝑣
𝐸𝑑(𝐾𝑤) = g(𝑑) − 2.

The result now follows from Proposition 5.8 noting that since 𝐸[2] ⊆ 𝐸(ℚ), we have that 𝛿𝐸,𝐾 =

1∕2. □

6.2 Statistical results for Shafarevich–Tate groups

A consequence of Corollary 6.6 is that dimSel2(𝐸𝑑∕𝐾) typically has size around log log |𝑑|. By
contrast, when 𝐸 has no cyclic 4-isogeny defined over ℚ, the dimensions of the 2-Selmer groups
of the 𝐸𝑑 over ℚ are known to be bounded on average thanks to a result of Kane [16, Theorem
3]. Thus, in this case themajority of dimSel2(𝐸𝑑∕𝐾) is attributable to the Shafarevich–Tate group.
Formalising this observation allows us to prove the analogue of Corollary 6.6 for Shafarevich–Tate
groups also.

Corollary 6.7. Assume that 𝐸 has no cyclic 4-isogeny defined over ℚ. Then the quantity

dimШ(𝐸𝑑∕𝐾)[2] − log log |𝑑|√
2 log log |𝑑|

follows a standard normal distribution. That is, for all 𝑧 ∈ ℝ we have

lim
𝑋→∞

#

{|𝑑| ⩽ 𝑋 squarefree ∶
dimШ(𝐸𝑑∕𝐾)[2]−log log |𝑑|√

2 log log |𝑑| ⩽ 𝑧

}
#{|𝑑| ⩽ 𝑋 squarefree}

=
1√
2𝜋 ∫

𝑧

−∞
𝑒−𝑡

2∕2𝑑𝑡.

Proof. Since dimШ(𝐸𝑑∕𝐾)[2] ⩽ dimSel2(𝐸𝑑∕𝐾) for all 𝑑, by Corollary 6.6 we need only show
that the limit in the statement (or more precisely the limit superior of the left-hand side of the
statement) is bounded above by Φ(𝑧) = 1√

2𝜋
∫ 𝑧
−∞ 𝑒−𝑡

2∕2𝑑𝑡.
This follows from Corollary 6.6 thanks to [16, Theorem 3], which gives adequate control of the

Mordell–Weil component of Sel2(𝐸𝑑∕𝐾). First, for any squarefree integer 𝑑, the standard short



ON 2-SELMER GROUPS OF TWISTS AFTER QUADRATIC EXTENSION 1135

exact sequence

0⟶ 𝐸𝑑(𝐾)∕2𝐸𝑑(𝐾)⟶ Sel2(𝐸𝑑∕𝐾)⟶Ш(𝐸𝑑∕𝐾)[2]⟶ 0

gives

dimШ(𝐸𝑑∕𝐾)[2] = dimSel2(𝐸𝑑∕𝐾) − dim𝐸𝑑(𝐾)∕2𝐸𝑑(𝐾).

Since 𝐾 = ℚ(
√
𝜃) and dim𝐸𝑑(𝐾)[2] = 2, we have

dim𝐸𝑑(𝐾)∕2𝐸𝑑(𝐾) = 2 + rk(𝐸𝑑∕ℚ) + rk(𝐸𝑑𝜃∕ℚ),

giving the equality

dimШ(𝐸𝑑∕𝐾)[2] = dimSel2(𝐸𝑑∕𝐾) − rk(𝐸𝑑∕ℚ) − rk(𝐸𝑑𝜃∕ℚ) − 2.

Now fix a real number 𝑧 and a positive real number𝑀. Partitioning into cases according to

rk(𝐸𝑑∕ℚ) + rk(𝐸𝑑𝜃∕ℚ) ⩽ 𝑀 or rk(𝐸𝑑∕ℚ) + rk(𝐸𝑑𝜃∕ℚ) > 𝑀

we find

#

{|𝑑| ⩽ 𝑋 squarefree ∶
dimШ(𝐸𝑑∕𝐾)[2] − log log |𝑑|√

2 log log |𝑑| ⩽ 𝑧

}

⩽ #

{|𝑑| ⩽ 𝑋 squarefree ∶
dimSel2(𝐸𝑑∕𝐾) − log log |𝑑|√

2 log log |𝑑| ⩽ 𝑧 +
𝑀 + 2√

2 log log |𝑑|
}

+ #

{|𝑑| ⩽ 𝑋 squarefree ∶ Sel2(𝐸𝑑∕ℚ) > 𝑀∕2

}

+ #

{|𝑑| ⩽ 𝑋 squarefree ∶ Sel2((𝐸𝜃)𝑑∕ℚ) > 𝑀∕2

}
.

Dividing through by the number of squarefree integers 𝑑with |𝑑| ⩽ 𝑋, taking the limsup𝑋 → ∞,
and applying Kane’s theorem [16, Theorem 3] to both 𝐸 and 𝐸𝜃 (since 𝐸 has no cyclic 4-isogeny
defined overℚ the same is true for 𝐸𝜃, allowing us to apply Kane’s result without further assump-
tions), we find as a consequence of Corollary 6.6 that

lim sup
𝑋→∞

#

{|𝑑| ⩽ 𝑋 squarefree ∶
dimШ(𝐸𝑑∕𝐾)[2]−log log |𝑑|√

2 log log |𝑑| ⩽ 𝑧

}
#{|𝑑| ⩽ 𝑋 squarefree}

⩽ Φ(𝑧) + 2
∑

𝑟⩾𝑀∕2

𝛼𝑟,

where the 𝛼𝑟 are defined in Kane’s Theorem 2. Since the 𝛼𝑟 determine a probability distribution
on the set of 𝑟 ∈ ℤ⩾0, taking the limit𝑀 →∞ gives the result. □



1136 MORGAN and PATERSON

Remark 6.8. It seems reasonable to expect that Corollary 6.7 remains true without the assumption
that 𝐸 has no cyclic 4-isogeny defined over ℚ. However, since no analogue of Kane’s result is
known in this setting we have not been able to prove this.

6.3 Statistical results for Mordell–Weil groups

We now give some consequences for the Mordell–Weil groups of the 𝐸𝑑∕𝐾. We begin with the
following algebraic results. Write 𝐺 = Gal(𝐾∕ℚ).

Notation 6.9. We write

Λ(𝐸𝑑∕𝐾) ∶= 𝐸𝑑(𝐾)∕𝐸𝑑(𝐾)tors.

We refer to this as the Mordell–Weil lattice. The action of 𝐺 on 𝐸𝑑(𝐾) makes Λ(𝐸𝑑∕𝐾) into a 𝐺-
module.

For a 𝐺-module𝑀, we denote by𝑀(−1) the 𝐺-module which is isomorphic to𝑀 as an abelian
group butwith𝐺-action twisted bymultiplication by−1. That is, the new𝐺-action of the generator
𝜎 of 𝐺 is given by

𝑚 ⟼−𝜎(𝑚).

Lemma 6.10. If SelC𝑑
(ℚ, 𝐸𝑑[2]) = 0 then there is an isomorphism of ℤ[𝐺]-modules

Λ(𝐸𝑑∕𝐾) ≅ Λ(𝐸𝑑∕ℚ) ⊕ Λ(𝐸𝑑𝜃∕ℚ)(−1).

Proof. By [5, Theorem 34.31], there exist unique 𝑎, 𝑏, 𝑐 ∈ ℤ⩾0 such that

Λ(𝐸𝑑∕𝐾) ≅ ℤ𝑎 ⊕ ℤ(−1)𝑏 ⊕ ℤ[𝐺]𝑐,

where ℤ denotes a rank 1 free ℤ-module with trivial 𝐺-action. Note that we have an inclusion of
𝐺-modules

Λ(𝐸𝑑∕𝐾)∕2Λ(𝐸𝑑∕𝐾) ⊆ Sel2(𝐸𝑑∕𝐾)∕𝛿(𝐸𝑑[2]).

The right-hand side has trivial 𝐺-action, as follows from the vanishing of SelC𝑑
(ℚ, 𝐸𝑑[2]) com-

bined with Corollary 4.8(iii). Thus,Λ(𝐸𝑑∕𝐾)∕2Λ(𝐸𝑑∕𝐾) has trivial𝐺-action also. Thus, 𝑐 = 0. Via
the natural𝐾-isomorphism 𝐸𝑑 ≅ 𝐸𝑑𝜃, we can identify the points of 𝐸𝑑(𝐾) on which the generator
of 𝐺 acts as multiplication by −1 with 𝐸𝑑𝜃(ℚ). The result follows. □

Proposition 6.11. Suppose we have 𝐸𝑑(𝐾)tors = 𝐸𝑑[2] and SelC𝑑
(ℚ, 𝐸𝑑[2]) = 0. Then there is an

isomorphism of ℤ[𝐺]-modules

𝐸𝑑(𝐾) ≅ 𝔽22 ⊕ Λ(𝐸𝑑∕ℚ) ⊕ Λ(𝐸𝑑𝜃∕ℚ)(−1).
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Proof. By Lemma 6.10, we must have

Λ(𝐸𝑑∕𝐾) ≅ Λ(𝐸𝑑∕ℚ) ⊕ Λ(𝐸𝑑𝜃∕ℚ)(−1). (6.12)

As a consequence, take  to be a ℤ-basis for Λ(𝐸𝑑∕𝐾) such that for all 𝑣 ∈  we have 𝜎(𝑣) ∈
{𝑣, −𝑣}. Let ̃ be a lift of to 𝐸𝑑(𝐾). Note that 𝐸𝑑(𝐾)∕2𝐸𝑑(𝐾) has a basis comprising the images of
the elements of ̃ and two linearly independent vectors from the submodule 𝐸𝑑(𝐾)tors = 𝐸𝑑[2] ≅

𝔽2
2
.
For each 𝑣 ∈ ̃, we have 𝜎(𝑣) = ±𝑣 + 𝑢 for some 𝑢 ∈ 𝐸𝑑[2]. Since SelC𝑑

(ℚ, 𝐸𝑑[2]) = 0, the
𝐺-action on 𝐸𝑑(𝐾)∕2𝐸𝑑(𝐾) is trivial by Corollary 4.8(iii). In particular, ±𝑣 + 𝑢 = 𝜎(𝑣) ≡ 𝑣 in
𝐸𝑑(𝐾)∕2𝐸𝑑(𝐾), and so 𝑢 ∈ 2𝐸𝑑(𝐾). Since 𝐸𝑑(𝐾) has no 4–torsion, 𝑢 = 0 and so 𝜎(𝑣) = ±𝑣. Thus,
the morphism of abelian groups Λ(𝐸𝑑∕𝐾) → 𝐸𝑑(𝐾) induced by the lift ̃ of  is one of ℤ[𝐺]–
modules, so we have

𝐸𝑑(𝐾) ≅ 𝐸𝑑[2] ⊕ Λ(𝐸𝑑∕𝐾).

The result then follows from (6.12). □

Corollary 6.13. For 100% of squarefree 𝑑, there is an isomorphism of ℤ[𝐺]-modules

𝐸𝑑(𝐾) ≅ 𝔽22 ⊕ Λ(𝐸𝑑∕ℚ) ⊕ Λ(𝐸𝑑𝜃∕ℚ)(−1). (6.14)

More precisely, we have

lim
𝑋→∞

#{𝑑 squarefree ∣ |𝑑| < 𝑋, (6.14) holds}
#{𝑑 squarefree ∣ |𝑑| < 𝑋}

= 1.

Proof. Note that for each odd prime 𝑝, at most two quadratic twists of 𝐸 have rational 𝑝-torsion
(otherwise 𝐸 would have at least 3-dimensional 𝑝-torsion over a multiquadratic extension, which
is impossible). In particular, for each odd prime𝑝, only finitelymany twists of𝐸 canhave𝑝-torsion
over 𝐾. Consequently, by Mazur’s torsion theorem [22, Theorem 8], outside of a finite set of 𝑑 we
have𝐸𝑑(𝐾)tors ⊆ 𝐸[2∞]. Moreover, by Lemma 5.2, only finitelymany quadratic twists have a point
of order 4. The result now follows from Theorem 8.2 and Proposition 6.11. □

6.4 Twists of the Weil restriction of scalars

In light of Section 4.3, we can recast the above results in terms of the restriction of scalars
Res𝐾∕ℚ(𝐸) of 𝐸 from𝐾 toℚ. To ease notation we write𝐴 in place of Res𝐾∕ℚ(𝐸). Thus,𝐴 is a prin-
cipally polarised abelian surface over ℚ. For a squarefree integer 𝑑, we write 𝐴𝑑 for the quadratic
twist of 𝐴 by 𝑑. For each 𝑑, write

𝜙𝑑 ∶ 𝐴𝑑 ⟶ 𝐸𝑑 × 𝐸𝑑𝜃

for the isogeny of Remark 4.21, write 𝜙𝑑 for its dual, and denote by Sel𝜙(𝐴𝑑∕ℚ) and Sel𝜙𝑑 (𝐸𝑑 ×
𝐸𝑑𝜃∕ℚ) the associated Selmer groups.
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Theorem 6.15. In the notation above, we have the following.

(i) The quantity

dimSel2(𝐴𝑑∕ℚ) − log log |𝑑|√
2 log log |𝑑|

follows a standard normal distribution. That is, for every 𝑧 ∈ ℝ we have

lim
𝑋→∞

#

{|𝑑| ⩽ 𝑋 squarefree ∶
dimSel2(𝐴𝑑∕ℚ)−log log |𝑑|√

2 log log |𝑑| ⩽ 𝑧

}
#{|𝑑| ⩽ 𝑋 squarefree}

=
1√
2𝜋 ∫

𝑧

−∞
𝑒−𝑡

2∕2𝑑𝑡.

(ii) For 100% of squarefree𝑑 ordered by absolute value, the group Sel𝜙𝑑 (𝐸𝑑 × 𝐸𝑑𝜃∕ℚ) is trivial.More-
over we have

dimSel2(𝐴𝑑∕ℚ) = dimSel𝜙𝑑 (𝐴𝑑∕ℚ) − 2,

and dimSel2(𝐴𝑑∕ℚ) is given by the formula on the right-hand side of (6.5).

Proof. The first part follows from Corollary 6.6 and Lemma 4.20. Using Lemma 4.17, Remark 4.18
and Lemma 4.20, the second part is then an immediate consequence of Theorem 6.1, Corol-
lary 4.8(i) and Corollary 6.4. □

Remark 6.16. Assume that 𝐸 has no cyclic 4-isogeny defined over ℚ. Then, since Ш(𝐴𝑑∕ℚ) ≅

Ш(𝐸𝑑∕𝐾), as a consequence of Corollary 6.7 we can replace Sel2(𝐴𝑑∕ℚ) with Ш(𝐴𝑑∕ℚ)[2] in
Theorem 6.15.

