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Abstract
We consider certain universal functors on symmetric quotient stacks of Abelian vari-
eties. In dimension two, we discover a family of P-functors which induce new derived
autoequivalences of Hilbert schemes of points on Abelian surfaces; a set of braid
relations on a holomorphic symplectic sixfold; and a pair of spherical functors on
the Hilbert square of an Abelian surface, whose twists are related to the well-known
Horja twist. In dimension one, our universal functors are fully faithful, giving rise to
a semiorthogonal decomposition for the symmetric quotient stack of an elliptic curve
(which we compare to the one discovered by Polishchuk–Van den Bergh), and they
lift to spherical functors on the canonical cover, inducing twists which descend to give
new derived autoequivalences here as well.

Keywords Derived categories · Hilbert schemes of points · Kummer varieties ·
Fourier–Mukai transforms · Autoequivalences

Mathematical subject classification 14F05 · 14D22 · 14C05 · 18E30

Introduction

The derived category of coherent sheaves on a variety is a fundamental geometric
invariantwith fascinating and intricate connections to birational geometry,mirror sym-
metry, non-commutative geometry and representation theory, to name but a few. It is
fair to say that derived categories are ubiquitous in mathematics. Just as equivalences
between derived categories of different varieties can indicate deep and important con-
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nections between the respective varieties, equivalences between a derived category
and itself can also reveal underlying structures of a variety that would otherwise
remain hidden from view. In particular, the autoequivalence group of the derived cat-
egory naturally acts on the space of stability conditions and the structure of the group
of symmetries manifests itself through certain topological properties of the stability
manifold, such as simply-connectedness. Moreover, it is known that derived symme-
tries of smooth complex projective K -trivial surfaces X give rise to birational maps
between smooth K -trivial birational models of certain moduli spaces M on them (see
[11]), which, in turn, can be used to construct derived autoequivalences of the moduli
spaces. Classifying such hidden symmetries when M is a compact hyperkähler variety
is a long term goal of ours.

An alternative,more direct,way of constructing derived autoequivalences for hyper-
kähler varieties is to useP-objects (see [25]) or,more generally,P-functors (see [2,13]);
see Sect. 1.2 for details on these notions. The most basic example of a P-object is the
structure sheaf OM of a hyperkähler variety M .

One very interesting source of P-functors are the universal functors associated to
hyperkähler moduli spaces. More precisely, if X is a smooth complex projective K -
trivial surface and M a moduli space of sheaves on X which is hyperkähler, then the
Fourier–Mukai transform:

FMU := πM∗(π∗
X ( ) ⊗ U) : D(X) → D(M),

induced by the universal sheaf U on X × M is conjectured to be a P-functor; see [2,
§1]. This conjecture is proven when M is the Hilbert scheme X [n] of points on a K3
surface X and some instances where M is deformation equivalent to X [n]; see [2,3,38].
Another important case where this conjecture has been successfully verified is when
M is the generalised Kummer variety Kn−1 ⊂ A[n] associated to an Abelian surface
X = A; see [36]. In particular, it is shown that the Fourier–Mukai transform:

FK : D(A) → D(Kn−1),

along the universal family on A × Kn−1 is a P
n−2-functor for all n ≥ 3. We will

often refer to functors given as Fourier–Mukai transforms along universal families as
universal functors.

The key to proving that FK is a P-functor is the observation that pull-back:

m∗ : D(A) → D(A[n]),

along the Albanese map m : A[n] → A is a P-functor; see [36]. The Albanese map is
isotrivial and the fibres are, by definition, the generalised Kummer variety associated
to A. In particular, we can view the Hilbert scheme A[n] as a family of generalised
Kummer varieties Kn−1 fibred over A. Therefore, it makes sense to regard the P-
functor m∗ as a family version of the P-object OKn−1 .

This raises the question whether the universal P-functor FK : D(A) → D(Kn−1)

is a fibre of some family P-functor with target D(A[n])? In the present paper, we
construct such a P-functor D(A × A) → D(A[n]) as a suitable combination of the
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pull-back m∗ and the Fourier–Mukai transform along the universal family of A[n] and
study some further properties of this and related functors.

In view of the conjecture concerning P-functors on moduli spaces discussed above,
it is natural to expect the analogous functor for more general fine moduli spaces M
of sheaves on an Abelian surface A to be a P-functor. Instead of pursuing this further,
we translate our functors to the equivariant side of derived McKay correspondence of
Bridgeland, King, Reid [9] and Haiman [21]:

� :=BKR ◦ Haiman : D(A[n]) ∼−→ D(HilbSn (An))
∼−→ DSn (An),

where the symmetric group Sn acts on An by permuting the factors, and investigate
what happens when we vary the dimension g of the Abelian variety A. In the case g =
1, this yields fully faithful functors and, accordingly, a semiorthogonal decomposition
of DSn (An) which we discuss in the second part of the paper.

Summary of main results

Let A[n] be the Hilbert scheme of n points on an Abelian surface A and m : A[n] → A
the Albanese map. We can express A[n] as a moduli space of ideal sheaves on A
equipped with a universal sheaf U = IZ on A × A[n] where Z ⊂ A × A[n] is the
universal family of length n subschemes of A. If π2 : A × A[n] → A[n] denotes the
projection then our main result is the following:

Theorem (2.4) The functor:

F := π2∗((idA × m)∗( ) ⊗ U) : D(A × A) → D(A[n]),

is a P
n−2-functor for all n ≥ 3 and thus gives rise to a new1 autoequivalence of

D(A[n]).

We show that the restrictionFA×{x} : D(A) → D(Kn−1) of this functor to any fibre
over a point in the second factor coincides with the P

n−1-functor FK considered in
[36, Theorem 4.1]; in particular, F is a family version of FK .

When n = 3, our universal functor F : D(A × A) → D(A[3]) is spherical and we
can directly compare it with a similar spherical functor H : D(A × A) → D(A[3]);
constructed as part of a series of P-functors by the first author in [32], whose image
is supported on the exceptional divisor.

Theorem (2.9) The autoequivalences of D(A[3]) associated to the two spherical func-
tors:

F,H : D(A × A) → D(A[3]),

1 How the twist along F differs from previously known autoequivalences ofD(A[n]) will be discussed in
Remark 2.5.
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satisfy the braid relation:

TFTHTF 	 THTFTH.

Restricting this result to the Kummer fourfold K2 recovers the braid relation of [32,
End of Section 7.5].

Throughout the article, we study F via the triangle of functors F → F′ → F′′
induced by the structure sequence IZ → OA×A[n] → OZ associated toZ ⊂ A× A[n].
That is, we have

F′ = π2∗
(
(idA × m)∗( ) ⊗ OA×A[n]

)
and F′′ = π2∗

(
(idA × m)∗( ) ⊗ OZ

)
.

Now, the case n = 2 is not covered by Theorem 2.4, but it is still interesting
to consider. Indeed, we show that our universal functor F, as well as F′′, is again
spherical and has an intimate relationship with Horja’s EZ-construction [23]: recall
that if q : E = P(�A) → A is the P1-bundle associated to the exceptional divisor E
inside A[2] and i : E ↪→ A[2] is the inclusion then, for any integer k, the functor

Hk := i∗(q∗( ) ⊗ Oq(k)) : D(A) → D(A[2]),

is spherical with cotwist [−3] and twist THk , which we call the Horja twist.

Theorem (2.20) The universal functors

F,F′′ : D(A × A) → D(A[2]),

are both spherical with cotwist
( −1 1

0 1

)∗ [−1] and their induced twists satisfy:

TF 	 Tm∗ TF′′ T −1
m∗ and TF′′ 	 T −1

H−1
(O(E/2) ⊗ ( ))[1].

We observe that the fibres FK ,F′′
K : D(A) → D(K1A) are precisely the functors

which were studied by the authors in [27], whereFK andF′′
K are shown to be spherical

functors with cotwist (−1)∗[−1]. In particular, Theorem 2.20 generalises the results
of [27] from the fibre to the whole family.

All the above results are proved by using the derived McKay correspondence
� : DSn (An)

∼−→ D(A[n]) to translate the functors F,F′,F′′ : D(A × A) → D(A[n])
to equivariant functors F, F ′, F ′′ : D(A × A) → DSn (An) whose compositions with
their adjoints are easier to compute; see Sect. 2.2 for details.

We point out that the functors F, F ′, F ′′ : D(A × A) → DSn (An) are interesting
in their own right and their definitions make sense for an Abelian variety A of arbitrary
dimension, not just an Abelian surface. In Sect. 3, we study the case when A = E is
an elliptic curve.

Theorem (3.3, 3.6 and 3.9) For n ≥ 3, we have fully faithful functors

�∗
n : D(E) → DSn (En) and F : D(E × E) → DSn (En),
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where �n : En → E is the summation morphism, which give rise to a semiorthogonal
decomposition:

DSn (En) = 〈Bn, F(D(E × E)),�∗
n (D(E))〉.

At the moment, we are unable to give a geometric description of the category Bn .
However, comparing this semiorthogonal decomposition to the one of Polishchuk–
Van den Bergh [41, Theorem B] suggests that further investigation will likely yield
interesting results.

Theorem (3.11) If � : [En/An] → [En/Sn] is the double cover induced by the
alternating subgroup An � Sn, then the functors

� ∗�∗
n : D(E) → DAn (En) and � ∗F : D(E × E) → DAn (En),

are spherical and the twists descend to give autoequivalences of DSn (En).