7 EXPLICIT LOCAL CONDITIONS FOR FULL 2-TORSION

In this section, we make preparations for the proof of Theorem 6.1 by making the results of Sec-
tion 4 explicit in the case that 𝐸 has full rational 2-torsion.
Recall that𝐾 = ℚ(

√
𝜃)∕ℚ is a quadratic extension and 𝐸∕ℚ is a fixed elliptic curve with 𝐸[2] ⊆

𝐸(ℚ). Further, we fix a Weierstrass equation

𝐸∕ℚ ∶ 𝑦2 = (𝑥 − 𝑎1)(𝑥 − 𝑎2)(𝑥 − 𝑎3) (7.1)

for 𝐸 where, without loss of generality, 𝑎1, 𝑎2, 𝑎3 ∈ ℤ. Set 𝛼 = 𝑎1 − 𝑎2, 𝛽 = 𝑎1 − 𝑎3, and 𝛾 = 𝑎2 −

𝑎3. Note that the primes of bad reduction for 𝐸 all divide 2𝛼𝛽𝛾, and that 𝐸[2] = {𝑂, 𝑃1, 𝑃2, 𝑃3}

where 𝑃𝑖 = (𝑎𝑖, 0).
As in Notation 5.1, we fix a finite set Σ of places of ℚ containing the real place, the prime 2, all

primes which ramify in𝐾∕ℚ, and all primes at which 𝐸 has bad reduction. Note in particular that
Σ contains all primes dividing 2𝛼𝛽𝛾.
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7.1 Quadratic twists

Let 𝑑 be a squarefree integer. The quadratic twist 𝐸𝑑∕ℚ is given by the Weierstrass equation

𝐸𝑑 ∶ 𝑦
2 = (𝑥 − 𝑑𝑎1)(𝑥 − 𝑑𝑎2)(𝑥 − 𝑑𝑎3).

We have 𝐸𝑑[2] = {𝑂, 𝑃1,𝑑, 𝑃2,𝑑, 𝑃3,𝑑} where 𝑃𝑖,𝑑 = (𝑑𝑎𝑖, 0).
The following lemmadescribes the local conditionsC (𝐸𝑑∕ℚ𝑣) ofDefinition 4.1 at primes𝑝 ∉ Σ.

For a place 𝑣 of ℚ, we denote by 𝛿𝑑,𝑣 ∶ 𝐸𝑑(ℚ𝑣)∕2𝐸𝑑(ℚ𝑣) ↪ 𝐻1(ℚ𝑣, 𝐸𝑑[2]) the coboundary map
associated to the sequence (2.2) with 𝐴 = 𝐸𝑑 and 𝐹 = ℚ.

Lemma 7.2. Let 𝑝 be a prime with 𝑝 ∉ Σ. Then:

(i) if 𝑝 ∤ 𝑑, we have

C (𝐸𝑑∕ℚ𝑝) = S (𝐸𝑑∕ℚ𝑝) = 𝐻1
nr(ℚ𝑝, 𝐸𝑑[2]),

(ii) if 𝑝 ∣ 𝑑 is split in 𝐾∕ℚ, we have

C (𝐸𝑑∕ℚ𝑝) = S (𝐸𝑑∕ℚ𝑝) = 𝛿𝑑,𝑝(𝐸𝑑[2]),

(iii) if 𝑝 ∣ 𝑑 is inert in 𝐾∕ℚ, we have

C (𝐸𝑑∕ℚ𝑝) = 0.

Proof. Let 𝔭 be a prime of 𝐾 lying over 𝑝.

(i) By Lemma 5.3, we have 𝑁𝐾𝔭∕ℚ𝑝
𝐸𝑑(𝐾𝔭) = 𝐸𝑑(ℚ𝑝). The first equality in Lemma 4.3(ii) thus

gives

C (𝐸𝑑∕ℚ𝑝) = 𝛿𝑝(𝐸𝑑(ℚ𝑝)) = S (𝐸𝑑∕ℚ𝑝).

The second equality follows from the fact that 𝑝 is odd and 𝐸𝑑 has good reduction at 𝑝.
(ii) When 𝑝 splits in 𝐾∕ℚ the local extension 𝐾𝔭∕ℚ𝑝 is trivial, so C (𝐸𝑑∕ℚ𝑝) = S (𝐸𝑑∕ℚ𝑝) by

definition. For the second equality, since 𝑝 ∤ 2∞, we have dimS (𝐸𝑑∕ℚ𝑝) = dim𝐸𝑑[2]. In
particular, it suffices to show that the restriction of 𝛿𝑑,𝑝 to 𝐸𝑑[2] is injective, which follows
from Lemma 5.2.

(iii) By Lemma 5.3 and the fact that 𝐸 has full 2-torsion, it follows from a dimension count that
𝑁𝐾𝔭∕ℚ𝑝

𝐸(𝐾𝔭) = 2𝐸(ℚ𝑝). The result now follows from Lemma 4.3. □

Remark 7.3. Taking orthogonal complements, the above result also determines the local groups
F (𝐸𝑑∕ℚ𝑝) for 𝑝 ∉ Σ.

7.2 Explicit local conditions

We now use the fact that 𝐸𝑑 has full rational 2-torsion to give an explicit description of
SelC𝑑

(ℚ, 𝐸𝑑[2]) as a subgroup of (ℚ×∕ℚ×2)2.
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Let 𝜆𝑖,𝑑 ∶ 𝐸𝑑[2] → 𝝁2 be the map 𝑃 ↦ (𝑃, 𝑃𝑖,𝑑)𝑒2 , where ( , )𝑒2 ∶ 𝐸𝑑[2] × 𝐸𝑑[2] → 𝝁2 is theWeil
pairing. This induces an isomorphism

(𝜆1,𝑑, 𝜆2,𝑑) ∶ 𝐸𝑑[2]
∼
⟶ 𝝁2 × 𝝁2.

Via this map, we identify 𝐻1(ℚ, 𝐸𝑑[2]) with 𝐻1(ℚ, 𝝁2) ⊕ 𝐻1(ℚ, 𝝁2) = (ℚ×∕ℚ×2)2 (cf. Exam-
ple 3.2). We similarly identify𝐻1(ℚ𝑣, 𝐸𝑑[2])with (ℚ×

𝑣 ∕ℚ
×2
𝑣 )2 for each place 𝑣 ofℚ. In this descrip-

tion, for each place 𝑣 of ℚ, the local Tate pairing

⟨ , ⟩𝑣 ∶ 𝐻1(ℚ𝑣, 𝐸𝑑[2]) × 𝐻1(ℚ𝑣, 𝐸𝑑[2]) → ℚ∕ℤ

becomes the pairing (ℚ×
𝑣 ∕ℚ

×2
𝑣 )2 × (ℚ×

𝑣 ∕ℚ
×2
𝑣 )2 → 1

2
ℤ∕ℤ ≅ 𝝁2 given by

((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ↦ (𝑥1, 𝑦2)𝑣(𝑥2, 𝑦1)𝑣, (7.4)

where ( , )𝑣 denotes the quadratic Hilbert symbol. The Kummer map 𝛿𝑑,𝑣 ∶ 𝐸𝑑(ℚ𝑣)∕2𝐸𝑑(ℚ𝑣) ↪

𝐻1(ℚ𝑣, 𝐸𝑑[2]) then becomes the map

(𝑥, 𝑦)⟼

⎧⎪⎨⎪⎩
(𝑥 − 𝑑𝑎1, 𝑥 − 𝑑𝑎2) 𝑥 ∉ {𝑑𝑎1, 𝑑𝑎2},

(𝛼𝛽, 𝑑𝛼) (𝑥, 𝑦) = (𝑑𝑎1, 0),

(−𝑑𝛼,−𝛼𝛾) (𝑥, 𝑦) = (𝑑𝑎2, 0).

(7.5)

See, for example, [33, Proposition X.1.4].

7.3 The group 𝐒𝐞𝐥C̃𝒅
(ℚ, 𝑬𝒅[𝟐])

We now define a further Selmer structure, whose associated Selmer group contains
SelC𝑑

(ℚ, 𝐸𝑑[2]) as a subgroup, and which admits a cleaner explicit description.

Definition 7.6. Define the Selmer structure C̃𝑑 for 𝐸𝑑[2] (viewed as a 𝐺ℚ-module) via the local
conditions

C̃ (𝐸𝑑∕ℚ𝑣) =

{
C (𝐸𝑑∕ℚ𝑣) 𝑣 ∉ Σ,

𝐻1(ℚ𝑣, 𝐸[2]) 𝑣 ∈ Σ.

Denote by SelC̃𝑑
(ℚ, 𝐸𝑑[2]) the associated Selmer group.

Note that by construction, SelC̃𝑑
(ℚ, 𝐸𝑑[2]) contains SelC𝑑

(ℚ, 𝐸𝑑[2]) as a subgroup. In par-
ticular, if SelC̃𝑑

(ℚ, 𝐸𝑑[2]) is trivial, then so is SelC𝑑
(ℚ, 𝐸𝑑[2]). The advantage of considering

SelC̃𝑑
(ℚ, 𝐸𝑑[2]) is that now Lemma 7.2 describes all non-trivial Selmer conditions.

Notation 7.7. Write 𝑁 for the squarefree product of all (finite) primes 𝑝 ∈ Σ. Further, write 𝑑 =

𝑎𝑑′𝑑′′, where 𝑑′ is the product of all primes 𝑝 ∣ 𝑑 such that both 𝑝 ∉ Σ and 𝑝 splits in 𝐾∕ℚ, and
𝑑′′ is the product of all primes 𝑝 ∣ 𝑑 such that both 𝑝 ∉ Σ and 𝑝 is inert in 𝐾∕ℚ.
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For 𝑑 ∈ ℤ squarefree, we identify 𝐻1(ℚ, 𝐸𝑑[2]) with (ℚ×∕ℚ×2)2 as in Section 7.2, and further
identify (ℚ×∕ℚ×2)2 with the set of pairs of squarefree integers. For a prime 𝑝 and an integer 𝑛
coprime to 𝑝, we write ( 𝑛

𝑝
) for the Legendre symbol taking value 1 if 𝑛 is a square modulo 𝑝, and

−1 else.

Proposition 7.8. With the notation and identifications of Notation 7.7, the Selmer group
SelC̃𝑑

(ℚ, 𝐸𝑑[2]) consists of pairs (𝑥1, 𝑥2) of squarefree integers such that the following conditions
all hold:

(i) we have 𝑥𝑖 ∣ 𝑁𝑑′ for 𝑖 = 1, 2,
(ii) we have ( 𝑥𝑖

𝑝
) = 1 for all 𝑝 ∣ 𝑑′′ and for 𝑖 = 1, 2,

(iii) for all 𝑝 ∣ 𝑑′ we have

(𝑥1, 𝑑𝛼)𝑝(𝑥2, 𝛼𝛽)𝑝 = 1 = (𝑥1, −𝛼𝛾)𝑝(𝑥2, −𝑑𝛼)𝑝.

Proof. By Lemma 7.2 and the definition of the local groups C̃ (𝐸𝑑∕ℚ𝑣), we have C̃ (𝐸𝑑∕ℚ𝑝) =

0 for all primes 𝑝 with 𝑝 ∉ Σ such that both 𝑝 ∣ 𝑑 and 𝑝 is inert in 𝐾∕ℚ, and C̃ (𝐸𝑑∕ℚ𝑝) =

𝐻1
nr(ℚ𝑝, 𝐸𝑑[2]) for each prime 𝑝 such that both 𝑝 ∉ Σ and 𝑝 ∤ 𝑑. These conditions are equiva-

lent to conditions (i) and (ii) in the statement. Since in the definition of SelC̃𝑑
(ℚ, 𝐸𝑑[2]) there are

no conditions imposed at primes 𝑝 ∈ Σ, in light of Lemma 7.2(ii) it suffices to show that condition
(iii) is equivalent to the condition that

(𝑥1, 𝑥2) ∈ S (𝐸𝑑∕ℚ𝑝) = 𝛿𝑑,𝑝(𝐸𝑑[2])

for each prime𝑝 ∣ 𝑑 such that both𝑝 ∉ Σ and𝑝 splits in𝐾∕ℚ. SinceS (𝐸𝑑∕ℚ𝑝) is its own orthogo-
nal complement under the local Tate pairing, (𝑥1, 𝑥2) is inS (𝐸𝑑∕ℚ𝑝) if and only if it pairs trivially
with each element of 𝛿𝑑,𝑝(𝐸𝑑[2]). Now 𝑃𝑑,1 = (𝑑𝑎1, 0) and 𝑃𝑑,2 = (𝑑𝑎2, 0) is a basis for 𝐸𝑑[2], and
by (7.5) we have

𝛿𝑑,𝑝(𝑃𝑑,1) = (𝛼𝛽, 𝑑𝛼) ∈
(
ℚ×
𝑝∕ℚ

×2
𝑝

)2
and 𝛿𝑑,𝑝(𝑃𝑑,2) = (−𝑑𝛼,−𝛼𝛾) ∈

(
ℚ×
𝑝∕ℚ

×2
𝑝

)2
.

By (7.4), (𝑥1, 𝑥2) pairs trivially with both of these elements under the local Tate pairing at 𝑝 if and
only if

(𝑥1, 𝑑𝛼)𝑝(𝑥2, 𝛼𝛽)𝑝 = 1 = (𝑥1, −𝛼𝛾)𝑝(𝑥2, −𝑑𝛼)𝑝.

The result follows. □

8 PROOF OF THEOREM 6.1

Recall that 𝐾 = ℚ(
√
𝜃)∕ℚ is a quadratic extension with Galois group 𝐺, and 𝐸∕ℚ is an elliptic

curve over ℚ with 𝐸[2] ⊆ 𝐸(ℚ), and given by a Weierstrass equation

𝐸∕ℚ ∶ 𝑦2 = (𝑥 − 𝑎1)(𝑥 − 𝑎2)(𝑥 − 𝑎3) (8.1)

for 𝑎1, 𝑎2, 𝑎3 ∈ ℤ. Recall also that we have defined integers 𝛼 = 𝑎1 − 𝑎2, 𝛽 = 𝑎1 − 𝑎3, and 𝛾 =

𝑎2 − 𝑎3, and that the integer𝑁 is taken to be the product of all primes in the set Σ of Notation 5.1.
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The aim of this section is to prove Theorem 6.1. Specifically, we will show the following, strictly
stronger, result.

Theorem 8.2. We have

#{𝑑 squarefree ∶ |𝑑| < 𝑋, SelC𝑑
(ℚ, 𝐸𝑑[2]) ≠ 0} ≪ 𝑋 log(𝑋)−0.0394.