1 Preliminaries

In this paper, D(X) will denote the bounded derived category of coherent sheaves on
a smooth complex projective variety X . For equivariant versions of this category, we
refer the reader to [9,10,18,40]. In an attempt to make this article self contained, and
for convenience, we collect the necessary facts below.

1.1 Equivariant sheaves

Let G be a finite group acting on a variety X . Then DG(X) denotes the bounded
derived category of G-equivariant coherent sheaves on X . Every object E ∈ DG(X)

comes with a G-linearisation λ, which is a collection of isomorphisms λg : E ∼−→ g∗E
for all g ∈ G such that λ1 = idE and λgh = h∗λg ◦λh , but this will often be suppressed
in the notation.We have a natural equivalenceDG(X) 	 D([X/G])whereD([X/G])
is the derived category of coherent sheaves on the quotient stack [X/G]; see e.g. [46,
(7.21)]

If H < G is a subgroup thenwe have a forgetful functor ResG
H : DG(X) → DH (X).

The left (and right) adjoint of the restriction functor is given by the induction functor:

IndG
H : DH (X) → DG(X) ; E �→

⊕

[g]∈G/H

g∗E,

where the sum runs over a complete set of representatives of the left cosets and the
linearisation is given by a combination of the H -linearisation of E and permutation of
the direct summands.
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Furthermore, there is a natural morphism of quotient stacks � : [X/H ] → [X/G]
which renders commutative diagrams:

D([X/H ]) �∗

�

D([X/G])
�

D([X/G]) � ∗

�

D([X/H ])
�

DH (X)
IndG

H DG(X) DG(X)
ResG

H DH (X).

In particular, for allE ∈ D([X/G]) andF ∈ D([X/H ]), the projection formula (which
can be found in [24, Corollary 4.12]) asserts the existence of a natural isomorphism
�∗(� ∗(E) ⊗ F) 	 E ⊗ �∗(F), which is equivalent to

IndG
H (ResG

H (E) ⊗ F) 	 E ⊗ IndG
H (F). (1)

Every objectL ∈ DG(X) gives rise to a natural endofunctorML := ( )⊗Lwhich is
an equivalence ifL is a G-equivariant line bundle. Similarly, if 
 is a one-dimensional
representation of G then we set

M
 : DG(X)
∼−→ DG(X) ; (E, λ) �→ (E, λ′),

where λ′ is the linearisation defined by λ′
g := λg ◦ 
(g). For example, if G is the

symmetric group Sn on n elements and an is the one dimensional alternating repre-
sentation which acts by multiplication by the sign of a permutation then its induced
autoequivalence is denoted by Man . Using this notation, Eq. (1) becomes

IndG
H ◦MF ◦ ResG

H := IndG
H (ResG

H ( ) ⊗ F) 	 ( ) ⊗ IndG
H (F)=: MIndG

H (F)
. (2)

Let f : X → Y be a G-equivariant map. Then equivariant pushforward f∗ and
pullback f ∗ commute with the functors Res, Ind and M
 defined above. That is,

f∗ Res 	 Res f∗; f∗ Ind 	 Ind f∗; f∗ M
 	 M
;
f ∗ Res 	 Res f ∗; f ∗ Ind 	 Ind f ∗; f ∗ M
 	 M
 .

(3)

If G acts trivially on X then we have a functor trivG
1 : D(X) → DG(X) which

equips every object with the trivial G-linearisation. The left (and right) adjoint of
trivG

1 is functor of invariants ( )G : DG(X) → D(X) which sends a sheaf to its fixed
part. There are natural isomorphisms of functors:

ResG
H trivG

1 	 trivH
1 and ( )G IndG

H 	 ( )H . (4)

Moreover, if Y is another variety on which G acts trivially and f : X → Y is any
morphism, then pushforward f∗ and pullback f ∗ commute with trivG

1 and ( )G . That
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is, we have isomorphisms:

f∗ trivG
1 	 trivG

1 f∗; f∗( )G 	 ( )G f∗;
f ∗ trivG

1 	 trivG
1 f ∗; f ∗( )G 	 ( )G f ∗.

(5)

Suppose E = ⊕
i∈I Ei ∈ DG(X) for some finite index set I and that there is a

G-action on I which is compatible with the G-linearisation λ on E in the sense that
λg(Ei ) 	 Eg(i) for all i ∈ I . If {i1, . . . , ik} is a set of representatives of the G-orbits
of I and Gi j := stabG(i j ) is the stabiliser subgroup of the element i j then we have

an isomorphism E = ⊕k
j=1 Ind

G
Gi j

Ei j . In particular, if G acts trivially on X then we

can compute invariants using the formula:

EG 	
k⊕

j=1

EGi j
i j

. (6)

Moreover, if the G-action on I is transitive then E = IndG
Gi

Ei and Eq. (6) reduces to

EG = EGi
i for any i ∈ I ; see [16, Lemma 2.2] and [43, Remark 2.4.2].

Let G, H be finite groups acting on the smooth projective varieties X and Y , respec-
tively. Then, for every object P ∈ DG×H (X × Y ), there is an associated equivariant
Fourier–Mukai transform

FMP : DG(X) → DH (Y ) ;
see e.g. [40, Section 1.3] for details. Under the natural equivalences DG(X) 	
D([X/G]), DH (Y ) 	 D([Y/H ]), and DG×H (X × Y ) 	 D([X/G] × [Y/H ]), this
equals the more general notion of a Fourier–Mukai transform FMP : D([X/G]) →
D([Y/H ]) of smooth and proper stacks as in [14, Section 2].

1.2 Spherical and P-functors

Let F : A → B be an exact functor between triangulated categories with left adjoint
L and right adjoint R. Then we define the twist T and cotwist C of F by the following
exact triangles:

F R
ε−→ idB → T and C → idA

η−→ RF,

where η and ε are the unit and counit of adjunction. To make sure that the above
cones of functors actually exist, one has to work with Fourier–Mukai transforms, see
[2, Section 2], [15, Appendix A], [5], or, more generally, with dg-functors between
dg-enhancements of A and B; see [7]. All the functors we consider in this paper are
Fourier–Mukai transforms.

An exact functor F : A → B with left adjoint L and right adjoint R is spherical
if the cotwist C is an autoequivalence of A which identifies the adjoints, that is,
R 	 C L[1]. We say that a spherical functor is split if RF 	 idA ⊕ C[1].
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If F : A → B is a spherical functor, then the corresponding twist functor T is an
equivalence of B; see [2,7,35,37,42].

An exact functor F : A → B with left adjoint L and right adjoint R is a Pn-functor
if there is an autoequivalence D of A, called the P-cotwist2 of F , such that

RF 	 idA ⊕ D ⊕ D2 ⊕ · · · ⊕ Dn; (7)

the composition:

DRF ↪→ RF RF
RεF−−→ RF,

when written in components

D ⊕ D2 ⊕ · · · ⊕ Dn ⊕ Dn+1 → idA ⊕ D ⊕ D2 ⊕ · · · ⊕ Dn,

is of the form
⎛

⎜⎜⎜⎜⎜
⎝

∗ ∗ · · · ∗ ∗
1 ∗ · · · ∗ ∗
0 1 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · 1 ∗

⎞

⎟⎟⎟⎟⎟
⎠

;

and R 	 Dn L . IfA and B have Serre functors then this last condition is equivalent to
SBF Dn 	 F SA.

Addington [2, Theorem 4.4] and Cautis [13, Proposition 6.6] observed that if
F : A → B is a P-functor then the corresponding twist functor:

PF : = cone(cone(F H R
f−→ F R) → idB),

where f : = F H R ↪→ F RF R
εF R−F Rε−−−−−−→ F R, is an autoequivalence of B. The

functor PF does not depend on the choice of the morphism cone(F H R
f−→ F R) →

idB; see [6] for more details on this.
Because all the P-functors encountered in this paper will have P-cotwist D = [−2]

given by the shift functor, we introduce the notation:

�c, d� := [c] ⊕ [c + 2] ⊕ · · · ⊕ [d − 2] ⊕ [d] : A → A,

for integers c ≤ d such that d − c is even. For example, if F is a P
n-functor with

P-cotwist D = [−2] then we will abbreviate condition (7) simply as RF 	 �−2n, 0�.
If F : A → B is a P-functor with P-cotwist D and � : A′ → A is an equivalence

then

F� is aP-functor with P-cotwist �−1D� and twist PF� 	 PF . (8)

2 The cotwist C and P-cotwist D of F are related by C[1] = D ⊕ D2 ⊕ · · · ⊕ Dn .
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Similarly, if � : B → B′ is an equivalence then

�F is aP-functor with P-cotwist D and twist P�F 	 �PF�−1; (9)

see [29, Lemma 2.4] for more details. Analogously, the same formulae hold for spher-
ical functors: TF� 	 TF and T�F 	 �TF�−1; see [1, Proposition 13]. Note that a
P
1-functor F is a split spherical functor with P-cotwist D = C[1] and twist PF 	 T 2

F ;
see [2, Section 4.3].

The following simple lemma will be used later in the text.

Lemma 1.1 Let X , Y , Z be smooth projective varieties on which finite groups G, H , K
act. For P ∈ D([X/G] × [Y/H ]), we define the associated base changed Fourier–
Mukai transform3

F[Z/K ] := F � idD([Z/K ]) := FMP�O�[Z/K ] : D([X/G] × [Z/K ])
→ D([Y/H ] × [Z/K ]).

If F := FMP : D([X/G]) → D([Y/H ]) is a P
n-functor with P-cotwist D, then the

base change F[Z/K ] : D([X/G] × [Z/K ]) → D([Y/H ] × [Z/K ]) is a P
n-functor

with P-cotwist D[Z/K ].

Proof The left and right adjoints of F[Z/K ] are given by the base changes L [Z/K ] and
R[Z/K ] respectively. It is easy to check that the base change of functors is compatible
with composition. Hence, the properties R[Z/K ]F[Z/K ] 	 id⊕ D[Z/K ] ⊕ · · ·⊕ Dn

[Z/K ]
and R[Z/K ] 	 Dn

[Z/K ]L [Z/K ] follow from the analogous properties of F .
The unit and counit of adjunction η : id → RF and ε : F R → id are defined on

the level of the Fourier–Mukai kernels; see [5] or [15]. Hence, their base changes can
be defined as η[Z/K ] := η � id and ε[Z/K ] := ε � id, respectively. Now, the identities
εF ◦Fη = idF and Rε◦ηR = idR imply the identities ε[Z/K ]F[Z/K ]◦F[Z/K ]η[Z/K ] =
idF[Z/K ] and R[Z/K ]ε[Z/K ] ◦ η[Z/K ] R[Z/K ] = idR[Z/K ] . This means that η[Z/K ] and
ε[Z/K ] are the unit and counit of F[Z/K ]. Hence, the desired property of the monad
multiplication

R[Z/K ]ε[Z/K ]F[Z/K ] : R[Z/K ]F[Z/K ] R[Z/K ]F[Z/K ] → R[Z/K ]F[Z/K ]

follows from the analogous property of RεF : RF RF → RF . ��

1.3 Relative Fourier–Mukai transforms

Let f : X → S and g : Y → S be smooth morphisms between smooth projective
varieties, which we regard as families over S. Then, for any object P ∈ X ×S Y , the

3 Under the canonical equivalence D([Z/K ] × [Z/K ]) 	 DK×K (Z × Z), the Fourier–Mukai ker-
nel O�[Z/K ] of the identity functor idD([Z/K ]) used for the base change corresponds to the object
⊕

g∈K O�g which is equipped with the K × K -linearisation given by the canoncial isomorphisms
O�

g−1
2 hg1

	 (g1, g2)
∗O�h .
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relative Fourier–Mukai transform (over S) is given by

F := FMP = πY∗(π∗
X ( ) ⊗ P) : D(X ) → D(Y)

where πX : X ×S Y → X and πY : X ×S Y → Y are the projections to the factors of
the fibre product. The projection formula shows that F is isomorphic to the absolute
Fourier–Mukai transform along ı∗P ∈ D(X ×Y) where ı : X ×S Y → X ×Y is the
closed embedding.

We now fix a point s ∈ S and denote the fibres over s by X :=Xs = f −1({s}) and
Y :=Ys = g−1({s}). There are canonical closed embeddings j : X × Y ↪→ X ×S Y ,
jX : X ↪→ X , jY : Y ↪→ Y , and we consider the cartesian diagram:

X × Y
πY

πX

j
Y

jY

X ×S Y
πX

πY Y

X

jX

{s}

X S.

The restriction (or fibre) of F over s ∈ S is the Fourier–Mukai transform along
j∗P ∈ D(X × Y ), that is,

Fs := FMj∗P := πY∗(π∗
X ( ) ⊗ j∗P) : D(X) → D(Y ). (10)

Flat base change provides us with natural isomorphisms:

F jX∗ 	 jY∗Fs and j∗Y F 	 Fs j∗X . (11)

Similarly, if F : D(X ) → D(Y) and G : D(Y) → D(Z) are relative Fourier–
Mukai transforms over S then the usual convolution of kernels together with base
change shows that we have a natural isomorphism:

Gs ◦ Fs 	 (G ◦ F)s . (12)

In particular, since Grothendieck duality ensures that the left and right adjoint of a
relative Fourier–Mukai functor F : D(X ) → D(Y) are again relative Fourier–Mukai
transforms, Eq. (12) will be helpful to determine the monad structure of RF .

2 Abelian surfaces

Let A be an Abelian surface, An its cartesian product on which the group Sn acts by
permutation of the factors, and A[n] the Hilbert scheme of n points on A.
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2.1 DerivedMcKay correspondence

Recall that Haiman [21] constructed an isomorphism A[n] 	 HilbSn (An), where
HilbSn (An) is the equivariant Hilbert scheme, that is, the fine moduli space of Sn-
invariant zero-dimensional subschemes Z ⊂ An whose global sections H0(OZ ) are
identified with the regular representation (also known as Sn-clusters). In particular,
there is a universal family Z ⊂ A[n] × An whose projections yield a commutative
diagram:

Z
pq

A[n]

μ

m

An

�n

π

A(n)

�n

A ,

(13)

where A(n) = An/Sn is the symmetric product, and�n is induced by theSn-invariant
morphism �n .

By the derived McKay correspondence of [9] we get an equivalence:

� := p∗q∗ trivSn
1 : D(A[n]) ∼−→ DSn (An).

One can conclude easily that the functor:

� := ( )Sn q∗ p∗ : DSn (An)
∼−→ D(A[n]),

is an equivalence too4; see [30, Proposition 2.9].
Now let Z ⊂ A × A[n] be the universal subscheme and consider the Fourier–Mukai

functor FMOZ
: D(A) → D(A[n]). Then Scala’s result [44, Theorem 16], states that

we have an isomorphism of functors:

� ◦ FMOZ
	 FMK•[1],

where K• is the Sn-equivariant complex:

0 →
n⊕

i=1

ODi →
⊕

|I |=2

ODI ⊗ aI → · · · → OD{1,...,n} ⊗ an → 0

4 Note, however, that � is not the inverse of � because we are using p∗ instead of p!.
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on A × An (concentrated in degrees one to n), aI is the alternating representation of
the subgroup SI ⊂ Sn , and DI := ⋂

i∈I Di are the partial diagonals defined by

An 	 Di := {(x, x1, . . . , xn) | xi = x} ⊂ A × An .

Equivalently, the terms of the complex can be written as

Kp = IndSn
S[p]×S[p+1,n]

(OD[p] ⊗ a[p]
)

where [p] = {1, . . . , p} and [p + 1, n] = {p + 1, . . . , n}.
Remarkably, if one uses the kernel for the BKRH-equivalence for a Fourier-Mukai

functor

� : DSn (An)
∼−→ D(A[n])

in the opposite direction (which is not an inverse to �) then only the first term of the
complex K• survives. More precisely, we have an isomorphism of functors:

FMOZ
	 � ◦ FMK1 ,

where K1 = ⊕n
i=1ODi ; see [30, Theorem 3.6]. Similarly, if we extend K• by

K0 :=OA×An to 0 → OA×An → ⊕n
i=1ODi → · · · → 0, and denote the extended

complex by K• as well, then we have

� ◦ FMIZ 	 FMK• .

From now on, we will fix K to be the Sn-equivariant two-term complex

K :=
(

0 → OA×An →
n⊕

i=1

ODi → 0

)

on A × An (concentrated in degrees zero and one), where the differential is given by
restriction of sections; c.f. [43, Remark 2.2.1]. Note that we also have

FMIZ 	 � ◦ FMK .

Finally, the summation morphism �n : An → A is Sn-equivariant and pullback

�∗
n triv

Sn
1 : D(A) → DSn (An) is a Pn−1-functor with P-cotwist [−2]. (14)

In particular, this means that we have an isomorphism:

( )Sn �n∗�∗
n triv

Sn
1 	 �−2(n − 1), 0�. (15)
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These statements follow from [36, Theorem 5.2 & Lemma 6.4]5 where it is shown
that pullback along the Albanese map m : A[n] → A is a Pn−1-functor and

m∗ 	 � ◦ �∗
n triv

Sn
1 . (16)

2.2 P-functors on symmetric quotient stacks of Abelian surfaces

Now, consider the diagram:

DSn (A × An)

( )⊗K

( )⊗OA×An

( )⊗(⊕
i ODi

)

DSn (A × An)

p2∗

D(A × A)
trivSn

1 DSn (A × A)

(idA×�n)∗

DSn (An),

and observe that the triangle:

K → OA×An →
⊕

i

ODi (17)

of objects of DSn (A × An) induces a triangle of Fourier–Mukai functors:

F → F ′ → F ′′,

where F, F ′, F ′′ : D(A × A) → DSn (An) are defined as follows:

F := p2∗ ◦ MK ◦(idA × �n)
∗ ◦ trivSn

1 ,

F ′ := p2∗ ◦ MOA×An ◦(idA × �n)∗ ◦ trivSn
1 ,

F ′′ := p2∗ ◦ M⊕
i ODi

◦(idA × �n)
∗ ◦ trivSn

1 .

Let R, R′ and R′′ denote the right adjoints of F , F ′ and F ′′ respectively. The rest
of this section will be spent proving that

RF 	 �−2(n − 2), 0� = id ⊕ [−2] ⊕ · · · ⊕ [−2(n − 2)].

To do this, we will compute R′F ′, R′F ′′, R′′F ′, R′′F ′′ and then take cohomology of
a natural diagram of exact functors to obtain RF .

5 Note that the statement of [36, Lemma 6.4] is not exactly the same as our statement in Eq. (16) since the
equivalence � in [36] is the one that we denote by � here. However, the proof is completely analogous.