In particular

lim
𝑋→∞

#{𝑑 squarefree ∶ |𝑑| < 𝑋, SelC𝑑
(ℚ, 𝐸𝑑[2]) = 0}

#{𝑑 squarefree ∶ |𝑑| < 𝑋}
= 1.

8.1 First reduction

To prove Theorem 8.2, it suffices to prove the identical result for SelC̃𝑑
(ℚ, 𝐸𝑑[2]) (cf. Definition 7.6)

in place of SelC𝑑
(ℚ, 𝐸𝑑[2]), since the latter is a subgroup of the former. We begin by defining a

further group 𝑆𝑑 determined by simpler local conditions. Specifically, we wish to ‘decouple’ the
variables 𝑥1 and 𝑥2 appearing in Proposition 7.8. We first introduce some notation.

Notation 8.3. We introduce the following three sets of primes:

0 ∶= {𝑝 ∉ Σ, 𝑝 split in 𝐾∕ℚ, and 𝑝 non-split ℚ(
√
𝛼𝛽)∕ℚ},

1 ∶= {𝑝 ∉ Σ, 𝑝 split in 𝐾∕ℚ, and 𝑝 split in ℚ(
√
𝛼𝛽)∕ℚ},

2 ∶= {𝑝 ∉ Σ, 𝑝 inert in 𝐾∕ℚ}.

(If 𝛼𝛽 is a square in ℚ we take 0 ∶= ∅ and 1 the collection of primes not in Σ which split in
𝐾∕ℚ.) Note that the sets Σ,0,1 and 2 give a partition of the set of all primes into 4 pairwise
disjoint subsets.
For 𝑖 = 0, 1, 2, we define 𝑖 to be the set of positive squarefree integers 𝑛 all of whose prime

factors lie in 𝑖 . Note that for 𝑖 ≠ 𝑗 we have 𝑖 ∩ 𝑗 = {1}. We write 𝑖 ⋅ 𝑗 for the collection of
squarefree integers 𝑛 which can be written as a product 𝑛 = 𝑛𝑖𝑛𝑗 for some 𝑛𝑖 ∈ 𝑖 and 𝑛𝑗 ∈ 𝑗 .
Note that such a decomposition is necessarily unique.

Remark 8.4. Note that provided ℚ(
√
𝛼𝛽) ⊈ 𝐾, 0 and 1 have Dirichlet density 1∕4, and 2 has

density 1∕2. If ℚ(
√
𝛼𝛽) ⊆ 𝐾 then 0 = ∅ and 1 and 2 both have Dirichlet density 1∕2.

Definition 8.5. For 𝑑 a squarefree integer, define the subgroup 𝑆𝑑 of ℚ×∕ℚ×2 as follows. First,
write (uniquely) 𝑑 = 𝑎𝑑0𝑑1𝑑2 where 𝑎 ∣ 𝑁, 𝑑0 ∈ 0, 𝑑1 ∈ 1, and 𝑑2 ∈ 2. Now define 𝑆𝑑 to be
the set of squarefree integers

𝑆𝑑 ∶=

⎧⎪⎨⎪⎩𝑥 squarefree ∶

𝑥∣𝑁𝑑0𝑑1,(
𝑥
𝑝

)
=1 for all 𝑝∣𝑑2,

(𝑥,𝑑𝛼)𝑝=1 for all 𝑝∣𝑑1

⎫⎪⎬⎪⎭.
We allow 𝑥 to be either positive or negative.
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Lemma 8.6. If a pair of squarefree integers (𝑥1, 𝑥2) is in SelC̃𝑑
(ℚ, 𝐸𝑑[2]), then 𝑥1 ∈ 𝑆𝑑.

Proof. Immediate from Proposition 7.8, noting that for 𝑝 ∣ 𝑑1, since 𝑝 is split in ℚ(
√
𝛼𝛽)∕ℚ by

assumption, the condition (𝑥1, 𝑑𝛼)𝑝(𝑥2, 𝛼𝛽)𝑝 = 1 simply becomes (𝑥1, 𝑑𝛼)𝑝 = 1. □

We will show the following. As explained below, this is sufficient to prove Theorem 8.2.

Theorem 8.7. We have

#{𝑑 squarefree ∣ |𝑑| < 𝑋, 𝑆𝑑 ≠ 0} ≪ 𝑋log(𝑋)−0.0394.

Proof of Theorem 8.2 assuming Theorem 8.7. Theorem 8.7 combined with Lemma 8.6 shows that
the 𝑥1-coordinate of any element of SelC̃𝑑

(ℚ, 𝐸𝑑[2]) is trivial for 100% of squarefree 𝑑. By symme-
try, the same must then be true of the 𝑥2-coordinate since we can relabel 𝑎1 and 𝑎2 in Equation
(7.1) for our elliptic curve in order to interchange the roles of 𝑥1 and 𝑥2. This shows the limit state-
ment of Theorem 8.2, and running the same argument but keeping track of error terms proves the
general result. □

We now begin preparations for the proof of Theorem 8.7.

8.2 Notation and preparations

Notation 8.8. Given a positive integer 𝑛 we write 𝜔(𝑛) for the number of distinct prime factors
of 𝑛. For 𝑖 = 0, 1, 2we write 𝜔𝑖(𝑛) for the number of distinct prime factors of 𝑛 which lie in 𝑖 . We
denote by 𝜇 the Möbius function.

We will use frequently the following lemma controlling generalised divisor sums.

Lemma 8.9. Let 𝑎0, 𝑎1 and 𝑎2 be non-negative real numbers. Then we have

∑
𝑋−𝑌<𝑛⩽𝑋
𝑛 squarefree

𝑎
𝜔0(𝑛)

0
𝑎
𝜔1(𝑛)

1
𝑎
𝜔2(𝑛)

2
≪

{
𝑌 log(𝑋)

𝑎0
4
+
𝑎1
4
+
𝑎2
2
−1

ℚ(
√
𝛼𝛽) ⊈ 𝐾,

𝑌 log(𝑋)
𝑎1
2
+
𝑎2
2
−1

ℚ(
√
𝛼𝛽) ⊆ 𝐾,

uniformly for 2 ⩽ 𝑋exp(−
√
log(𝑋)) ⩽ 𝑌 ⩽ 𝑋.

Proof. This follows from a (significantly more general) result of Shiu [32]. Define the multiplica-
tive function 𝑓 ∶ ℤ → ℝ⩾0 by setting, for any 𝑘 ⩾ 1, 𝑓(𝑝𝑘) = 𝑎𝑖 for 𝑝 ∈ 𝑖 (𝑖 = 0, 1, 2), and taking
𝑓(𝑝) = 1 for 𝑝 ∈ Σ. We then wish to bound the sum

∑
𝑋−𝑌<𝑛⩽𝑋 𝑓(𝑛). It follows from Remark 8.4

that we have

∑
𝑝⩽𝑋

𝑓(𝑝)

𝑝
∼

⎧⎪⎨⎪⎩
(
𝑎0
4
+

𝑎1
4
+

𝑎2
2

)
log log(𝑋) ℚ(

√
𝛼𝛽) ⊊ 𝐾,(

𝑎1
2
+

𝑎2
2

)
log log(𝑋) ℚ(

√
𝛼𝛽) ⊆ 𝐾.
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The result now follows from [32, Theorem 1] (conditions (i) and (ii) needed for that theorem follow
in our setting from well-known bounds on the divisor function). □

8.3 Reduction to computing a weighted average

To prove Theorem 8.7, we will compute bounds for a certain weighted average of #(𝑆𝑑 ⧵ {1}).
Specifically, we will prove the following.

Proposition 8.10. For any 1 < 𝛾 < 7∕8 +
√
17∕8 = 1.3903…, we have∑

|𝑑|<𝑋, 𝑑 squarefree

𝛾𝜔2(𝑑)−𝜔0(𝑑)(#𝑆𝑑 − 1) = 𝑜(𝑋). (8.11)

Moreover, for 𝛾 = 1∕4 +
√
17∕4 the left-hand side of (8.11) is≪ 𝑋log(𝑋)−0.0394.

We begin by showing that this is sufficient to prove Theorem 8.7.

Proof of Theorem 8.7 assuming Proposition 8.10. We first show that the weights are at least 1 for
100% of squarefree 𝑑. That is, we claim that

#{𝑑 squarefree || |𝑑| ⩽ 𝑋, 𝜔0(𝑑) ⩾ 𝜔2(𝑑)} ≪ 𝑋 log(𝑋)−0.042.

To see this, fixing any 𝜆 > 1 we have

#{𝑑 squarefree || |𝑑| ⩽ 𝑋, 𝜔0(𝑑) ⩾ 𝜔2(𝑑)} ⩽ 2
∑

1⩽𝑑⩽𝑋

𝜆𝜔0(𝑑)−𝜔2(𝑑).

By Lemma 8.9, the right-hand side is ≪ 𝑋 log(𝑋)𝜆∕4+1∕(2𝜆)−3∕4. Optimising over 𝜆 we find that
when 𝜆 =

√
2 the exponent is 1∕

√
2 − 3∕4 < −0.042, giving the claim.

Now fix 1 < 𝛾 < 7∕8 +
√
17∕8. By the claim we have

#
{|𝑑| ⩽ 𝑋 || 𝑆𝑑 ≠ 0

}
⩽ #

{|𝑑| ⩽ 𝑋 || 𝜔0(𝑑) ⩾ 𝜔2(𝑑)
}
+

#
{|𝑑| ⩽ 𝑋 || 𝑆𝑑 ≠ 0, 𝜔2(𝑑) > 𝜔0(𝑑)

}
≪ 𝑋 log(𝑋)−0.042 +

∑
|𝑑|⩽𝑋 𝛾

𝜔2(𝑑)−𝜔0(𝑑)(#𝑆𝑑 − 1),

where above 𝑑 is implicitly taken squarefree. The result now follows from Proposition 8.10. □

Remark 8.12. The reason for the introduction of the weight 𝛾 is that, in passing from the group
SelC𝑑

(ℚ, 𝐸𝑑[2]) to the group 𝑆𝑑, we have thrown away the Selmer conditions coming from primes
in0 in favour of reducing the number of variables involved. This leads to twists having an abnor-
mally large number of prime factors lying in 0 contributing a disproportionate amount to the
average size of 𝑆𝑑. The weight 𝛾 is introduced to compensate for this.
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8.4 Strategy of the proof of Proposition 8.10

The proof of Proposition 8.10 follows closely the argument of [8, Section 5], which has its ori-
gins in the work of Heath–Brown [12, 13]. There, Fouvry–Klüners determine asymptotics for the
moments of 4-ranks of class groups of quadratic fields. Our first step is to express the sum in Propo-
sition 8.10 as a sum of Jacobi symbols. We do this in Lemma 8.14, using ideas from [8, Lemma 16].
The resulting sum, given in (8.22), is structurally similar to the one in [8, Lemma 17]. We then
adapt the techniques used by Fouvry–Klüners to bound this sum. There are a couple of points
at which the argument we give diverges from that of Fouvry–Klüners. First, while they compute
higher moments of the sizes of class groups, we need only compute a (weighted version of) the
first moment of the size of 𝑆𝑑. Thus, the intricate study of ‘maximal unlinked subsets’ undertaken
in [8, Section 5.6] can be avoided. On the other hand, the variables 𝐷𝑖 in [8, Section 5] are allowed
to vary over all positive squarefree integers, while ours are constrained to lie in the thin families
𝑗 . This necessitates changes to the argument in Fouvry–Klüners’ first and fourth families, which
correspond to our Sections 8.6.7 and 8.6.6, respectively.

8.5 Expressing the sum in terms of Jacobi symbols

We now begin preparations for the proof of Proposition 8.10 by expressing the relevant sum in
terms of Jacobi symbols. We first define the following sums which will be ubiquitous in what
follows.

Definition 8.13. Let 𝜆 and 𝜂 be squarefree divisors (either positive or negative) of𝑁. For a tuple
(𝐷𝑖)0⩽𝑖⩽7 of coprime positive odd integers, write

𝜂,𝜆((𝐷𝑖)0⩽𝑖⩽7) ∶=

(
𝜂

𝐷2

)(
𝜆

𝐷4

)(
𝜆

𝐷6

)(
𝐷4

𝐷2

)(
𝐷2

𝐷4

)(
𝐷6

𝐷2

)(
𝐷2

𝐷6

)
×

(
𝐷1

𝐷2

)(
𝐷5

𝐷2

)(
𝐷7

𝐷2

)(
𝐷0

𝐷4

)(
𝐷3

𝐷4

)(
𝐷0

𝐷6

)(
𝐷3

𝐷6

)
.

Now for any real number 𝑋 > 1, and any positive real 𝛾, define

𝛾(𝜆, 𝜂, 𝑋) ∶=
∑

𝐷0,𝐷1∈0
𝐷2,𝐷3,𝐷4,𝐷5∈1

𝐷6,𝐷7∈2∏
𝑖 𝐷𝑖⩽𝑋

𝐷𝑖 coprime

𝛾−𝜔(𝐷0𝐷1)2−𝜔(𝐷2𝐷3𝐷4𝐷5)(2∕𝛾)−𝜔(𝐷6𝐷7)𝜂,𝜆((𝐷𝑖)0⩽𝑖⩽7),

with the additional condition that, if 𝜆 = 1, then not all of𝐷0, 𝐷2 and𝐷3 are equal to 1 in the range
of summation.

Lemma 8.14. For any positive real number 𝛾, we have∑
|𝑑|<𝑋, 𝑑 squarefree

𝛾𝜔2(𝑑)−𝜔0(𝑑)(#𝑆𝑑 − 1) =
∑
𝑎∣𝑁

∑
𝑥𝑁∣𝑁

𝛾(𝑥𝑁, −𝑎𝑥𝑁𝛼,𝑋∕𝑎), (8.15)

where the right-hand sums run over both positive and negative divisors of𝑁.
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Proof. Fix 𝑑 squarefree. As in Definition 8.5, we write 𝑑 = 𝑎𝑑0𝑑1𝑑2 where 𝑑𝑖 ∈ 𝑖 for 𝑖 = 0, 1, 2,
so that

𝑆𝑑 =

⎧⎪⎨⎪⎩𝑥 squarefree ∶

𝑥∣𝑁𝑑0𝑑1,(
𝑥
𝑝

)
=1 for all 𝑝∣𝑑2,

(𝑥,𝑑𝛼)𝑝=1 for all 𝑝∣𝑑1.

⎫⎪⎬⎪⎭.
Now fix 𝑥 ∣ 𝑁𝑑0𝑑1 and note that we have

2−𝜔(𝑑2)
∑
𝑧2∣𝑑2

(
𝑥

𝑧2

)
= 2−𝜔(𝑑2)

∏
𝑝∣𝑑2

(
1 +

(
𝑥

𝑝

))
=

{
1

(
𝑥

𝑝

)
= 1 for all 𝑝 ∣ 𝑑2

0 else,
(8.16)

where in the sum above 𝑧2 runs over all positive divisors of 𝑑2.
To deal with the conditions at primes dividing 𝑑1, we write 𝑥 uniquely as 𝑥 = 𝑥𝑁𝑥0𝑥1 where

𝑥𝑁 ∣ 𝑁 (and may be negative) 𝑥0 ∣ 𝑑0 and 𝑥1 ∣ 𝑑1. Say 𝑑0 = 𝑥0𝑦0 and 𝑑1 = 𝑥1𝑦1. Then for 𝑝 ∣ 𝑑1,
we have (noting that 𝑑1 and 𝛼 are coprime and that all 𝑝 ∣ 𝑑1 are odd)

(𝑥, 𝑑𝛼)𝑝 =

⎧⎪⎨⎪⎩
(
𝑥

𝑝

)
𝑝 ∣ 𝑦1

(𝑥, −𝑥𝑑𝛼)𝑝 =
(
−𝑎𝑥𝑁𝑦0𝑦1𝑑2𝛼

𝑝

)
𝑝 ∣ 𝑥1.

Thus, similarly to (8.16), we have

2−𝜔(𝑥1𝑦1)
∑
𝑤1∣𝑥1
𝑧1∣𝑦1

(
𝑥

𝑧1

)(
−𝑎𝑥𝑁𝑦0𝑦1𝑑2𝛼

𝑤1

)
=

{
1 (𝑥, 𝑑𝛼)𝑝 = 1 for all 𝑝 ∣ 𝑑1

0 else.
(8.17)

We now multiply (8.16) and (8.17), write 𝑑2 = 𝑧2𝑧
′
2
, 𝑥1 = 𝑤1𝑤

′
1
, and 𝑦1 = 𝑧1𝑧

′
1
, and sum over all

𝑥 = 𝑥𝑁𝑥0𝑥1 dividing 𝑁𝑑0𝑑1 to find

#𝑆𝑑 =
∑
𝑥𝑁∣𝑁

∑
𝑥0𝑦0=𝑑0

𝑤1𝑤
′
1
𝑧1𝑧

′
1
=𝑑1

𝑧2𝑧
′
2
=𝑑2

2−𝜔(𝑤1𝑤
′
1
𝑧1𝑧

′
1
𝑧2𝑧

′
2
)

(
𝑥𝑁𝑥0𝑤1𝑤

′
1

𝑧2

)(
𝑥𝑁𝑥0𝑤1𝑤

′
1

𝑧1

)(
−𝑎𝑥𝑁𝑦0𝑧1𝑧

′
1
𝑧2𝑧

′
2
𝛼

𝑤1

)
,

where 𝑥𝑁 may be negative but all other variables are positive and coprime. Note that we necessar-
ily have 𝑥0, 𝑦0 ∈ 0,𝑤1,𝑤

′
1
, 𝑧1, 𝑧

′
1
∈ 1 and 𝑧2, 𝑧′2 ∈ 2, so that in particular 𝜔0(𝑑) = 𝜔(𝑥0𝑦0) and

𝜔2(𝑑) = 𝜔(𝑧2𝑧
′
2
). Moreover, the identity element in 𝑆𝑑 corresponds to 𝑥𝑁 = 𝑥0 = 𝑤1 = 𝑤′

1
= 1.

Thus, restricting the range of summation so that not all of these variables are 1 counts #𝑆𝑑 − 1

instead. To conclude we sum the resulting expression for#𝑆𝑑 − 1 over all squarefree 𝑑 = 𝑎𝑑0𝑑1𝑑2
with |𝑑| ⩽ 𝑋, weighted by 𝛾𝜔2(𝑑)−𝜔0(𝑑), and relabel variables (𝑥0, 𝑦0, 𝑤1, 𝑤

′
1
, 𝑧1, 𝑧

′
1
, 𝑧2, 𝑧

′
2
) =

(𝐷0, 𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5, 𝐷6, 𝐷7). □

Remark 8.18. The proof above shows that the reason for excluding the terms where 𝜆 = 𝐷0 =

𝐷2 = 𝐷3 = 1 in the definition of 𝛾(𝜆, 𝜂, 𝑋) above is to remove the identity element of 𝑆𝑑 from
the count.
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Now fix 1 < 𝛾 < 7∕8 +
√
17∕8 as in the statement of Proposition 8.10. In light of Lemma 8.14,

we want to study the sums 𝛾(𝜆, 𝜂, 𝑋).
Definition 8.19. As a book-keeping device, we define the function Φ(𝑖, 𝑗) (0 ⩽ 𝑖 ≠ 𝑗 ⩽ 7) by set-
ting Φ(𝑖, 𝑗) = 1 if the Jacobi symbol

(
𝐷𝑖
𝐷𝑗

)
appears in the definition of 𝜂,𝜆((𝐷𝑖)0⩽𝑖⩽7), and 0 else.

We say that two indices 𝑖 and 𝑗 are linked if Φ(𝑖, 𝑗) + Φ(𝑗, 𝑖) = 1.

Note that the sets of linked indices are

{1, 2}, {2, 5}, {2, 7}, {0, 4}, {3, 4}, {0, 6}, {3, 6}. (8.20)

Notation 8.21. To write the sums 𝛾(𝜆, 𝜂, 𝑋) in a manageable way, set 𝜇𝑖 to be 1 if ( 𝜂𝐷𝑖 ) appears in𝜂,𝜆((𝐷𝑖)0⩽𝑖⩽7) and 0 else, and set 𝜈𝑖 to be 1 if (
𝜆

𝐷𝑖
) appears in 𝜂,𝜆((𝐷𝑖)0⩽𝑖⩽7) and 0 else. Further,

define

𝜅𝑖 ∶=

⎧⎪⎨⎪⎩
𝛾 𝑖 = 0, 1

2 𝑖 = 2, 3, 4, 5
2

𝛾
𝑖 = 6, 7.

Finally, we letD(𝑋) denote the set of tuples of pairwise coprime positive integers (𝐷0, … , 𝐷7) such
that all of the following hold:

∙ we have 𝐷0, 𝐷1 ∈ 0, 𝐷2, 𝐷3, 𝐷4, 𝐷5 ∈ 1, and 𝐷6, 𝐷7 ∈ 2,
∙ we have

∏7
𝑖=0 𝐷𝑖 ⩽ 𝑋,

∙ if 𝜆 = 1, then 𝐷0, 𝐷2 and 𝐷3 are not all 1.

We thus write

𝛾(𝜆, 𝜂, 𝑋) =
∑

(𝐷𝑖)∈D(𝑋)

∏
𝑖

𝜅
−𝜔(𝐷𝑖)

𝑖

∏
𝑖

(
𝜂

𝐷𝑖

)𝜇𝑖
(
𝜆

𝐷𝑖

)𝜈𝑖 ∏
𝑖≠𝑗

(
𝐷𝑖

𝐷𝑗

)Φ(𝑖,𝑗)

. (8.22)

We also define 𝑛𝑖 (0 ⩽ 𝑖 ⩽ 7), so that the 𝐷𝑖 are required to lie in 𝑛𝑖 (for example, 𝑛0 = 𝑛1 = 0).

8.6 Bounds on the sums 𝜸(𝝀, 𝜼, 𝑿)

Proposition 8.23. For any 1 < 𝛾 < 7∕8 +
√
17∕8, and for any (positive or negative) divisors 𝜆 and

𝜂 of𝑁, we have 𝛾(𝜆, 𝜂, 𝑋) = 𝑜(𝑋). Moreover, when 𝛾 = 1∕4 +
√
17∕4 we have

𝛾(𝜆, 𝜂, 𝑋) ≪ 𝑋 log(𝑋)−0.0394.

It is immediate from Lemma 8.14 that Proposition 8.23 implies Proposition 8.10 and so, via The-
orem 8.7, we obtain Theorem 8.2. The rest of the section is occupied with the proof of Proposi-
tion 8.23.
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8.6.1 The contribution from 𝐷0, 𝐷2, 𝐷3 = 1 and 𝜆 = 𝜃

Recall that 𝐾 = ℚ(
√
𝜃) for some squarefree integer 𝜃 (necessarily dividing𝑁). We first show that

the contribution to 𝛾(𝜃, 𝜂, 𝑋) coming from 𝐷0 = 𝐷2 = 𝐷3 = 1 is negligible, since leaving this in
would prevent a uniform argument at a later point. Note that when 𝐷0 = 𝐷2 = 𝐷3 = 1 all Jacobi
symbols appearing in (8.22) are equal to 1 except those that involve 𝜆 = 𝜃. Moreover, since ele-
ments of 2 are products of primes inert in 𝐾, any 𝑛 ∈ 2 has ( 𝜃𝑛 ) = 𝜇(𝑛). On the other hand, we
similarly have ( 𝜃

𝑛
) = 1 for all 𝑛 ∈ 1. Consequently, the contribution to 𝛾(𝜃, 𝜂, 𝑋) from tuples

with 𝐷0 = 𝐷2 = 𝐷3 = 1 is given by∑
(𝐷𝑖)∈D(𝑋)
𝐷0,𝐷2,𝐷3=1

𝜇(𝐷6)
∏

𝑖≠0,2,3
𝜅
−𝜔(𝐷𝑖)

𝑖
=

∑
𝑟∈0⋅1
𝑟⩽𝑋

𝛾−𝜔0(𝑟)
∑
𝑛∈2
𝑛⩽𝑋∕𝑟

𝛾𝜔(𝑛)
∑
𝑚∣𝑛

𝜇(𝑚). (8.24)

In the above, to pass from the left-hand side to the right-hand side we have set 𝑟 = 𝐷1𝐷4𝐷5 and
𝑛 = 𝐷6𝐷7, noting that, for example, given 𝑟 ∈ 0 ⋅ 1 there are 2𝜔1(𝑟)ways orwriting 𝑟 as a product
𝐷1𝐷4𝐷5 where 𝐷1 ∈ 0 and 𝐷4, 𝐷5 ∈ 1, and that this multiplicity cancels the contribution of
𝜅
−𝜔(𝐷4)

4
𝜅
−𝜔(𝐷5)
5 . Now since

∑
𝑚∣𝑛 𝜇(𝑚) is equal to 0 if 𝑛 > 1, and 1 if 𝑛 = 1, we find

|RHS of (8.24)| = ∑
𝑟∈0⋅1
𝑟⩽𝑋

𝛾−𝜔0(𝑟) ≪ 𝑋 log(𝑋)−1∕2 (8.25)

where for the bound we are using Lemma 8.9.

8.6.2 Number of prime factors of the variables

We now show that the contribution coming from 𝐷𝑖 with a large number of prime factors
is negligible. This will be important in Section 8.6.6. Set Ω = 4𝑒 ⋅ (log log(𝑋) + 𝐵0) with 𝐵0 as
in [8, Lemma 11], and let Σ1 be the contribution to 𝛾(𝜆, 𝜂, 𝑋) from the tuples (𝐷𝑖) ∈ D(𝑋)

satisfying

𝜔(𝐷𝑖) ⩾ Ω for some 0 ⩽ 𝑖 ⩽ 7. (8.26)

Writing 𝑛 =
∏

𝑖 𝐷𝑖 we have

|Σ1|≪ ∑
𝑛⩽𝑋

𝜔(𝑛)⩾Ω

2𝜔0(𝑛)4𝜔1(𝑛)2𝜔2(𝑛)

𝛾𝜔0(𝑛)2𝜔1(𝑛)(2∕𝛾)𝜔2(𝑛)
𝜇2(𝑛)

≪
∑
𝑛⩽𝑋

𝜔(𝑛)⩾Ω

𝜇2(𝑛)2𝜔(𝑛).

Applying the Cauchy–Schwarz inequality and arguing using [11, LemmaA] as in [8, Section 5.3]
(paragraph above Equation (30)) we find Σ1 ≪ 𝑋 log(𝑋)−1.
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8.6.3 Ranges of the variables

We now divide the ranges of summation into intervals, and treat these intervals separately. Specif-
ically, we set

Δ ∶= 1 +
1

log(𝑋)2
(8.27)

and divide the ranges of the variables into intervals [Δ𝑛, Δ𝑛+1] for 𝑛 = 0, 1, 2, …, noting that 1 is
the only integer in the 𝑛 = 0 interval. For 𝑖 = 0, … , 7 we let 𝐴𝑖 denote a number of the form Δ𝑛

with 1 ⩽ Δ𝑛 ⩽ 𝑋, let 𝐀 = (𝐴𝑖)0⩽𝑖⩽7, and define

𝛾(𝜆, 𝜂, 𝑋,𝐀) =
∑

(𝐷𝑖)∈D′(𝑋)
𝐴𝑖⩽𝐷𝑖⩽Δ𝐴𝑖

∏
𝑖

𝜅
−𝜔(𝐷𝑖)

𝑖

∏
𝑖

(
𝜂

𝐷𝑖

)𝜇𝑖
(
𝜆

𝐷𝑖

)𝜈𝑖 ∏
𝑖≠𝑗

(
𝐷𝑖

𝐷𝑗

)Φ(𝑖,𝑗)

, (8.28)

where, in light of Section 8.6.2 and (8.25), we define D ′(𝑋) to be the subset of D(𝑋) consisting of
tuples (𝐷𝑖)𝑖 such that𝜔(𝐷𝑖) ⩽ Ω for each 𝑖, and such that, if 𝜆 = 𝜃, then not all of𝐷0,𝐷2 and𝐷3 are
equal to 1. Since for 𝛼 small positive we have log(1 + 𝛼) ≈ 𝛼, for𝑋 large log(𝑋)∕ log(Δ) ≈ log(𝑋)3,
so there are order log(𝑋)24 expressions (8.28) as 𝐀 varies.
Following [8, Section 5.4], we split the collection of all 𝐀 into families and treat each in turn.