28 Page 14 of 37 A. Krug, C. Meachan

First, we simplify the formula for F ′. Consider the following diagram:

An 	 Di

idAn

ιi

(pri ,�n)

A × An p2

idA×�n

An

�n

A × A
π2

A,

(18)

where π2, pri and p2 denote the various projections and ιi : Di ↪→ A × An is the
embedding. Note that the triangles are commutative and the square is Cartesian. In
particular, base change around the square in diagram (18) allows us to rewrite the
functor F ′ as

F ′ 	 �∗
nπ2∗ trivSn

1 . (19)

Now, we rephrase the expression for F ′′ in a more tractable form. Recall that for
all σ ∈ Sn we have an induced automorphism σ ∗ ∈ Aut(An) defined by

σ ∗(x1, . . . , xn) := (xσ−1(1), . . . , xσ−1(n)).

Let Sn act on A × An by permuting the factors of An and by the identity on the first
factor, and observe that σ ∗ODi 	 ODσ(i) for all σ ∈ Sn . If we use the notation

[u, v] := {u, u + 1, . . . , v} ⊂ N

for positive integers u ≤ v, then Di is invariantwith respect to the action ofS[1,n]\{i} 	
Sn−1. In particular, OD1 carries a natural linearisation by the group Sn−1 	 S[2,n]
and a set of representatives for the left cosets of the subgroup S[2,n] < Sn is given
by the transpositions {τ1i = (1 i)}n

i=1, where τ11 denotes the trivial permutation.
Therefore, by definition of the induction functor, we have

IndSn
Sn−1

OD1 :=
n⊕

i=1

τ ∗
1iOD1 	

n⊕

i=1

ODi . (20)

Plugging this into the equivariant projection formula (2) gives:

MIndSn
Sn−1

OD1
	 IndSn

Sn−1
MOD1

ResSn
Sn−1

. (21)
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Putting all this together, we get

F ′′ := p2∗ ◦ M⊕
i ODi

◦(idA × �n)∗ ◦ trivSn
1

	 p2∗ MIndSn
Sn−1

OD1
(idA × �n)

∗ trivSn
1 (by (20))

	 p2∗ IndSn
Sn−1

MOD1
ResSn

Sn−1
(idA × �n)

∗ trivSn
1 (by (21))

	 p2∗ IndSn
Sn−1

MOD1
(idA × �n)

∗ ResSn
Sn−1

trivSn
1

((idA × �n) is Sn-equivariant)

	 p2∗ IndSn
Sn−1

MOD1
(idA × �n)

∗ trivSn−1
1 (since ResSn

Sn−1
trivSn

1 	 trivSn−1
1 )

	 IndSn
Sn−1

p2∗ MOD1
(idA × �n)

∗ trivSn−1
1 (since p2 is Sn-equivariant)

	 IndSn
Sn−1

p2∗ι1∗ι∗1(idA × �n)
∗ trivSn−1

1 (by projection formula)

	 IndSn
Sn−1

ι∗1(idA × �n)∗ trivSn−1
1 (since p2 ◦ ι1 	 idAn )

	 IndSn
Sn−1

(pr1, �n)∗ trivSn−1
1 . (since (idA × �n) ◦ ι1 	 (pr1, �n))

In summary, we can rewrite F ′′ as

F ′′ 	 IndSn
Sn−1

(pr1, �n)∗ trivSn−1
1 . (22)

Therefore, the right adjoints of F ′ and F ′′ are given by

R′ 	 ( )Sn π !
2�n∗ and R′′ 	 ( )Sn−1(pr1, �n)∗ ResSn

Sn−1
. (23)

Lemma 2.1 If A is an Abelian surface then we have the following isomorphisms of
endofunctors of D(A × A) for all n ≥ 3:

(i) R′F ′ 	 π !
2π2∗�−2(n − 1), 0�,

(ii) R′F ′′ 	 π !
2π2∗�−2(n − 2), 0�,

(iii) R′′F ′ 	 π !
2π2∗�−2(n − 1),−2�,

(iv) R′′F ′′ 	 π !
2π2∗�−2(n − 2),−2� ⊕ �−2(n − 2), 0�.

Proof (i): Direct computation with (19) and (23) yields:

R′F ′ = ( )Sn π !
2�n∗�∗

nπ2∗ trivSn
1

	 π !
2( )Sn �n∗�∗

n triv
Sn
1 π2∗ (since π2 is Sn -equivariant)

	 π !
2π2∗�−2(n − 1), 0�. (by (15))
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(ii): Consider the following commutative diagram:

A × An−1 	 An
(pr1,�n)

idA×�n−1

A × A
(π1,�2)

A × A,

(24)

and observe that (idA × �n−1)
∗ trivSn−1

1 is a P
n−2-functor with P-cotwist [−2] by

(14) and Lemma 1.1. Since (π1, �2) is an automorphism, we have an induced autoe-
quivalence (π1, �2)

∗ of D(A × A) which implies the composition:

(idA × �n−1)
∗ trivSn−1

1 (π1, �2)
∗

	 (idA × �n−1)
∗(π1, �2)

∗ trivSn−1
1 (since (π1, �2)

∗ is Sn−1-equivariant)

	 (pr1, �n)∗ trivSn−1
1 (since (pr1, �n) 	 (π1, �n) ◦ (idA × �n−1))

is a Pn−2-functor with P-cotwist [−2] by (8). In particular, we have

( )Sn−1(pr1, �n)∗(pr1, �n)∗ trivSn−1
1 	 �−2(n − 2), 0�. (25)

Combining this observation with the commutative diagram in (18) gives:

R′F ′′ = ( )Sn π !
2�n∗ IndSn

Sn−1
(pr1, �n)∗ trivSn−1

1

	 ( )Sn IndSn
Sn−1

π !
2�n∗(pr1, �n)∗ trivSn−1

1 (π2 and �n are Sn-equivariant)

	 ( )Sn−1π !
2�n∗(pr1, �n)∗ trivSn−1

1 (( )Sn IndSn
Sn−1

	 ( )Sn−1 )

	 ( )Sn−1π !
2π2∗(pr1, �n)∗(pr1, �n)∗ trivSn−1

1 (�n = π2 ◦ (pr1, �n))

	 π !
2π2∗( )Sn−1(pr1, �n)∗(pr1, �n)∗ trivSn−1

1 (π2 is Sn−1-equivariant)

	 π !
2π2∗�−2(n − 2), 0�. (by (25))

(iii): Notice that if L ′ denotes the left adjoint of F ′ then L ′F ′′ is left adjoint to
R′′F ′. Moreover, by [26, Remark 1.31], we have

L ′ 	 S−1
D(A×A)

R′SDSn (An) 	 R′[2n − 4], (26)

and if we continue with our convention of identifying Fourier–Mukai kernels with the
functors they represent then [26, Remark 5.8] says that

R′′F ′ 	 SD(A×A)(L ′F ′′)∨ = (L ′F ′′)∨[4]. (27)
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Thus, we have

R′′F ′ 	 (L ′F ′′)∨[4] (by (27))

	 (R′F ′′)∨[8 − 2n] (by (26))

	 π !
2π2∗�−2(n − 1),−2�. (since (π !

2π2∗)∨ 	 π !
2π2∗[−6])

(iv): First note that R′′F ′′ 	 ESn−1 with

E = (pr1, �n)∗ ResSn
Sn−1

IndSn
Sn−1

(pr1, �n)∗ trivSn−1
1 .

In summary, we will find a decomposition E = ⊕
i∈I Ei which is compatible with the

Sn−1-linearisation and then use (6) to compute invariants.
Recall from our derivation of (20) that IndSn

Sn−1
( ) = ⊕n

i=1 τ ∗
1i ( ), where τ1i is the

transposition (1 i) and Sn−1 is identified with S[2,n] :=S{2,...,n}. Furthermore, we
have (pr1, �n) ◦ τ1i = (pri , �n) and hence τ ∗

1i (pr1, �n)∗ = (pri , �n)∗. Combining
these two observations, we get

E 	
n⊕

i=1

Ei with Ei = (pr1, �n)∗(pri , �n)∗ trivSn−1
1 ,

and the linearisation of E satisfies λg(Ei ) = Eg(i) for all g ∈ S[2,n]. In other words,
the canonical action of S[2,n] 	 Sn−1 on {1, . . . , n} is compatible with the lineari-
sation of E in the sense of Sect. 1.1. This action has two orbits given by {1} and
{2, . . . , n}. If we choose {1, n} as a set of representatives of theSn−1-orbits of I then
we have stabSn−1(1) 	 Sn−1 and stabSn−1(n) 	 S[2,n−1] 	 Sn−2. Plugging this
information into (6), we get

ESn−1 = ESn−1
1 ⊕ ESn−2

n .

In other words, since R′′F ′′ = ESn−1 , we have

R′′F ′′ = ( )Sn−1(pr1, �n)∗(pr1, �n)∗ trivSn−1
1

⊕ ( )Sn−2(pr1, �n)∗(prn, �n)∗ trivSn−2
1 .

By (25), the first direct summand is equal to �−2(n − 2), 0� and so it only remains
to show that the second summand is given by π !