8.6.4 First family:
∏

𝑖 𝐴𝑖 large

To exploit oscillations of the Jacobi symbols, it will be necessary to allow the variables 𝐷𝑖 to range
(essentially) freely in the interval [𝐴𝑖, Δ𝐴𝑖]. To this end, we first deal with the case where the
product of the 𝐴𝑖 is large, where the condition Π𝑖𝐷𝑖 ⩽ 𝑋 is relevant. Specifically, the first family
of the 𝐀 is defined by the condition ∏

0⩽𝑖⩽7

𝐴𝑖 ⩾ Δ−8𝑋. (8.29)

The argument here is essentially identical to that occurring between Equations (33) and (34) of
[8]: we have ∑

𝐀 satisf ies (8.29)

|𝛾(𝜆, 𝜂, 𝑋,𝐀)| ⩽ ∑
𝐀 satisf ies (8.29)

∑
(𝐷𝑖)∈D′(𝑋)
𝐴𝑖⩽𝐷𝑖⩽Δ𝐴𝑖

∏
𝑖

𝜅
−𝜔(𝐷𝑖)

𝑖

⩽
∑

Δ−8𝑋⩽𝑛⩽𝑋

2𝜔(𝑛)

≪ (1 − Δ−8)𝑋 log(𝑋)

≪ 𝑋 log(𝑋)−1

where for the last inequality we are using

1 − Δ−8 = 1 − (1 + log(𝑋)−2)−8 = 1 − (1 − 8 log(𝑋)−2 + 𝑂(log(𝑋)−4)) ≪ log(𝑋)−2.
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Note that if 𝐀 does not satisfy (8.29) then the condition
∏

𝑖 𝐷𝑖 ⩽ 𝑋 is made automatic by the
restrictions on the intervals the 𝐷𝑖 lie in, and may henceforth be dropped.

8.6.5 Second family: Two large factors corresponding to linked indices

We introduce the parameter 𝑋† ∶= log(𝑋)78, and consider the 𝐀 such that∏
0⩽𝑘⩽7

𝐴𝑘 ⩽ Δ−8𝑋, and there exist linked indices 𝑖 ≠ 𝑗 with 𝐴𝑖, 𝐴𝑗 ⩾ 𝑋†. (8.30)

Here the argument is almost identical to that given between Equations (40) and (42) in [8], ulti-
mately relying on a result of Heath–Brown exploiting double oscillations of characters [14, Corol-
lary 4]. For such 𝐀, since 𝑖 and 𝑗 are linked we have (swapping 𝑖 and 𝑗 if necessary)

|𝛾(𝜆, 𝜂, 𝑋,𝐀)|≪ ∑
𝐴𝑘⩽𝐷𝑘⩽Δ𝐴𝑘

𝑘≠𝑖,𝑗

∏
𝑘≠𝑖,𝑗

𝜅
−𝜔(𝐷𝑘)

𝑘
|| ∑
1⩽𝐷𝑖⩽Δ𝐴𝑖
1⩽𝐷𝑗⩽Δ𝐴𝑗

𝑓(𝐷𝑖; (𝐷𝑘)𝑘≠𝑖,𝑗)g(𝐷𝑗; (𝐷𝑘)𝑘≠𝑖,𝑗)
(
𝐷𝑖

𝐷𝑗

)||,
where in the inner sum 𝐷𝑖 and 𝐷𝑗 are odd coprime integers with no further constraints,

𝑓(𝐷𝑖; (𝐷𝑘)𝑘≠𝑖,𝑗) = 𝟙𝐷𝑖∈𝑛𝑖 ,
𝐷𝑖⩾𝐴𝑖,
𝜔(𝐷𝑖)⩽Ω

⋅ 𝜅−𝜔(𝐷𝑖)
𝑖

𝜇2

(
𝐷𝑖

∏
𝑘≠𝑖,𝑗

𝐷𝑘

)(
𝜂

𝐷𝑖

)𝜇𝑖
(
𝜆

𝐷𝑖

)𝜈𝑖 ∏
𝑘≠𝑖,𝑗

(
𝐷𝑖

𝐷𝑘

)Φ(𝑖,𝑘)(𝐷𝑘

𝐷𝑖

)Φ(𝑘,𝑖)

and g(𝐷𝑗; (𝐷𝑘)𝑘≠𝑖,𝑗) is defined in the same way but with 𝑖 and 𝑗 switched. The coefficients
𝑓(𝐷𝑖; (𝐷𝑘)𝑘≠𝑖,𝑗) and g(𝐷𝑗; (𝐷𝑘)𝑘≠𝑖,𝑗) are complex numbers with absolute value < 1, so applying
[8, Lemma 15] (with 𝜖 = 1∕6) to the inner sum above, and summing over the remaining variables,
gives

|𝛾(𝜆, 𝜂, 𝑋,𝐀)|≪ Δ2𝐴𝑖𝐴𝑗(𝑋
†)−1∕3 ⋅

∏
𝑘≠𝑖,𝑗

Δ𝐴𝑘 ⩽ 𝑋(𝑋†)−1∕3. (8.31)

Summing over each of the≪ log(𝑋)24 possibilities for 𝐀 we find∑
𝐀 satisf ies (8.30)

|𝛾(𝜆, 𝜂, 𝑋,𝐀)|≪ 𝑋 log(𝑋)−1. (8.32)

8.6.6 Third family: One large and one small factor corresponding to linked
indices

We introduce a further parameter𝑋‡ = exp(log(𝑋)𝜖) for fixed 𝜖 > 0 (to be chosen later). Note that
for 𝑋 sufficiently large we have 𝑋‡ > 𝑋†. The family of 𝐀 we now consider is given by

Neither (8.29) nor (8.30) hold, and ∃ 𝑖 ≠ 𝑗 linked with 1 < 𝐴𝑗 < 𝑋† and 𝐴𝑖 ⩾ 𝑋‡. (8.33)
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This section of the argument corresponds to the treatment of Fouvry–Klüners fourth family
[8, Equations (43)–(47)], and we similarly obtain cancellation from the Siegel–Walfisz theorem.
However, the conditions that the 𝐷𝑖 lie in the thin families 𝑛𝑖 necessitate some changes and the
resulting argument is modelled on [9, Section 7.5].
Fix such an 𝐀. In the definition of 𝛾(𝜆, 𝜂, 𝑋,𝐀), we group all terms involving 𝐷𝑖 . Since 𝜂 and

𝜆 divide 𝑁, for fixed (𝐷𝑘)𝑘≠𝑖 there is a Dirichlet character 𝜒𝑖,(𝐷𝑘)𝑘≠𝑖 modulo 4𝑁 with

(
𝜂

𝐷𝑖

)𝜇𝑖
(
𝜆

𝐷𝑖

)𝜈𝑗 ∏
𝑘≠𝑖

(
𝐷𝑖

𝐷𝑘

)Φ(𝑖,𝑘)(𝐷𝑘

𝐷𝑖

)Φ(𝑘,𝑖)

= 𝜒𝑖,(𝐷𝑘)𝑘≠𝑖 (𝐷𝑖)
∏
𝑘≠𝑖

(
𝐷𝑖

𝐷𝑘

)Φ(𝑖,𝑘)+Φ(𝑘,𝑖)

(8.34)

where in the above we are using quadratic reciprocity for Jacobi symbols. From the definition of
linked indices, writing 𝑑 ∶= 𝑑((𝐷𝑘)𝑘≠𝑖) =

∏
𝑘 linked to 𝑖 𝐷𝑘 (which is at least 3 by assumption),

we have

|𝛾(𝜆, 𝜂, 𝑋,𝐀)| ⩽ ∑
𝐴𝑘⩽𝐷𝑘⩽Δ𝐴𝑘

𝑘≠𝑖

∏
𝑘≠𝑖

𝜅
−𝜔(𝐷𝑘)

𝑘

||||||
∑

𝐴𝑖⩽𝐷𝑖⩽Δ𝐴𝑖

𝜅
−𝜔(𝐷𝑖)

𝑖
𝜒𝑖,(𝐷𝑘)𝑘≠𝑖 (𝐷𝑖)

(
𝐷𝑖

𝑑

)|||||| (8.35)

where in the inner sum 𝐷𝑖 is in 𝑛𝑖 and is coprime to the 𝐷𝑘 in the outer sum, and 𝜔(𝐷𝑖) ⩽ Ω.
Now 𝑑 is odd and coprime to 𝑁 so

𝐷𝑖 ↦ 𝜒𝑖,(𝐷𝑘)𝑘≠𝑖 (𝐷𝑖)

(
𝐷𝑖

𝑑

)
is a primitive Dirichlet character modulo 𝑞 for some 𝑞 divisible by 𝑑, and dividing 4𝑁𝑑. In partic-
ular, 3 ⩽ 𝑞 ≪ (Δ𝑋†)7 since (8.30) does not hold.
Replacing the inner sum in (8.35) with its maximum possible value we have

|𝛾(𝜆, 𝜂, 𝑋,𝐀)|≪ 𝑋

Δ𝐴𝑖

⋅max
𝑎,𝜒,𝑞

|||||||||||||
∑

𝐴𝑖⩽𝐷𝑖⩽Δ𝐴𝑖
(𝑎,𝐷𝑖)=1

𝐷𝑖∈𝑛𝑖 , 𝜔(𝐷𝑖)⩽Ω

𝜅
−𝜔(𝐷𝑖)

𝑖
𝜒(𝐷𝑖)

|||||||||||||
, (8.36)

where the maximum is taken over all 1 ⩽ 𝑎 ⩽ 𝑋, all 3 ⩽ 𝑞 ≪ (Δ𝑋†)7 which contain at least one
prime factor coprime to𝑁, and all primitive Dirichlet characters 𝜒 modulo 𝑞. Here the condition
(𝑎, 𝐷𝑖) = 1 takes care of the coprimality of 𝐷𝑖 with the remaining 𝐷𝑘. We now partition the inner
sum according to the number 1 ⩽ 𝑙 ⩽ Ω of prime factors of𝐷𝑖 , write𝐷𝑖 = 𝑛𝑝where 𝑝 is the largest
prime factor of𝐷𝑖 , and denote by𝑃+(𝑛) the largest prime factor of the remaining integer 𝑛, giving

max
𝑎,𝜒,𝑞

|||||||||||||
∑

𝐴𝑖⩽𝐷𝑖⩽Δ𝐴𝑖
(𝑎,𝐷𝑖)=1

𝐷𝑖∈𝑛𝑖 , 𝜔(𝐷𝑖)⩽Ω

𝜅
−𝜔(𝐷𝑖)

𝑖
𝜒(𝐷𝑖)

|||||||||||||
⩽
∑
1⩽𝑙⩽Ω

∑
𝑛

𝜔(𝑛)=𝑙−1

max
𝑎,𝜒,𝑞

|||||||||||||
∑

max(𝑃+(𝑛),𝐴𝑖∕𝑛)<𝑝<Δ𝐴𝑖∕𝑛
(𝑎,𝑝)=1
𝑝∈𝑛𝑖

𝜒(𝑝)

|||||||||||||
, (8.37)
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wherewe allow 𝑛 to range over arbitrary positive integerswith 𝑙 − 1 factors. To treat the innermost
sum, first note that we can drop the condition (𝑎, 𝑝) = 1 at the expense of adding

||||||
∑
𝑝∣𝑎

𝟙𝑛𝑖 (𝑝)𝜒(𝑝)
|||||| ⩽ 𝜔(𝑎) ≪ log(𝑋)

to its value. Next, since 𝐾∕ℚ and ℚ(
√
𝛼𝛽)∕ℚ ramify only at primes dividing 𝑁, a prime 𝑝 is

in 𝑛𝑖
if and only if 𝑝 (mod 4𝑁) lies in a certain subset of (ℤ∕4𝑁ℤ)×. In particular, we may

express the indicator function 𝟙𝑖 as a finite sum
∑

𝑠 𝑎𝑠𝜒𝑠 where each 𝜒𝑠 is a Dirichlet charac-
ter modulo 4𝑁, and the 𝑎𝑠 are real numbers. Since the modulus 𝑞 of any 𝜒 appearing in (8.37)
contains at least one prime not dividing 𝑁 (coming from 𝐷𝑗), each 𝜒𝑠𝜒 is a primitive Dirichlet
character modulo 𝑞′ for some 3 ⩽ 𝑞′ ≪ (Δ𝑋†)7 also. By the triangle inequality and [8, Lemma
13] (a consequence of the Siegel–Walfisz theorem) we conclude that for all constants 𝐴 > 0 we
have

max
𝑎,𝜒,𝑞

|||||||||||||
∑

max(𝑃+(𝑛),𝐴𝑖∕𝑛)<𝑝<Δ𝐴𝑖∕𝑛
(𝑎,𝑝)=1
𝑝∈𝑛𝑖

𝜒(𝑝)

|||||||||||||
≪ max

𝑎,𝜒,𝑞

||||||
∑

max(𝑃+(𝑛),𝐴𝑖∕𝑛)<𝑝<Δ𝐴𝑖∕𝑛

𝜒(𝑝)

|||||| + log(𝑋) (8.38)

≪𝐴 (𝑋†)4 ⋅
Δ𝐴𝑖

𝑛
⋅ log(𝐴𝑖∕𝑛)

−𝐴 + log(𝑋).

Now 𝑛 has at most Ω prime factors, so the sum on the left of (8.38) is non-empty only if 𝑛 ⩽

Δ𝐴
1−1∕Ω

𝑖
, in which case

log(𝐴𝑖∕𝑛)
−𝐴 ≪ log(𝐴

1∕Ω

𝑖
)−𝐴 ≪

(
1

Ω
log(𝑋)𝜖

)−𝐴
≪ log(𝑋)−𝜖𝐴.

We now insert this into Equation (8.38), and insert the result into Equation (8.37) and finally
Equation (8.36), to find

|𝛾(𝜆, 𝜂, 𝑋,𝐀)| ≪𝐴
𝑋

Δ𝐴𝑖

⋅
∑

1⩽𝑛⩽Δ𝐴
1−1∕Ω
𝑖

[
(𝑋†)4 ⋅

Δ𝐴𝑖

𝑛
⋅ log(𝑋)−𝜖𝐴 + log(𝑋)

]

≪𝐴 𝑋 log(𝑋)1−𝜖𝐴(𝑋†)4 +
𝑋 log(𝑋)1

(𝑋‡)1∕Ω
.

Summing over the≪ log(𝑋)24 possibilities for 𝐀 and recalling that Ω ≪ log log(𝑋), we find∑
𝐀 satisf ies (8.33)

|𝛾(𝜆, 𝜂, 𝑋,𝐀)|≪ 𝑋 log(𝑋)−1

provided 𝐴 is chosen large enough (compared to 𝜖).
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8.6.7 Remaining families

We now consider those 𝐀 such that

none of (8.29), (8.30), or (8.33) hold. (8.39)

Here the argument deviates significantly from that in [8]. Fix such an 𝐀, and define

𝐀 ∶= {0 ⩽ 𝑖 ⩽ 7 ∣ 𝐴𝑖 ⩾ 𝑋‡}.

Recalling that 𝑋‡ > 𝑋† (for sufficiently large 𝑋), it follows from the conditions on 𝐀 that

∙ 𝐀 is unlinked,
∙ if 𝑗 ∉ 𝐀 is linked to an element of 𝐀 then𝐴𝑗 = 1 (so in particular, if𝐷𝑗 is such that𝐴𝑗 ⩽ 𝐷𝑗 ⩽

Δ𝐴𝑗 , then 𝐷𝑗 = 1).