2π2∗�−2(n − 2),−2�. For this, we
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consider the commutative diagram:

An

(prn ,�n)

(pr1,�n ,prn)

(pr1,�n)
A × A × A

τ◦π23

π12

A × A

π2

A × A
π2

A,

(28)

where τ : A × A → A × A denotes the permutation of the two factors and the square
is Cartesian. Before doing the computation, we observe that we can factorise the
morphism (pr1, �n, prn) using another commutative diagram:

A × An−2 × A 	 An

(pr1,�n ,prn)

idA×�n−2×idA
A × A × A

ϕ =
(
1 0 0
1 1 1
0 0 1

)

A × A × A.

Now, since �∗
n−2 triv

Sn−2
1 is a P

n−3-functor with P-cotwist [−2] by (14) and ϕ is

an automorphism, we can use (8) to deduce that (pr1, �n, prn)∗ trivSn−2
1 is also a

P
n−3-functor with cotwist [−2]. That is, we have

( )Sn−2(pr1, �n, prn)∗(pr1, �n, prn)∗ trivSn−2
1 	 �−2(n − 3), 0�. (29)

Now, these results combine to give

( )Sn−2(pr1, �n)∗(prn, �n)∗ trivSn−2
1

	 ( )Sn−2π12∗(pr1, �n, prn)∗(pr1, �n, prn)∗(τ ◦ π23)
∗ trivSn−2

1 (by (28))

	 π12∗( )Sn−2(pr1, �n, prn)∗(pr1, �n, prn)∗ trivSn−2
1 (τ ◦ π23)

∗ (by (5))

	 π12∗(τ ◦ π23)
∗�−2(n − 3), 0� (by (29))

	 π∗
2π2∗�−2(n − 3), 0� (by base change around (28))

	 π !
2π2∗�−2(n − 2),−2�, (since π∗

2 	 π !
2[−2])

which completes the proof. ��
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Theorem 2.2 If A is an Abelian surface then the universal functor

F := p2∗(K ⊗ (idA × �n)
∗(trivSn

1 ( ))) : D(A × A) → DSn (An)

is a P
n−2-functor for all n ≥ 3.

Proof For the computation of RF , we can use the following commutative diagram of
functors:

R′′F R′′F ′ R′′F ′′

R′F R′F ′ R′F ′′

RF RF ′ RF ′′,

(30)

whose rows and columns are exact triangles. In particular, we can plug in the results
from Lemma 2.1 and take cohomology to get:

π !
2π2∗(4)[−1]

⊕
�−2(n − 2), 0�[−1]

π !
2π2∗�−2(n − 1),−2�

π !
2π2∗�−2(n − 2),−2�

⊕
�−2(n − 2), 0�

π !
2π2∗[4][−1] π !

2π2∗�−2(n − 1), 0� π !
2π2∗�−2(n − 2), 0�

�−2(n − 2), 0� π !
2π2∗ π !

2π2∗ ⊕ �−2(n − 2), 0�[1].

To see that the direct summands of the form π !
2π2∗[−2�] really cancel when taking

the cone of the morphisms, as suggested by the diagram of triangles, we need to
show that the maps R′′F ′ → R′′F ′′, R′F ′ → R′F ′′, R′′F ′ → R′F ′, R′′F ′′ → R′F ′′
restrict to isomorphisms on these summands. First, note that the Fourier–Mukai kernel
of π !

2π2∗ is O�24 [2], where

�24 = {(a, b, c, b) | a, b, c ∈ A} ⊂ A4.

In particular, since �24 is connected, we have, at the level of Fourier–Mukai ker-
nels, Hom(π !

2π2∗, π !
2π2∗) = C. Hence, it suffices to show that the induced maps are

nonzero. Moreover, since the functors F, F ′, F ′′ are relative Fourier–Mukai functors
over A, it is enough to show that these maps are nonzero on the restriction to a fibre.



28 Page 20 of 37 A. Krug, C. Meachan

Indeed, if we apply (10) to the cartesian diagram:

A × An p2

idA×�n

An

�n

A × A
π2

A,

then we see that the fibres F0, F ′
0, F ′′

0 coincide with the Fourier–Mukai functors
FK , F ′

K , F ′′
K : D(A) → DSn (N ) already considered in [36, Section 6], where

N := �−1
n (0). In particular, the non-vanishing of the components R′′

K F ′
K → R′′

K F ′′
K ,

R′
K F ′

K → R′
K F ′′

K , R′′
K F ′

K → R′
K F ′

K , R′′
K F ′′

K → R′
K F ′′

K has already been established.
Now we can apply (12) to conclude that our induced maps (R′′F ′)0 → (R′′F ′′)0,
(R′F ′)0 → (R′F ′′)0, (R′′F ′)0 → (R′F ′)0, (R′′F ′′)0 → (R′F ′′)0, are nonzero too.
Thus, we have

RF 	 �−2(n − 2), 0�.

Next, we need to show that RF[−2] ↪→ RF RF
RεF−−→ RF induces an isomorphism

on the cohomology sheaves Hi for all 2 ≤ i ≤ 2(n − 2). Since Hom(O�,O�) 	 C,
it is enough to show that the maps are nonzero but this also follows from the fact that
they are nonzero on the fibres over 0 ∈ A; see [36, Section 6].

Finally, R 	 Hn−2L follows from the fact that L 	 S−1
D(A×A)

RSDSn (An) and the
Serre functors are given by SD(A×A) = [4] and SDSn (An) = [2n]. ��
Proposition 2.3 We have an isomorphism of functors:

�F 	 F.

Proof Comparing the equivariant and geometric triangles of functors:

F → F ′ → F ′′ and F → F′ → F′′,

it will be enough to show that

�F ′ 	 F′ and �F ′′ 	 F′′, (31)

since, at the level of Fourier–Mukai kernels, we have Hom(F′,F′′) = C. For the first
isomorphism, we consider the cartesian diagram:

A × A[n] pr2

(idA×m)

A[n]

m

A × A
π2 A.

(32)

Then, we have
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�F ′ = ��∗
nπ2∗ trivSn

1 (by (19))

	 ��∗
n triv

Sn
1 π2∗ (by (3))

	 m∗π2∗ (by (16))

	 pr2∗(idA × m)∗ (base change round (32))

= F′ (since F′ = FMOA×A[n] )

The proof of �F ′′ 	 F′′ is similar to the argument in [30, Theorem 3.6]. Indeed,
the key observation of [20, Section 4] and [30, Section 3.1] is the relationship between
the universal families:

Z ⊂ An × A[n] and Z ⊂ A × A[n],

where Z ⊂ A × A[n] is the universal family of length n subschemes. Namely, the
projection pr1 × idA[n] : An × A[n] → A × A[n] restricts to a morphism f : Z → Z

which is the quotient by the induced action ofS[2,n] 	 Sn−1 onZ . Together with the
fact that �n ◦ p 	 m ◦ q from (13), we get a commutative diagram:

Z p

f

q

An

(pr1,�n)

Z
ι

e

A × A[n]

π2

idA×m
A × A,

A[n]

(33)

where ι is the closed embedding. Also, the equivariant projection formula gives:

( )Sn−1 f∗ f ∗ trivSn−1
1 	 idZ; (34)

see [30, Lemma 2.1]. Putting all this together, we get

�F ′′ 	 ( )Sn q∗ p∗ IndSn
Sn−1

(pr1, �n)∗ trivSn−1
1 (by (22))

	 ( )Sn q∗ IndSn
Sn−1

p∗(pr1, �n)∗ trivSn−1
1 (by (5))

	 ( )Sn e∗ f∗ IndSn
Sn−1

f ∗ι∗(idA × m)∗ trivSn−1
1 (commutativity of (33))

	 e∗( )Sn IndSn
Sn−1

f∗ f ∗ trivSn−1
1 ι∗(idA × m)∗ (by (5))

	 e∗( )Sn−1 f∗ f ∗ trivSn−1
1 ι∗(idA × m)∗ (by (4))

	 π2∗ι∗ι∗(idA × m)∗ (by (34))



28 Page 22 of 37 A. Krug, C. Meachan

	 π2∗((idA × m)∗( ) ⊗ OZ) (projection formula)

	 F′′.

��

Corollary 2.4 If we regard A[n] as a fine moduli space of ideal sheaves on A equipped
with a universal sheaf U on A × A[n] then

F := π2∗(U ⊗ (idA × m)∗( )) : D(A × A) → D(A[n])

is a P
n−2-functor for all n ≥ 3 and thus gives rise to an autoequivalence of D(A[n]).

Proof By Proposition 2.3 we have an isomorphism �F 	 F and so the statement
follows from combining Theorem 2.2 with (9). That is, F is a P

n−2-functor with
P-cotwist [−2]. ��

Remark 2.5 Using similar techniques to those of [2, p. 252] and [29, Section 5], one
can show that the induced twist PF ∈ Aut(D(A[n])) is not contained in the sub-
group of standard autoequivalences, nor does it coincide with any of the other known
autoequivalences such as Pm∗ , a Huybrechts–Thomas twist [25] or an autoequivalence
coming from Ploog’s construction [40, Section 3].

Remark 2.6 To see that the restriction of F : D(A × A) → D(A[n]) really coincides
with FK : D(A) → D(Kn−1) from [36, Section 4], we can apply (10) to the cartesian
diagram in (32). Indeed, F is a relative Fourier–Mukai transform over A and the fibres
of A × A and A[n] over the point 0 ∈ A are A 	 A × {0} and Kn−1, respectively. The
identity F0 = FK follows from the fact that Z ∩ (A × Kn−1) = ZK .

2.3 Braid relations on holomorphic symplectic sixfolds

In [32], the first author discovered a family of Pn−1-functors

H�,n : DS�
(X × X�) → DSn+�

(Xn+�)

for all n > � and n > 1, where X is any smooth quasi-projective surface. This family
of functors can be regarded as a categorical lift of (approximately half of) theNakajima
operators q�,n ; see [32, Section 6] for more details.

In this section we will study the spherical functor H1,2 : D(A × A) → DS3(A3),
whose image is supported on the big diagonal of A3, and its relation to the spherical
functor F : D(A × A) → DS3(A3) coming from Theorem 2.2.

As described in [32, Section 3.4], the functor H := H1,2 sits in a triangle of functors
H → H ′ → H ′′ with

H ′ = IndS3
S2

δ[2,3]∗ Ma[2,3] triv
S2
1 , (35)
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whereS2 is identified withS[2,3] and δ[2,3] : X × X → X3, (a, b) �→ (b, a, a) is the
closed embedding of the partial diagonal D[2,3] ⊂ X3, and

H ′′ = δ[1,3]∗ Ma[1,3] triv
S3
1 ι∗, (36)

where ι : X → X × X is the diagonal embedding.
We use the following braiding criterion generalising [45, Theorem 1.2] from spher-

ical objects to spherical functors. For further generalisations, see also [7] and [8, Thm.
4.15].

Proposition 2.7 Let F1, F2 : D(X) → D(Y ) be two spherical functors between
bounded derived categories of smooth projective varieties with R1F2 	 � for some
autoequivalence � of D(X), where R1 denotes the right adjoint of F1. Then the asso-
ciated twists satisfy the braid relation:

TF1TF2TF1 	 TF2TF1TF2 .

Proof This is a very slight generalisation of [32, Proposition 2.3]. Indeed, one only
needs to replace H with H̃ := F2�

−1 in the proof of loc. cit. and use the fact that
TH̃ := TF2�−1 	 TF2 for any spherical functor F2 and autoequivalence �. ��
Lemma 2.8 Let F, H : D(A × A) → DS3(A3) be the spherical functors described
above and let R be the right adjoint of F. Then we have an isomorphism RH 	 ϕ∗[1]
where ϕ is the automorphism given by

ϕ : A × A

(
0 1
1 2

)

−−−−−→ A × A; (x, y) �→ (y, x + 2y).

Proof By (23), we have R′ 	 ( )S3π !
2�3∗ and R′′ 	 ( )S2(pr1, �3)∗ ResS3

S2
. This,

together with (35), yields

R′H ′ := ( )S3π !
2�3∗ IndS3

S2
δ[2,3]∗ Ma[2,3] triv

S2
1

	 ( )S3 IndS3
S2

π !
2�3∗δ[2,3]∗ Ma[2,3] triv

S2
1 (equivariance)

	 ( )S2π !
2�3∗δ[2,3]∗ Ma[2,3] triv

S2
1 (( )S3 IndS3

S2
	 ( )S2 )

	 π !
2�3∗δ[2,3]∗( )S2 M Ma[2,3] triv

S2
1 (by (5))

	 0. (since ( )S2 Ma[2,3] triv
S2
1 = 0)

Similar arguments, using the fact that the invariants ( )Sk Mak triv
Sk
1 of the sign

representation vanish for all k ≥ 2, show that we also have R′ H ′′ = 0 and R′′ H ′′ = 0.
For R′′ H ′, we use a similar argument to the one used for Lemma 2.1(iv). Indeed,

we have R′′ H ′ 	 ES2 with

E := (pr1, �3)∗ ResS3
S2

IndS3
S2

δ[2,3]∗ Ma[2,3] triv
S2
1 ,
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which decomposes as E 	 ⊕3
i=1 Ei , where

Ei 	 (pr1, �3)∗τ ∗
1iδ[2,3]∗ Ma[2,3] triv

S2
1 	 (pr1, �3)∗τ1i∗δ[2,3]∗ Ma[2,3] triv

S2
1 .

Next, we notice that the naturalS2-action on I = {1, 2, 3}, under the identification
S2 	 S[2,3], has two orbits given by {1} and {2, 3}. In particular, if we choose {1, 3}
as a set of representatives of the S2-orbits of I then we have stabS2(1) 	 S2 and
stabS2(3) 	 1. Thus, we can apply (6) to get

R′′ H ′ 	 ES2
1 ⊕ E3 	 ( )S2(pr1, �3)∗δ[2,3]∗ Ma[2,3] triv

S2
1 ⊕(pr1, �3)∗τ13∗δ[2,3]∗.

The first direct summand is zero because ( )S2 Ma2 triv
S2
1 = 0 and the second eval-

uates to ϕ∗. Plugging this information into the diagram

R′′ H R′′ H ′ R′′ H ′′

R′H R′ H ′ R′H ′′

RH RH ′ RH ′′

shows that RH 	 ϕ∗[1]. ��

Corollary 2.9 Let F, H : D(A× A) → DS3(A3) be the equivariant spherical functors
described above and F ,H : D(A × A) → D(A[3]) be their geometric versions, that
is, F 	 �F and H := �H. Then the spherical twists

TF , TH ∈ Aut(DS3(A3)) and TF, TH ∈ Aut(D(A[3]))

satisfy the braid relations:

TF TH TF 	 TH TF TH and TFTHTF 	 THTFTH.

Proof The statement on the geometric side follows from combining Proposition 2.7
with Lemma 2.8; the equivariant statement can be deduced6 from this using (9). ��

Remark 2.10 Restriction to the fibre over zero shows that Corollary 2.9 is a family
version of the braid relation in [32, Proposition 5.12(ii)].

6 Alternatively, one can use a straight-forward generalisation of Proposition 2.7 to equivariant derived
categories to prove the equivariant statement directly.
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2.4 Two spherical functors on the Hilbert square of an Abelian surface

In this section, we analyse our triangle of functors F → F ′ → F ′′ when n = 2; note
that this case is not covered by Theorem 2.2, where the assumption was n ≥ 3.

Proposition 2.11 F ′′ := IndS2
1 (pr1, �2)

∗ : D(A × A) → DS2(A2) is a spherical
functor with cotwist CF Q Q = ( −1 1

0 1

)∗ [−1] and twist T ′′
F = Ma[1].

Proof By [32, Section 7.3], we know that Ind := IndS2
1 is a spherical functor with

cotwist CInd = τ ∗[−1] and twist TInd = Ma[1] where τ ∈ Aut(A2) is the auto-
morphism induced by the transposition (1 2), which interchanges the two factors,
and a := a2 is the alternating representation of S2. Since (pr1, �2) is an auto-
morphism, we can use (8) to see that F ′′ = Ind(pr1, �2)

∗ is a spherical functor
with cotwist CF Q Q = (pr1, �2)∗τ ∗(pr1, �2)

∗[−1] = ( −1 1
0 1

)∗ [−1] and twist
TF Q Q = TInd = Ma[1]. ��

For convenience, we will abbreviate �∗
2 triv

S2
1 and ( )S2�2∗ to just �∗

2 and �2∗,
respectively. We will only expand the notation when it is necessary.

Lemma 2.12 We have an isomorphism of functors:

�∗
2�2∗F ′′ 	 F ′.

Proof Note that, for n = 2, the group Sn−1 = 1 is trivial. Hence, we have

�2∗F ′′ 	 ( )S2�2∗ IndS2
1 (pr1, �1)

∗ (by (22))

	 ( )S2 IndS2
1 �2∗(pr1, �2)

∗ (�2 is S2-equivariant)

	 �2∗(pr1, �2)
∗ (( )S2 IndS2

1 	 id)

	 π2∗(pr1, �2)∗(pr1, �2)
∗ (�2 	 π2 ◦ (pr1, �2))

	 π2∗. ((pr1, �2) is an automorphism)

It follows that

�∗
2�2∗F ′′ 	 �∗

2π2∗ := �∗
2 triv

S2
1 π2∗ (expanding notation)

	 �∗
2π2∗ trivS2

1 (π2 is S2-equivariant)

	 F ′, (by (19))

which completes the proof. ��
Recall from (14) that �∗

2 triv
S2
1 : D(A) → DS2(A2) is a spherical functor with

cotwist [−2]. In particular, T�∗
2
: DS2(A2) → DS2(A2) is an autoequivalence.
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Proposition 2.13 We have an isomorphism of functors:

F[1] 	 T�∗
2

F ′′.

Proof Recall the triangle F → F ′ → F ′′ of functors where F ′ 	 �∗
2π2∗ trivS2

1 and
the triangle �∗

2�2∗ → idDS2 (A2) → T�∗
2
defining the twist around �∗

2 . Now observe
that we have a commutative diagram of triangles:

�∗
2�2∗F ′′ εF ′′

�

F ′′ T�∗
2

F ′′

F ′ F ′′ F[1].

Indeed, commutativity of the first square follows from Hom(F ′, F ′′) 	 C and the
map εF ′′ necessarily being nonzero; if it were zero then we would contradict the fact
that T�∗

2
F ′′ is spherical by (14) and (9). In particular, since the morphism F ′ → F ′′ is

nonzero, these facts imply that the composition �∗
2�2∗F ′′ ∼−→ F ′ → F ′′ must agree

(up to scale) with εF ′′. Therefore, the cones of these two morphisms are isomorphic.
��

Corollary 2.14 F := p2∗(K⊗ (idA × �2)
∗(trivS2

1 ( ))) : D(A × A) → DS2(A2) is a
spherical functor with cotwist CF = CF Q Q = ( −1 1

0 1

)∗ [−1] and twist

TF 	 T�∗
2
MaT −1

�∗
2
[1].