We begin by discarding as many options for 𝐀 as we can simply using the trivial bound
|𝛾(𝜆, 𝜂, 𝑋,𝐀)| ⩽ ∑

(𝐷𝑖)∈D′(𝑋)
𝐴𝑖⩽𝐷𝑖⩽Δ𝐴𝑖

∏
𝑖

𝜅
−𝜔(𝐷𝑖)

𝑖
. (8.40)

Specifically, let 𝐼 be any (possibly empty) set of unlinked indices, and let 𝑖0 = |𝐼 ∩ {0, 1}|, 𝑖1 =|{2, 3, 4, 5} ∩ 𝐼|, and 𝑖2 = |𝐼 ∩ {6, 7}|. Then
∑

𝐀 satisf ies (8.39)𝐀=𝐼
|𝛾(𝜆, 𝜂, 𝑋,𝐀)| ⩽ ∑

𝑛⩽(Δ𝑋‡)8

2𝜔(𝑛)
∑

𝑚⩽𝑋∕𝑛

𝑖
𝜔0(𝑚)

0

𝛾𝜔0(𝑚)
⋅
𝑖
𝜔1(𝑚)

1

2𝜔1(𝑚)
⋅

𝑖
𝜔2(𝑚)

2

(2∕𝛾)𝜔2(𝑚)
. (8.41)

Here in the above sum, if 𝑖𝑗 = 0 then we interpret 𝑖
𝜔𝑗(𝑚)

𝑗
as being equal to 1 when𝑚 has no prime

factors in𝑗 . The right-hand side is derived from the left by setting 𝑛 =
∏

𝑖∉𝐼 𝐷𝑖 and𝑚 =
∏

𝑖∈𝐼 𝐷𝑖 .
To treat the sum on the right-hand side of (8.41) we apply Lemma 8.9. Here the argument splits
according to whether ℚ(

√
𝛼𝛽) ⊆ 𝐾 or not. Since the former, somewhat degenerate, case is easier

we make the following assumption, consigning the case ℚ(
√
𝛼𝛽) ⊆ 𝐾 to Remark 8.48.

Assumption 8.42. Assume henceforth that ℚ(
√
𝛼𝛽) ⊈ 𝐾.

Applying Lemma 8.9 to the right-hand side of (8.41), we obtain∑
𝐀 satisf ies (8.39)𝐀=𝐼

𝛾(𝜆, 𝜂, 𝑋,𝐀) ≪
∑

𝑛⩽(Δ𝑋‡)8

2𝜔(𝑛)
𝑋

𝑛
log(𝑋∕𝑛)𝑖0∕(4𝛾)+𝑖1∕8+𝛾𝑖2∕4−1

≪ 𝑋 log(𝑋)𝑖0∕(4𝛾)+𝑖1∕8+𝛾𝑖2∕4−1
∑

𝑛⩽(Δ𝑋‡)8

2𝜔(𝑛)

𝑛

≪ 𝑋 log(𝑋)𝑖0∕(4𝛾)+𝑖1∕8+𝛾𝑖2∕4−1+2𝜖

with the last ≪ following from the bound
∑

𝑛⩽𝑌
2𝜔(𝑛)

𝑛
≪ log(𝑌)2 (to prove this, for example,

square the bound
∑

𝑛⩽𝑌
1

𝑛
≪ log(𝑌)). We now study the exponent 𝑖0∕(4𝛾) + 𝑖1∕8 + 𝛾𝑖2∕4 − 1 + 2𝜖
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as we vary over unlinked sets 𝐼. Note that 𝐼 is contained in one of the maximal unlinked sets of
indices

1 ∶= {2, 4, 6}, 2 ∶= {0, 2, 3}, 3 ∶= {0, 1, 3, 5, 7}, 4 ∶= {1, 4, 5, 6, 7}.

We then have (recall that we have fixed 1 < 𝛾 < 7∕8 +
√
17∕8):

∙ 𝐼 ⊆ 1. Here 𝑖0 = 0, 𝑖1 ⩽ 2, 𝑖2 ⩽ 1, so that

𝑖0∕(4𝛾) + 𝑖1∕8 + 𝛾𝑖2∕4 − 1 + 2𝜖 ⩽ −1∕4 + 2𝜖.

∙ 𝐼 ⊆ 2. Here 𝑖0 ⩽ 1, 𝑖1 ⩽ 2 and 𝑖2 = 0, so that

𝑖0∕(4𝛾) + 𝑖1∕8 + 𝛾𝑖2∕4 − 1 + 2𝜖 ⩽ −1∕2 + 2𝜖.

∙ 𝐼 ⊆ 3. Here 𝑖0 ⩽ 2, 𝑖1 ⩽ 2 and 𝑖2 ⩽ 1. Then

𝑖0∕(4𝛾) + 𝑖1∕8 + 𝛾𝑖2∕4 − 1 + 2𝜖 ⩽ 1∕(2𝛾) + 𝛾∕4 − 3∕4 + 2𝜖 =
(𝛾 − 1)(𝛾 − 2)

4𝛾
+ 2𝜖.

Note that as 1 < 𝛾 < 2 this is strictly negative for sufficiently small 𝜖.
∙ 𝐼 ⊊ 4. Since 𝐼 is properly contained in 4 we have 𝑖0 ⩽ 1, 𝑖1 ⩽ 2, 𝑖2 ⩽ 2, and at least one of these
inequalities is strict. This leads to three cases. First assume that 𝑖0 = 0. Then

𝑖0∕(4𝛾) + 𝑖1∕8 + 𝛾𝑖2∕4 − 1 + 2𝜖 ⩽ 𝛾∕2 − 3∕4 + 2𝜖.

This is strictly negative for sufficiently small 𝜖 > 0 since 𝛾 < 3∕2. Next, assume that 𝑖1 ⩽ 1.
Then

𝑖0∕(4𝛾) + 𝑖1∕8 + 𝛾𝑖2∕4 − 1 + 2𝜖 ⩽ 1∕(4𝛾) + 𝛾∕2 − 7∕8 + 2𝜖 =
4𝛾2 − 7𝛾 + 2

8𝛾
+ 2𝜖.

The numerator has roots at 𝛾 = 7∕8 ±
√
17∕8 ≈ 0.36, 1.39. This is strictly negative for suffi-

ciently small 𝜖 > 0 since 𝛾 < 7∕8 +
√
17∕8 (which is why we have chosen this upper bound on

𝛾). The final case is when 𝑖2 ⩽ 1 where we have

𝑖0∕(4𝛾) + 𝑖1∕8 + 𝛾𝑖2∕4 − 1 + 2𝜖 ⩽ 1∕(4𝛾) + 𝛾∕4 − 3∕4 + 2𝜖 =
𝛾2 − 3𝛾 + 1

4𝛾
+ 2𝜖.

In the range considered, the function 𝛾2−3𝛾+1

4𝛾
is always less that its value at, for example, 2,

where it is equal to −1∕8.

In conclusion, for all unlinked sets 𝐼 ≠ {1, 4, 5, 6, 7}, choosing 𝜖 sufficiently small, we have∑
𝐀 satisf ies (8.39)𝐀=𝐼

|𝛾(𝜆, 𝜂, 𝑋,𝐀)|≪ 𝑋 log(𝑋)−𝑟𝛾 (8.43)

for some 𝑟𝛾 > 0, provided that 1 < 𝛾 < 7∕8 +
√
17∕8.
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Remark 8.44. Optimising the exponent 𝑟𝛾 over 1 < 𝛾 < 7∕8 +
√
17∕8, we find that the best

uniform upper bound for 𝑖0∕(4𝛾) + 𝑖1∕8 + 𝛾𝑖2∕4 − 1 + 2𝜖 as we range over all unlinked sets
𝐼 ≠ {1, 4, 5, 6, 7} is obtained when (𝛾 − 1)(𝛾 − 2)∕4𝛾 = (4𝛾2 − 7𝛾 + 2)∕8𝛾, which yields 𝛾 = 1∕4 +√
17∕4. At this choice of 𝛾 we have

𝑖0∕(4𝛾) + 𝑖1∕8 + 𝛾𝑖2∕4 − 1 + 2𝜖 =
1

16
(3
√
17 − 13) + 2𝜖 = 2𝜖 − 0.0394…

8.6.8 Completing the argument

Finally, it remains to consider𝐀 satisfying eq. 8.39 such that 𝐀 = {1, 4, 5, 6, 7}. Since 𝐀 is a maxi-
mal unlinked subset, the assumptions on𝐀 force𝐴0 = 𝐴2 = 𝐴3 = 1, so that also𝐷0 = 𝐷2 = 𝐷3 =

1. Note that the definition of D ′(𝑋) then excludes 𝜆 = 1 or 𝜆 = 𝜃. Putting 𝐷0 = 𝐷2 = 𝐷3 = 1 into
the definition of 𝛾(𝜆, 𝜂, 𝑋,𝐀) we find

𝛾(𝜆, 𝜂, 𝑋,𝐀) =
∑

(𝐷𝑖)∈D′(𝑋)
𝐴𝑖⩽𝐷𝑖⩽Δ𝐴

(
𝜆

𝐷4

)(
𝜆

𝐷6

)∏
𝑖

𝜅
−𝜔(𝐷𝑖)

𝑖
, (8.45)

where𝐴4,𝐴6 ⩾ 𝑋‡ by assumption.We get cancellation in this sum via the Siegel–Walfisz theorem
as in Section 8.6.6, although unlike the previous case we must be careful of potential interaction
between the conditions defining the sets 𝑖 and the Dirichlet characters appearing. Specifically,
arguing as in Section 8.6.6, we find

|𝛾(𝜆, 𝜂, 𝑋,𝐀)|≪ 𝑋 log(𝑋)

Δ𝐴6

max
1⩽𝑎⩽𝑋

|||||||||
∑

𝐴6⩽𝐷6⩽Δ𝐴6
(𝑎,𝐷6)=1

𝜅
−𝜔(𝐷6)

6

(
𝜆

𝐷6

)|||||||||
and that the inner sum satisfies

|||||||||
∑

𝐴6⩽𝐷6⩽Δ𝐴6
(𝑎,𝐷6)=1

𝜅
−𝜔(𝐷6)

6

(
𝜆

𝐷6

)|||||||||
⩽
∑
1⩽𝑙⩽Ω

∑
𝑛

𝜔(𝑛)=𝑙−1

||||||||||||
∑

max(𝑃+(𝑛),𝐴6∕𝑛)<𝑝<Δ𝐴6∕𝑛
(𝑎,𝑝)=1
𝑝∈3

(
𝜆

𝑝

)||||||||||||
. (8.46)

As before we may remove the condition (𝑎, 𝑝) = 1 at the expense of an acceptable error term. To
treat the condition that 𝑝 ∈ 2, recall that 2 is the set of primes coprime to 𝑁 which are inert
in 𝐾∕ℚ. In particular, the indicator function 𝟙2 (𝑝) is given by

1

2
(1 − ( 𝜃

𝑝
)). Inserting this into the

sum, we may apply [8, Lemma 13] as in Section 8.6.6 since 𝜆 ≠ 1, 𝜃means that both 𝐷 ↦ ( 𝜆
𝐷
) and

𝐷 ↦ (𝜆𝜃
𝐷
) are non-principal. Continuing to argue as in Section 8.6.6 yields∑

𝐀 satisf ies (8.39)𝐀={1,4,5,6,7}
|𝛾(𝜆, 𝜂, 𝑋,𝐀)|≪ 𝑋 log(𝑋)−1, (8.47)

which completes the proof of Proposition 8.23.
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Remark 8.48. Suppose instead (of Assumption 8.42) we have ℚ(
√
𝛼𝛽) ⊆ 𝐾. This time applying

Lemma 8.9 to the right-hand side of (8.41) gives the bound∑
𝐀 satisf ies (8.39)𝐀=𝐼

𝛾(𝜆, 𝜂, 𝑋,𝐀) ≪ 𝑋 log(𝑋)𝑖1∕4+𝑖2𝛾∕4−1+2𝜖.

Splitting into cases according to which maximal unlinked subset 𝐼 is contained in, one finds that
in the first 3 cases, namely 𝐼 ⊆ 𝑖 for 𝑖 = 1, 2, 3, the exponent satisfies

𝑖1∕4 + 𝑖2𝛾∕4 − 1 + 2𝜖 ⩽ −1∕8 + 2𝜖

provided 𝛾 < 3∕2. In the final case where 𝐼 ⊆ 4, we note thatℚ(√𝛼𝛽) ⊆ 𝐾 forces 0 = ∅, so that
𝐷1 (and also 𝐷0) is necessarily equal to 1. Thus, 𝐼 ⊆ {4, 5, 6, 7}. Now provided 𝐼 ≠ {4, 5, 6, 7}, the
exponent is strictly negative (for sufficiently small 𝜖) for 𝛾 < 3∕2, and is, for example, equal to
(
√
17 − 5)∕8 = −0.1096… if one takes 𝛾 = 1∕4 +

√
17∕4 as in Remark 8.44. We are thus left to

deal with the case 𝐼 = {4, 5, 6, 7}. This forces 𝐷2 = 𝐷3 = 1 (since they are both linked to elements
of 𝐼), in addition to 𝐷0 = 𝐷1 = 1. One may conclude as in Section 8.6.8.

9 PRIME TWISTS OF THE CONGRUENT NUMBER CURVE

In this section, we prove Theorem 1.9. That is, we provide an example of a thin subfamily of
quadratic twists for which the statistical behaviour of the 2-Selmer group differs from that of the
family of all twists. In particular, there is a non-trivial Galois action in a positive proportion of
cases, so that, by Corollary 4.8, SelC𝑑

(ℚ, 𝐸𝑑[2]) is non-trivial for a positive proportion of 𝑑 in our
thin subfamily.
We restrict our quadratic field 𝐾 = ℚ(

√
𝜃) to be an imaginary quadratic number field

which has class number 1 and in which 2 is inert (so −𝜃 ∈ {3, 11, 19, 43, 67, 163}). Write 𝐾

for the ring of integers of 𝐾, and note that the only prime which ramifies in 𝐾 is −𝜃. We
take

𝐸 ∶ 𝑦2 = 𝑥3 − 𝑥 = 𝑥(𝑥 − 1)(𝑥 + 1),

to be the congruent number curve. This has good reduction away from 2. Taking 𝑝 ∤ 2𝜃 to be a
rational prime, we will explicitly describe the group Sel2(𝐸𝑝∕𝐾) as a 𝐺 = Gal(𝐾∕ℚ)-module.
For a place 𝑣 of 𝐾, we will identify the local Kummer images S𝑣(𝐸𝑝∕𝐾) of Section 2.4

with their image under the 2-descent map (7.5) (in our case, 𝑎1 = 0, 𝑎2 = 1, 𝑎3 = −1), so
that

S𝑣(𝐸𝑝∕𝐾) ⊆ 𝐾×
𝑣 ∕𝐾

×2
𝑣 × 𝐾×

𝑣 ∕𝐾
×2
𝑣 .