Proof Since T�∗
2
is an autoequivalence and F ′′ is spherical by Proposition 2.11, we

can use (9) to see that T�∗ F ′′ must also be spherical with cotwist CF Q Q and twist
T�∗ TF Q Q T −1

�∗ . Now the claim follows from Proposition 2.13, the fact that TF[1] 	 TF

by (8), and the description of the twist TF Q Q in Proposition 2.11. ��

If we transport Corollary 2.14 to the geometric side of the BKRH-equivalence
� : DS2(A2)

∼−→ D(A[2]) then we can relate our spherical twists to the one discovered
by Horja. First let us recall the Horja twists in this specific setup.

Proposition 2.15 Let A[2] be the Hilbert scheme of two points on an Abelian surface
A and consider the following diagram:

E

q

i
A[2]

A,
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where q : E = P(�A) → A is the P
1-bundle associated to the exceptional divisor

inside A[2] and i : E ↪→ A[2] is the inclusion. Then, for any integer k, the functor

Hk := i∗(q∗( ) ⊗ Oq(k)) : D(A) → D(A[2])

is spherical and the induced twists satisfy THk THk+1 	 MO(E).

Proof By [2, §1.2, Example 5’] we know that i∗ : D(E) → D(A[2]) is spherical with
cotwist Ci∗ 	 MOE (E)[−2] 	 SE [−5] and twist Ti∗ 	 MO(E). Since MOq (k) q∗ is
fully faithful, Hk := i∗ MOq (k) q∗ is spherical with cotwist SA[−5] = [−3]; see [2,
Proposition 2.1].

By [39, Theorem 2.6], we have a semi-orthogonal decomposition

D(E) 	 〈q∗D(A) ⊗ Oq(k), q∗D(A) ⊗ Oq(k + 1)〉.

Thus, using Kuznetsov’s observation [1, Theorem 11], which is a special case of [22,
Theorem 4.14], we see that Hk and Hk+1 are both spherical with cotwist SA[−5] =
[−3], and the twists satisfy THk THk+1 	 Ti∗ 	 MO(E). ��
Remark 2.16 Proposition 2.15 is standard but we have included a proof for complete-
ness; see [26, Example 8.49(iv)] and [2, p. 231]. It is a special case of more general
construction; see [23] and compare with [4, Theorem 1.3].

Remark 2.17 Since OE (E) 	 Oq(−2), we can use projection formula to see that
Hk 	 MO(−k E/2) H0 and hence THk 	 MO(−k E/2) TH0 MO(k E/2) by (9).

The fact that S2 is a cyclic group means we can apply the results of [28] in this
situation. More precisely, if we view (13) as a flop diagram of the corresponding
global quotient stacks, then a special case of [28, Corollary 4.27] states that we have
the following ‘flop-flop= twist’ result:

�� = T −1
H−1

. (37)

Remark 2.18 In order to translate [28, Theorem 4.26 & Corollary 4.27] into expres-
sions like (37), we need to set n = 2 and then make the following notational
substitutions: L = O(E/2), χ = a, � = H0 and � = δ∗ ◦ trivS2

1 , where
δ : A → A(2) is the diagonal embedding. As stated, their ‘flop-flop=twist’ result
reads as �� 	 TH0 MO(−E) but this can easily be manipulated into our statement in
(37) by using Proposition 2.15 as follows:

�� 	 T −1
H−1

TH−1TH0 MO(−E) 	 T −1
H−1

MO(E) MO(−E) 	 T −1
H−1

.

It would be interesting to know how (37) generalises to higher dimensions.

Remark 2.19 Equation (37) should be compared with similar ‘flop-flop=twist’ results
obtained in [4, Theorem A&B] and [17, Theorem 1.5].
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Now we can return to look at the twists around our spherical functors on the geo-
metric side and conclude this section.

Corollary 2.20 The universal functors:

F,F′′ : D(A × A) → D(A[2]),

are both spherical with cotwist
( −1 1

0 1

)∗ [−1] and their induced twists satisfy:

TF 	 Tm∗ TF′′ T −1
m∗ and TF′′ 	 T −1

H−1
MO(E/2)[1].

Proof Recall thatF 	 �F andF′′ 	 �F ′′ by Proposition 2.3. Therefore, the fact that
F and F′′ are spherical follows immediately from the fact that F and F ′′ are spherical
and � is an equivalence; see Corollary 2.14, Proposition 2.11 and (9). Moreover,
since m∗ 	 ��∗

n by [36, Lemma 6.4] and m∗ : D(A) → D(A[2]) is spherical by [36,
Theorem 5.2], we have the following chain of isomorphisms:

F[1] 	 �F[1] (by Proposition 2.3)

	 �T�∗
2

F ′′ (by Proposition 2.13)

	 Tm∗�F ′′ (by (9))

	 Tm∗F′′ (by (31))

In particular, we can use (8) and (9) to deduce:

TF 	 TF[1] 	 Tm∗ TF′′ T −1
m∗ .

For the description of TF′′ , we use [28, Theorem 4.26(i)], which states:

Ma �−1 	 �MO(E/2) . (38)

Putting this all together yields:

TF′′ 	 T�F ′′ (by (31))

	 �TF Q Q�−1 (by (9))

	 � Ma �−1[1] (by Proposition 2.11)

	 ��MO(E/2)[1] (by (38))

	 T −1
H−1

MO(E/2)[1], (by (37))

which completes the proof. ��
Remark 2.21 Restriction of F,F′′ to the zero fibre over A recovers the spherical func-
tors FK ,F′′

K : D(A) → D(K1) of [27]. Indeed, [27, Theorem 2] shows that the twists
along these two spherical functors can be factorised as a composition of standard
autoequivalences and twists along spherical objects, which brings these twists into
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accordance with Bridgeland’s conjecture on the group of autoequivalences of a K3
surface. In particular, we have

TF′′
K

	
∏

i

T −1
OEi (−1) ◦ MOK (EK /2)[1], (39)

where EK ⊂ K1 is the exceptional divisor of the (restricted) Hilbert–Chowmorphism
K1 → A/{±1} which decomposes into the 16 exceptional curves Ei 	 P

1 over the
2-torsion points of A. Since EK is the restriction of the exceptional divisor E ⊂ A[2]
of the Hilbert–Chow morphism μ : A[2] → A(2), we see that our new relation:

TF′′ 	 T −1
H−1

MO(E/2)[1],

restricts to (39) on the zero fibre. That is, we have obtained a family version of the
results in [27].

Remark 2.22 Note that Proposition 2.15 and the ‘flop-flop=twist’ result (37) hold true
if we replace the Abelian surface A with a K3 surface X . Moreover, for the Hilbert
scheme of two points on a K3 surface, Addington’s [2] twist TF, around the functor
F := FMIZ where Z ⊂ X × X [2] is the universal subscheme, and Horja’s twist TH−1

satisfy the braid relation. Indeed, if we consider Scala’s complex

K• = 0 → OX×X2 → OD1 ⊕ OD2 → OD1∩D2 ⊗ a → 0,

then we have identities: �−1 FMK• 	 F and �−1 FMK2[2] 	 H−1; see Sect. 2 and
[29, Proposition 4.2], respectively. Hence, the triangleK≥2 → K• → K≤1 of objects
in DS2(X × X2) induces the triangle of functors:

H−1[−2] → F → �−1 FMK≤1 .

Then [32, Proposition 2.3 & Section 7.2] shows that G := �−1 FMK≤1 	 TH−1F

is also a spherical functor and any two of TF, TG, TH−1 satisfy the braid relation
and generate the group 〈TF, TG, TH−1〉. Note that the twist around G agrees, up to
conjugation by Horja’s twist, with Addington’s twist; indeed, it follows from (9) that
TG 	 TH−1TFT −1

H−1
. Alternatively, we can combine the identity � FMK≤1 	 F with

the formula in (37) to see that

F 	 ��G 	 T −1
H−1

G,

and observe that in order to generate all of the hidden symmetries TF, TG, TH−1 ,
one only needs to take Addington’s functor F = FMIZ : D(X) → D(X [2]) and

the BKRH-equivalence � : D(X [2]) ∼−→ DS2(X2). Also notice that because of the
identity THk = MO(−k E/2) TH0 MO(k E/2), the single Horja twist TH−1 , together with
the standard autoequivalences on D(X [2]), will generate all of the Horja twists THk .
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3 Elliptic curves

In this section, we turn our attention to the dimension one case. To emphasise this,
we change our notation from A to E . That is, we focus on the derived category of the
symmetric quotient stack D([En/Sn]) 	 DSn (En) where E is an elliptic curve.

Let �n : En → E be the summation map and define N := �−1(0) ⊂ En as the
fibre over zero. That is,

N := �−1(0) = {(a1, . . . , an) | a1 + · · · + an = 0} ⊂ En . (40)

Observe that N 	 En−1. Moreover, the subvariety N is invariant under the natural
action of Sn on En and the associated quotient stack [N/Sn] is usually called the
generalised Kummer stack associated to E and n.

3.1 Fully faithful functors for symmetric quotient stacks of elliptic curves

Proposition 3.1 The structure sheaf O[N/Sn ] of the generalised Kummer stack is an
exceptional object in D([N/Sn]) 	 DSn (N ). This means that

Hom∗
DSn (N )(ON ,ON ) 	 C.