We view the Selmer group Sel2(𝐸𝑝∕𝐾) as a subgroup of 𝐾×∕𝐾×2 similarly, noting that this identi-
fication respects the 𝐺-action.
For a vector space 𝑉 and 𝑣1, … , 𝑣𝑛 ∈ 𝑉 we write ⟨𝑣1, 𝑣2, … , 𝑣𝑛⟩ for the subspace generated by

𝑣1, … , 𝑣𝑛.
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9.1 2-Descent

Our primary goal is to characterise the groups Sel2(𝐸𝑝∕𝐾) for 𝑝 prime, whichwe do via 2-Descent.
We first begin by identifying the local Kummer images at each prime.

Lemma 9.1. Let 𝑝 ∤ 2𝜃 be a prime, and let 𝑣 be a place of 𝐾. Then the local Kummer image at 𝑣 for
𝐸𝑝 is given by:

(i) if 𝑣 ∣ ∞, then

S𝑣(𝐸𝑝∕𝐾) = 0;

(ii) if 𝑣 ∤ 2𝑝, then

S𝑣(𝐸𝑝∕𝐾) = ⟨(1, 𝑢), (𝑢, 1)⟩,
where 𝑢 is any nonsquare unit in 𝐾𝑣;

(iii) if 𝑣 ∣ 𝑝, then

S𝑣(𝐸𝑝∕𝐾) = ⟨(−1, −𝑝), (𝑝, 2)⟩;
(iv) if 𝑣 = 2 and 𝜁 ∈ 𝐾2 is a primitive third root of unity, then

S2(𝐸𝑝∕𝐾) = ⟨𝑇1, 𝑇2, 𝑇3, 𝑇4⟩,
where

𝑇1 ∶= (−1,−𝑝), 𝑇3 ∶= (𝜁 + 3, 𝜁 + 3(1 + 𝑝)),

𝑇2 ∶= (1, 2), 𝑇4 ∶= (1, 4𝜁 + 5).

Proof. Since 𝐾 is imaginary, if 𝑣 ∣ ∞ the group𝐻1(𝐾𝑣, 𝐸[2]) is trivial and so (i) holds. Lemma 7.2
then provides (ii) as 𝑝 ∉ Σ. To prove (iii), it is enough to note that by Lemma 5.2, since
dimS𝑣(𝐸𝑝∕𝐾) = 2, S𝑣(𝐸𝑝∕𝐾) = 𝛿𝑣(𝐸𝑝[2]).
For 𝑣 = 2, note first that dim((𝐾×

2
∕𝐾×2

2
)2) = 8, so, as in Example 3.5, since S𝑝(𝐸𝑝∕𝐾) is maxi-

mal isotropic with respect to the local Tate pairing we have dimS2(𝐸𝑝∕𝐾) = 4.
Let 𝑥3 = −(𝜁 + 3)∕3 and 𝑥4 = −(3𝜁 + 2)∕3. It is elementary to compute that

𝑥33 − 𝑝2𝑥3 ≡ −3𝜁 mod 8 𝑥34 − 𝑝2𝑥4 ≡ 𝜁2 mod 8.

Since −3, 𝜁 and 𝜁 are all square in 𝐾2, by Hensel’s lemma each 𝑥3𝑖 − 𝑝2𝑥𝑖 is then also a square in
𝐾2. In particular, there are 𝑦3, 𝑦4 in 𝐾2 such that 𝑃𝑖 = (𝑥𝑖, 𝑦𝑖) lies in 𝐸𝑝(𝐾2) for 𝑖 = 3, 4. We then
have 𝛿2(𝑃3) = 𝑇3 since −3 is square in 𝐾2 and moreover

𝛿2(𝑃4) = (3𝜁 + 2, 3𝜁 + 2 + 3𝑝).

Moreover, the space generated by the 𝛿2(𝑃) for 𝑃 ∈ 𝐸𝑝[2] is ⟨(𝑝, 2), (−1, −𝑝)⟩. Since 𝐾2∕ℚ2 is
unramified of degree 2, 𝑝 is congruent to ±1modulo 𝐾×2

2
, so this space is spanned by 𝑇1 and 𝑇2.
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One then checks that

𝑇1 ⋅ 𝑇2 ⋅ 𝑇4 = 𝛿2(𝑃4)

inside (𝐾×
2
∕𝐾×2

2
)2, so that 𝑇4 is in S2(𝐸𝑝∕𝐾). Since 𝑇1, 𝑇2, 𝑇3 and 𝑇4 are readily checked to be

linearly independent, the result follows. □

In the case that 𝑝 is split in 𝐾∕ℚ, we will need to understand the image of the primes over 𝑝 in
the localisation at 2, for which wewill use the following result. As in Lemma 9.1, 𝑝 ∤ 2𝜃 is a prime,
and we denote by 𝜁 a fixed primitive third root of unity in 𝐾2. For 𝑥 in 𝐾 we denote its conjugate
under the action of 𝐺 as �̄�.

Lemma 9.2. Suppose that 𝑝 splits in𝐾∕ℚ, and write 𝑝 = 𝜖�̄� for some 𝜖 ∈ 𝐾 . Then in𝐾×
2
we have

𝜖 ≡ ±(𝜁 + 2 − 𝑝) (mod 𝐾×2
2
).

(Since −1 is not a square in 𝐾2, precisely one of these two possibilities occurs.)

Proof. The ring of integers of𝐾2 is ℤ2[𝜁] and by Hensel’s lemma, an element of ℤ2[𝜁]
× is a square

if and only if it is a square modulo 8. Now using the fact that both 5 and 𝜁 = 𝜁4 are squares in 𝐾2,
we find that any element of ℤ2[𝜁]

×∕ℤ2[𝜁]
×2 can be written uniquely in the form 𝑎 ± 𝜁 for some

𝑎 ∈ {±1, ±5} (in this representation, the trivial class is−1 − 𝜁 = 𝜁2). Nowwriting 𝜖 (mod 𝐾×2
2
) in

this form we find that, in 𝐾×
2
∕𝐾×2

2
, we have

𝑝 = 𝑁𝐾2∕ℚ2
(𝜖) = (𝑎 ± 𝜁)(𝑎 ± 𝜁2) = 2 ∓ 𝑎.

Thus, 𝑎 ≡ ±(2 − 𝑝) (mod 8) and the result follows. □

We are now ready to describe the Selmer groups. In the statement, all isomorphisms are as
𝔽2[𝐺]-modules.

Proposition 9.3. Let 𝑝 be an odd prime not dividing 𝜃. Then:

(i) if 𝑝 is inert in 𝐾∕ℚ, we have

Sel2(𝐸𝑝∕𝐾) ≅ 𝔽42;

(ii) if 𝑝 is split in 𝐾∕ℚ and 𝜖 ∈ 𝐾 has norm 𝑝, we have

Sel2(𝐸𝑝∕𝐾) ≅

⎧⎪⎪⎨⎪⎪⎩

𝔽2
2
⊕ 𝔽2[𝐺] 𝑝 ≡ 5, 7 (mod 8),

𝔽2
2

𝑝 ≡ 3 (mod 8),

𝔽2
2
⊕ 𝔽2[𝐺]

2 𝑝 ≡ 1 (mod 8) and �̄� ∈ 𝐾×2
𝜖 ,

𝔽4
2

𝑝 ≡ 1 (mod 8) and �̄� ∉ 𝐾×2
𝜖 .

Proof. Let 𝑝 ≠ 2 be inert in 𝐾∕ℚ. Since 𝐸𝑝 has good reduction outside 2 and 𝑝, the 2-Selmer
elements are units outside 2, 𝑝. As 𝐾 has class number 1 we thus want to find all 𝑎𝑖, 𝑏𝑖 ∈ {0, 1} for
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which

((−1)𝑎12𝑎2𝑝𝑎3 , (−1)𝑏12𝑏2𝑝𝑏3) (9.4)

lies in both of the local groups S𝑝(𝐸𝑝∕𝐾) and S2(𝐸𝑝∕𝐾) described in Lemma 9.1. As 𝐾𝑝∕ℚ𝑝 is
unramified of degree 2, both−1 and 2 are squares in𝐾𝑝. Thus, all elements of the form (9.4) lie in
S𝑝(𝐸𝑝∕𝐾). We now apply the Selmer conditions at 2. Since 𝑝 is odd we have 𝑝 ≡ ±1 (mod 𝐾×2

2
).

Consequently, a global element of the form (9.4) which lies in Sel2(𝐸𝑝∕𝐾) necessarily maps to the
subspace ofS2(𝐸𝑝∕𝐾) generated by 𝑇1 = (−1,−𝑝) and 𝑇2 = (1, 2). Restricting to elements of the
form (9.4) which do map to this space gives

Sel2(𝐸𝑝∕𝐾) = ⟨(𝑝, 2), (−1, −𝑝), (1, (−1)𝛿𝑝), ((−1)𝛿𝑝, 1)⟩ ≅ 𝔽42

where 𝛿 = 1 if 𝑝 ∉ 𝐾×2
2
and 𝛿 = 0 otherwise.

Now suppose 𝑝 splits in𝐾∕ℚ, and fix 𝜖 ∈ 𝐾× such that 𝜖�̄� = 𝑝. As above, the 2-Selmer elements
are unramified outside {2, 𝜖, �̄�}, so we want to find all 𝑎𝑖, 𝑏𝑖 ∈ {0, 1} for which

((−1)𝑎12𝑎2𝜖𝑎3 �̄�𝑎4 , (−1)𝑏12𝑏2𝜖𝑏3 �̄�𝑏4) (9.5)

lies in each of the groups S𝜖(𝐸𝑝∕𝐾), S�̄�(𝐸𝑝∕𝐾) and S2(𝐸𝑝∕𝐾) described in Lemma 9.1. This is
an elementary computation, which we do by treating each possibility for 𝑝 (mod 8) separately.
We repeat the local Kummer images from Lemma 9.1:

S2(𝐸𝑝∕𝐾) = ⟨(−1, −𝑝), (1, 2), (𝜁 + 3, 𝜁 + 3(1 + 𝑝)), (1, 4𝜁 + 5)⟩
S𝜖(𝐸𝑝∕𝐾) = ⟨(−1, −𝜖�̄�), (𝜖�̄�, 2)⟩,

S�̄�(𝐸𝑝) = ⟨(−1, −𝜖�̄�), (𝜖�̄�, 2)⟩.
We now break into cases.
𝐩 ≡ −𝟏 (mod 𝟖) ∶ Here −1 is nonsquare in 𝐾𝜖. Replacing 𝜖 with −𝜖 if necessary, we assume

�̄� ∈ 𝐾×2
𝜖 . Note also that 2 is a square in𝐾𝜖. By symmetry, this gives 2, 𝜖 ∈ 𝐾×2

�̄� . The elements of the
form (9.5) which lie in S𝜖(𝐸𝑝∕𝐾) are then those of the shape(

(−1)𝑎12𝑎2𝜖𝑎3 �̄�𝑎4 , (−𝜖)𝑎12𝑏2 �̄�𝑏4
)
.

Reducing further to those that satisfy the conditions of S�̄�(𝐸𝑝) we are left with elements of the
shape (

(−1)𝑎12𝑎2𝜖𝑎3 �̄�𝑎4 , (−𝜖�̄�)𝑎12𝑏2
)
. (9.6)

Finally, as 𝑝 ≡ −1 (mod 8) we have

S2(𝐸𝑝∕𝐾) = ⟨(−1, 1), (1, 2), (𝜁 + 3, 1), (1, 4𝜁 + 5)⟩.
Since the first coordinate of each of these basis vectors has valuation 0, wemust have 𝑎2 = 0. Fur-
ther, Lemma 9.2 gives 𝜖 ≡ ±(𝜁 + 2 − 𝑝) ≡ ±(𝜁 + 3) in𝐾×

2
∕𝐾×2

2
, and since 𝜖�̄� = 𝑝 ≡ −1 (mod 𝐾×2

2
)

we have �̄� ≡ ∓(𝜁 + 3). It follows that each of the elements

(𝜖, 1), (�̄�, 1), (1, 2), (−1, −𝜖�̄�)
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are in Sel2(𝐸𝑝∕𝐾). Since each element of the form (9.6) with 𝑎2 = 0 can be written as a linear
combination of these Selmer elements, we have

Sel2(𝐸𝑝∕𝐾) = ⟨(1, 2), (−1, −𝜖�̄�), (𝜖, 1), (𝜖�̄�, 1)⟩
≅ 𝔽22 ⊕ 𝔽2[𝐺].

𝐩 ≡ 𝟑 (mod 𝟖)∶ Again, −1 is nonsquare in 𝐾𝜖 so we assume �̄� ∈ 𝐾×2
𝜖 . Additionally, 2 is non-

square in 𝐾𝜖, hence −2 is a square. With 𝜖 and �̄� swapped this all remains true.
The elements of the form (9.5) which lie in S𝜖(𝐸𝑝∕𝐾) are thus those of the shape(

(−2)𝑎2 �̄�𝑎4(−1)𝑏3𝜖𝑎3 , (−2)𝑏2 �̄�𝑏4(−1)𝑎3(−𝜖)𝑏3
)
.

Reducing further to those that satisfy the conditions of S�̄�(𝐸𝑝) we are left with(
(−2)𝑎2(−1)𝑏3(𝜖�̄�)𝑎3 , (−2)𝑏2(−𝜖�̄�)𝑏3(−1)𝑎3

)
. (9.7)

Finally, we apply the conditions at 2. By Lemma 9.2 we have 𝜖 ≡ ±(𝜁 − 1) (mod 𝐾×2
2
). As 𝑝 ≡

3 (mod 8) we have

S2(𝐸𝑝∕𝐾) = ⟨(−1, 1), (1, 2), (𝜁 + 3, 𝜁 + 4), (1, 4𝜁 + 5)⟩.
Since the first coordinate of each basis element is a unit, wemust have𝑎2 = 0. Considering the sec-
ond coordinate, and noting that 𝜖�̄� ≡ −1 (mod 𝐾×2

2
), we find 𝑎3 = 𝑏2. This leaves a 2-dimensional

space of candidate Selmer elements. However, since the elements (𝑝, 2) and (−1, −𝑝) (which cor-
respond to the 2-torsion points) lie in the Selmer group, we have

Sel2(𝐸𝑝∕𝐾) = ⟨(−1, −𝑝), (𝑝, 2)⟩
≅ 𝔽22.

𝐩 ≡ 𝟓 (mod 𝟖)∶ Here −1 is square in both 𝐾𝜖 and 𝐾�̄�, and 2 is a nonsquare unit in both 𝐾𝜖

and 𝐾�̄�. We now split into two cases according to whether �̄� is in (𝐾×
𝜖 )

2. To capture this, we
fix

𝛿 =

{
1 �̄� ∉ 𝐾×2

𝜖

0 else.

Note that if �̄� ∉ 𝐾×2
𝜖 then we necessarily have 2 ≡ �̄� (mod 𝐾×2

𝜖 ). Acting by Gal(𝐾∕ℚ), we see that
�̄� is in (𝐾×

𝜖 )
2 if and only if 𝜖 is in (𝐾×

�̄� )
2.

The elements of the form (9.5) which lie in S𝜖(𝐸𝑝∕𝐾) are thus those of the shape(
(−1)𝑎1(2𝛿�̄�)𝑎4(2𝛿𝜖)𝑎3 , (−1)𝑏1(2𝛿�̄�)𝑏42𝑎3(2𝛿𝜖)𝑏3

)
.

Reducing further to those that lie in S�̄�(𝐸𝑝) forces 𝑎3 = 𝑎4, leaving those of the shape(
(−1)𝑎1(𝜖�̄�)𝑎3 , (−1)𝑏1(2𝛿�̄�)𝑏42𝑎3(2𝛿𝜖)𝑏3

)
. (9.8)
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Finally,we apply the conditions at 2. By Lemma9.2wehave 𝜖 ≡ ±(𝜁 − 3) ≡ ∓(4𝜁 + 5) (mod 𝐾×2
2
).

Moreover, as 𝑝 ≡ 5 (mod 8) we have

S2(𝐸𝑝∕𝐾) = ⟨(−1, −1), (1, 2), (𝜁 + 3, 𝜁 + 2), (1, 4𝜁 + 5)⟩.
Since 𝜖�̄� = 𝑝 ≡ 1 (mod 𝐾×2

2
), we have �̄� ≡ 𝜖 ≡ ∓(4𝜁 + 5). Thus, the elements

(−1, −1), (𝜖�̄�, 2), (1, ∓2𝛿𝜖), (1, ∓2𝛿�̄�)

all lie in∈ Sel2(𝐸∕𝐾), and are visibly linearly independent. Noting that (1, −1) is not inS2(𝐸𝑝∕𝐾),
we conclude that

Sel2(𝐸𝑝∕𝐾) = ⟨(−1, −1), (𝜖�̄�, 2), (1, ∓2𝛿𝜖), (1, ∓2𝛿�̄�)⟩
≅ 𝔽22 ⊕ 𝔽2[𝐺].

𝐩 ≡ 𝟏 (mod 𝟖) ∶ Here both −1 and 2 are squares in both 𝐾𝜖 and 𝐾�̄�. As before, set

𝛿 =

{
1 �̄� ∉ 𝐾×2

𝜖

0 else.

The elements of the form (9.5) which lie in S𝜖(𝐸𝑝∕𝐾) are those of the shape(
(−1)𝑎12𝑎2(𝜖�̄�𝛿)𝑐1 �̄�(1−𝛿)𝑐2 , (−1)𝑏12𝑏2(𝜖�̄�𝛿)𝑑1 �̄�(1−𝛿)𝑑2

)
, (9.9)

for some 𝑐1, 𝑐2, 𝑑1, 𝑑2 in {0, 1}. For either value of 𝛿 these elements all lie in S�̄�(𝐸𝑝).
Finally, we apply the conditions at 2. By Lemma 9.2. we have

𝜖 ≡ ±(−𝜁 − 1) ≡ ±𝜁2 ≡ ±1 (mod 𝐾×2
2
),

and as 𝜖�̄� = 𝑝 with have 𝜖 ≡ �̄� (mod 𝐾×2
2
). Moreover, with 𝑝 ≡ 1 (mod 8) we have

S2(𝐸𝑝∕𝐾) = ⟨(−1, −1), (1, 2), (𝜁 + 3, 𝜁 + 6), (1, 4𝜁 + 5)⟩.
As the first coordinate of each of these basis elements has trivial valuation, we have 𝑎2 = 0.
Suppose 𝛿 = 1. Then we see that an element of the form (9.9) is in the Selmer group if and only

if, in addition to 𝑎2 = 0, we have 𝑎1 = 𝑏1. Thus, we find

Sel2(𝐸𝑝∕𝐾) = ⟨(−1, −1), (1, 2), (1, 𝜖�̄�), (𝜖�̄�, 1)⟩
≅ 𝔽42.

Now suppose that 𝛿 = 0. Setting 𝑎2 = 0 in (9.9) leaves a 7-dimensional space of candidate
Selmer elements. Further, one readily checks that (−1, 1), which has the form (9.9) for 𝑎1 = 1 and
all other variables 0, is not in S2(𝐸𝑝∕𝐾). Thus, Sel2(𝐸𝑝∕𝐾) is at most 6-dimensional. However,
using the fact that 𝜖 ≡ �̄� ≡ ±1 (mod 𝐾×2

2
), one readily checks that the six linearly independent

elements

{(−1, −1), (1, 2), (1, ±𝜖), (±𝜖, 1), (1, ±�̄�), (±�̄�, 1)},
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each of which are of the form (9.9), map to S2(𝐸𝑝∕𝐾) after localising at 2. Thus,

Sel2(𝐸𝑝∕𝐾) = ⟨(−1, −1), (1, 2), (1, ±𝜖), (±𝜖, 1), (1, ±�̄�), (±�̄�, 1)⟩
≅ 𝔽22 ⊕ 𝔽2[𝐺]

2.

This completes the proof. □

Remark 9.10. The proof of part (i) shows that the conditions at inert primes impose no restric-
tions. Using this observation, one sees similarly that if 𝑑 is odd and divisible only by inert primes,
then

Sel2(𝐸𝑑∕𝐾) ≅ 𝔽
2+2𝜔(𝑑)
2

.

This gives a concrete instance of the growth of Sel2(𝐸𝑑∕𝐾) seen also in, for example, Proposi-
tion 5.6.

9.2 Statistics

Here we use Rédei symbols alongside the Chebotarev density theorem to determine the statistical
behaviour of Sel2(𝐸𝑝∕𝐾) from Proposition 9.3. We refer the reader to [35] for definitions concern-
ing Rédei symbols.

Lemma 9.11. Let 𝑝 ≡ 1 (mod 8) be a prime which splits in 𝐾∕ℚ, and let 𝜖 ∈ 𝐾 have norm 𝑝.
Then �̄� ∈ (𝐾×

𝜖 )
2 if and only if the Rédei symbol [𝜃, −𝜃, 𝑝] is trivial.

Proof. Note that −1 is a square in 𝐾𝜖 since 𝑝 ≡ 1 (mod 8). In particular, the statement is
unchanged upon replacing 𝜖 with −𝜖. By Lemma 9.2, we may thus assume that we have

�̄� ≡ −(𝜁 + 1) = 𝜁2 ≡ 1 (mod 𝐾×2
2
).

Now consider the diagram of fields

Since 𝜖 ramifies in 𝐿∕𝐾, we see that �̄� ∈ (𝐾×
𝜖 )

2 if and only if the unique prime of 𝐿 lying over
𝜖 splits in 𝐹∕𝐿. Let 𝔭 denote the unique prime of 𝐾′ lying over 𝑝. Since 𝑝 splits in 𝐾∕ℚ, we
see that 𝔭 splits in 𝐿∕𝐾′. Further, �̄� ramifies in 𝐿∕𝐾 and hence has even valuation (either 0 or
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2) at any prime 𝔭′ ∣ 𝔭 of 𝐿. In particular, the extension 𝐹 = 𝐿(
√
�̄�)∕𝐿 is unramified at such 𝔭′.

Thus, 𝐹∕𝐾′ is unramified at 𝔭. We now conclude that �̄� ∈ (𝐾×
𝜖 )

2 if and only if the Artin symbol
(
𝐹∕𝐾′

𝔭
) is trivial. Before relating this to a Rédei symbol, it will be useful to prove the following two

claims.
Claim 1: The field 𝐹∕𝐾′ is everywhere unramified. That 𝐹′∕𝐾′ is unramified at primes

not dividing 2𝑝𝜃 is clear, and we have already shown that the unique prime of 𝐾′ dividing 𝑝
is unramified in 𝐹′∕𝐾′. For primes over 2 note that 𝐾 and 𝐾′ are unramified at 2, and so 𝐿∕ℚ
is unramified at 2 also. Further, having chosen �̄� to be a square in 𝐾2, the extension 𝐾(

√
�̄�)∕𝐾

is split at 2. Thus, as the compositum of 𝐾(
√
�̄�) and 𝐿, the full extension 𝐹∕ℚ is unramified

at 2. Now note that 𝓁 = −𝜃 is an odd prime. Since 𝑝 has trivial 𝑙-adic valuation, the exten-
sion 𝐹 = 𝐾′(

√
𝑝,
√
𝜖)∕𝐾′ is unramified at (the unique prime of 𝐾′ over) 𝑙. This proves the

claim.
Claim 2: For each prime 𝑞, the Hilbert symbols (𝑝, 𝜃)𝑞 and (𝑝, 𝑝)𝑞 are trivial. By assump-

tion, 𝑝 is a norm from𝐾 = ℚ(
√
𝜃), so that (𝑝, 𝜃)𝑞 is trivial for all 𝑞. Next, for each prime 𝑞we have

(𝑝, 𝑝)𝑞 = (𝑝,−1)𝑞. That this latter symbol is trivial for 𝑞 ≠ 2, 𝑝 is immediate, while for 𝑞 = 2, 𝑝 it
is trivial since 𝑝 ≡ 1 (mod 8). This proves the claim.
Returning to the proof, by Claim 2 the Rédei symbol [𝜃, 𝑝, 𝑝] exists (see [35, Definition 7.8]).

Writing 𝜖 = 𝑥 + 𝑦
√
𝜃 for 𝑥, 𝑦 inℚ, we have 𝑥2 − 𝜃𝑦2 = 𝑝 by assumption. The field 𝐹 is then given

by adjoining to 𝐿 the element

√
𝜖 =

√
𝑥 + 𝑦

√
𝜃.

Further, by Claim 1 the extension 𝐹∕𝐾′ is minimally ramified in the sense of [35, Definition 7.6].
Thus, we may take 𝑎 = 𝜃, 𝑏 = 𝑝 and 𝐹𝑎,𝑏 = 𝐹 in [35, Definition 7.8], giving [𝜃, 𝑝, 𝑝] = (

𝐹∕𝐾′

𝔭
).

Consequently, we see that �̄� ∈ 𝐾×2
𝜖 if and only if the Rédei symbol [𝜃, 𝑝, 𝑝] is trivial.

By [35, Proposition 7.10], the Rédei symbol [𝑝, 𝜃, −𝜃𝑝] exists and is trivial (to see that 𝜃𝑝 is a
second kind decomposition, use [35, Proposition 4.2(4)] and our computations of Hilbert sym-
bols above). Now, using the trilinearity and reciprocity of Rédei symbols [35, Theorem 1.1], we
have

[𝜃, 𝑝, 𝑝] = [𝑝, 𝜃, 𝑝] + [𝑝, 𝜃, −𝜃𝑝]

= [𝑝, 𝜃, −𝜃]

= [𝜃, −𝜃, 𝑝]

as required. □

This allows us to give a complete statistical description of the 𝔽2[𝐺]-module Sel2(𝐸𝑝∕𝐾). First
we introduce some notation.

Notation 9.12. For 𝑝 a prime, we define non-negative integers 𝑒1(𝐸𝑝∕𝐾) and 𝑒2(𝐸𝑝∕𝐾) such that
we have a 𝐺-module isomorphism

Sel2(𝐸𝑝∕𝐾) ≅ 𝔽
𝑒1(𝐸𝑝∕𝐾)

2
⊕ 𝔽2[𝐺]

𝑒2(𝐸𝑝∕𝐾).
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Theorem 9.13. The density of primes 𝑝 for which 𝑒1(𝐸𝑝∕𝐾) = 𝑒1 and 𝑒2(𝐸𝑝∕𝐾) = 𝑒2 is as follows:

lim
𝑋→∞

#
{
𝑝 ⩽ 𝑋 prime ∶ 𝑒1(𝐸𝑝∕𝐾) = 𝑒1 and 𝑒2(𝐸𝑝∕𝐾) = 𝑒2

}
#{𝑝 ⩽ 𝑋 prime}

=

⎧⎪⎪⎨⎪⎪⎩

9∕16 if (𝑒1, 𝑒2) = (4, 0),

1∕16 if (𝑒1, 𝑒2) = (2, 2),

1∕4 if (𝑒1, 𝑒2) = (2, 1),

1∕8 if (𝑒1, 𝑒2) = (2, 0).

Proof. As a consequence of Lemma 9.11, and the Chebotarev density theorem applied to Proposi-
tion 9.3, it suffices to show that [𝜃, −𝜃, 𝑝] is trivial for precisely half of the primes 𝑝 ≡ 1 (mod 8)

which split in 𝐾∕ℚ (with respect to the natural density).
Fix a prime 𝑝 ∤ 2𝜃. In the notation of [35, Definitions 7.6, 7.8], let 𝐹𝜃,−𝜃 be minimally ramified

over ℚ(
√
𝜃,
√
−1), so that by definition the Rédei symbol [𝜃, −𝜃, 𝑝] is equal to the Artin symbol(

𝐹𝜃,−𝜃∕ℚ(
√
−1)

𝔭

)
, (9.14)

where 𝔭 is any ideal ofℚ(
√
−1) of norm 𝑝. The field𝐹𝜃,−𝜃 is a cyclic degree 4 extension ofℚ(

√
−1)

fitting into the diagram below. It is dihedral of degree 8 over ℚ and contains ℚ(
√
𝜃,
√
−1) as a

subfield.

The field𝐹𝜃,−𝜃(𝜁8)∕ℚ is Galois of degree 16. Now𝑝 both splits in𝐾∕ℚ and is congruent to 1modulo
8 if and only if it splits completely inℚ(

√
𝜃,
√
−1,

√
2) = ℚ(

√
𝜃, 𝜁8). On the other hand, the Artin

symbol (9.14) is trivial if and only if 𝑝 splits completely in 𝐹𝜃,−𝜃.
Consequently, we wish to compute the density of primes which split completely in 𝐹𝜃,−𝜃(𝜁8),

among those that split completely in ℚ(
√
𝜃, 𝜁8). By the Chebotarev density theorem, this is equal

to 1∕2. □
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