Proof We have Hom∗
DSn (N )

(ON ,ON ) 	 H∗(ON )Sn . Since N is an Abelian variety,
we have isomorphisms:

H∗(ON ) 	 H0(
∧∗

�N ) 	 H0(
∧∗

�N |0 ⊗C ON ) 	
∧∗

�N |0,

where �N |0 is the Zariski cotangent space of N at 0. The permutation action of Sn

on En induces the permutation action on �En |0 	 C
n . It follows from (40) that the

induced action on �N |0 	 C
n−1 is given by the standard representation 
n . Now,

recall that
∧k


n is a non-trivial irreducible representation for all 1 ≤ k ≤ n − 1; see
[19, Proposition 3.12]. In particular, its invariants must vanish and we get

H∗(ON )Sn 	 (∧∗
�N |0

)Sn 	 (∧∗

n

)Sn = C.

��
Lemma 3.2 If �n : En → E is the summation map then we have

(
�n∗OEn

)Sn 	 OE .

Proof Since the fibres of �n are connected, it is sufficient to show the vanishing of

the invarants
(
Ri�n∗OEn

)Sn of the higher push-forwards for i > 0. Let x ∈ E be
a point and ιx : {x} ↪→ E its inclusion. Choosing an y ∈ E with ny = x , we get an
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Sn-equivariant isomorphism:

N
∼−→ �−1

n (x); (a1, . . . , an) �→ (a1 + y, . . . , an + y).

Thus, by Proposition 3.1, we have Hi (�−1
n (x),O

�−1
n (x)

)Sn = 0 for i > 0. Now, by
flat base change we get

ι∗x
(
Ri�n∗OEn

)Sn 	 Hi (�−1
n (x),O

�−1
n (x)

)Sn = 0,

for every x ∈ E , which implies the assertion. ��
Theorem 3.3 The functor �∗

n triv
Sn
1 : D(E) → DSn (En) is fully faithful.

Proof The right adjoint is given by ( )Sn �n∗ : DSn (En) → D(E). Thus, by projec-
tion formula and Lemma 3.2 we get

( )Sn �n∗�∗
n triv

Sn
1 	 idD(E), (41)

as required. ��
Remark 3.4 Notice that Theorem 3.3 can only work in the equivariant setting. Indeed,
pullback along theAlbanesemapm : En → E can never be fully faithful because En is
Calabi–Yau and hence its derived category cannot admit a non-trivial semiorthogonal
decomposition. However, the canonical bundle of the quotient stack [En/Sn] is given
byOEn ⊗an ; see [33, Lemma 5.10], and so this means that it is possible forDSn (En)

to admit interesting semiorthogonal decompositions. We will see an example of one
such decomposition in the next section.

Recall from Sect. 2.2 that we have a triangle of functors F → F ′ → F ′′ induced
by the Sn-equivariant triangle K → OE×En → ⊕n

i=1ODi . In particular, we have

F ′ 	 �∗
nπ2∗ trivSn

1 and F ′′ 	 IndSn
Sn−1

(pr1, �n)∗ trivSn−1
1 .

Lemma 3.5 If E is an elliptic curve then we have the following isomorphisms of
endofunctors of D(E × E) for all n ≥ 3:

(i) R′F ′ 	 π !
2π2∗,

(ii) R′F ′′ 	 π !
2π2∗,

(iii) R′′F ′ 	 π !
2π2∗[−2],

(iv) R′′F ′′ 	 π !
2π2∗[−2] ⊕ idD(E×E).

Proof The proof is analogous to that of Lemma 2.1 using Theorem 3.3 instead of (15).
Indeed, if one replaces the Abelian surface A with an elliptic curve E in the proof
of Lemma 2.1, and the formula in (15) with the one in (41), then the arguments go
through verbatim. In particular, we see that (pr1, �n)∗ trivSn−1

1 is now a fully faithful
functor rather than a Pn−2-functor. That is, Eq. (25) becomes

( )Sn−1(pr1, �n)∗(pr1, �n)∗ trivSn−1
1 	 idD(E×E) (42)
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in the case of an elliptic curve. ��
Theorem 3.6 If E is an elliptic curve then the universal functor:

F := p2∗(K ⊗ (idA × �n)
∗(trivSn

1 ( ))) : D(E × E) → DSn (En),

is fully faithful for all n ≥ 3.

Proof Take the information from Lemma 3.5, feed it into the diagram (30) and take
cohomology to get RF 	 idD(E×E). ��
Remark 3.7 Notice that the fully faithful functor F : D(E × E) ↪→ DSn (En) restricts
to a fully faithful functor D(E) ↪→ DSn (N ); see Sect. 1.3.

3.2 The induced semiorthogonal decomposition

Recall that a semiorthogonal decomposition of a triangulated categoryA is a sequence
A1, . . . ,An ⊂ A of full admissible subcategories such that Hom(A j ,Ai ) = 0 for
all i < j and the smallest triangulated category containing all the Ai is A itself; we
say that A is generated by the Ai and denote a semiorthogonal decomposition of A
as A = 〈A1, . . . ,An〉.

As before, we abbreviate�∗
n triv

Sn
1 and ( )Sn �n∗ to just�∗

n and�n∗, respectively;
expanding the notation when necessary.

Lemma 3.8 Let F : D(E × E) → DSn (En) and �∗
n : D(E) → DSn (En) be the fully

faithful functors from Theorems 3.6 and 3.3, respectively. Then we have

�n∗F 	 0.

Proof We will apply �n∗ to the triangle F → F ′ → F ′′ and observe that

�n∗F ′ 	 π2∗ 	 �n∗F ′′ �⇒ �n∗F 	 0.

Indeed, we have

�n∗F ′ := ( )Sn �n∗�∗
nπ2∗ trivSn

1 (expanding notation and (19))

	 ( )Sn �n∗�∗
n triv

Sn
1 π2∗ (since π2 is Sn-equivariant)

	 π2∗, (by (41))

and

�n∗F ′′ := ( )Sn �n∗ IndSn
Sn−1

(pr1, �n)∗ trivSn−1
1 (expanding notation and (22))

	 π2∗( )Sn−1(pr1, �n)∗(pr1, �n)∗ trivSn−1
1 (by proof of Lemma 2.12)

	 π2∗. (by (42))
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In order to conclude using the triangle �n∗F → �n∗F ′ → �n∗F ′′, it is only left
to show that the map �n∗F ′ → �n∗F ′′ induces an automorphism of π∗. Since the
Fourier–Mukai kernel O�π of π∗ is simple in the sense that End(O�π ) = C, it is
sufficient to show that �n∗F ′ → �n∗F ′′ is non-zero. To see this we plug the object
OE×E into both functors to get

F ′(OE×E ) 	 H∗(OE ) ⊗ OEn and F ′′(OE×E ) 	 ⊕n
i=1OEn .

The degree zero part of the morphism F ′(OE×E ) → F ′′(OE×E ), induced by the
restrcitionmapOEn×E → ⊕iODi (see (17)), is given by

∏n
i=1 id : OEn → ⊕n

i=1OEn .
Applying ( )Sn �n∗ induces the identity map on OE = H0(π2∗(OE×E )). ��
Corollary 3.9 There is a semiorthogonal decomposition

DSn (En) = 〈Bn, F(D(E × E)),�∗
n (D(E))〉.

Proof If A1 := F(D(E × E)) and A2 := �∗
n (D(E)) then Lemma 3.8 shows that

A1 ⊂ A⊥
2 , that is, Hom(A2,A1) = 0. In other words, we have a semiorthogonal

decomposition DSn (En) = 〈Bn,A1,A2)〉, where Bn := 〈A1,A2〉⊥. ��
Remark 3.10 Despite not having a precise description for the component Bn , we do
have other semiorthogonal decompositions ofDSn (En), due to [32,41], which we can
compare ours to; the semiorthogonal decompositions of loc. cit. work for an arbitrary
smooth projective curve, whereas the decomposition of Corollary 3.9 is specific to
the case of elliptic curves. More precisely, the components of the semiorthogonal
decomposition appearing in [41, Theorem B] are given by

D(E (ν1) × E (ν2) × · · · × E (νn));

one such piece for every partition 1ν12ν2 · · · nνn of n, where 1ν12ν2 · · · stands for the
partition (1, . . . , 1, 2, . . . , 2, . . . )with 1 occurring ν1 times, 2 occurring ν2 times, and
so on. In particular, we have 1·ν1+2·ν2+· · ·+n ·νn = n. Furthermore, this decompo-
sition contains one component equivalent toD(E × E) (corresponding to 11(n − 1)1)
and one equivalent toD(E) (corresponding to n1). However, the embeddings of these
components are fundamentally different from our embeddings F and�n , respectively.
Indeed, the objects in images of the embeddings in [41] are all supported on partial
diagonal whereas in F(D(E × E)) and �∗

n (D(E)) there are objects supported on the
whole En .

In view of the above, it seems natural to expect that the component Bn of our
semiorthogonal decomposition in Corollary 3.9 can be refined to a semiorthogonal
decomposition consisting of one piece equivalent to D(E (ν1) × E (ν2) × · · · × E (νn))

for every partition of n besides 11(n − 1)1 and n1. The corresponding fully faithful
embeddings would then also be promising candidates for further P-functors if we go
back from the elliptic curve E to an Abelian surface A; we plan to return to this in
future work.
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3.3 Alternating quotient stacks of elliptic curves and autoequivalences

Consider the subgroup An < Sn of even permutations and the associated double
cover:

� : [En/An] → [En/Sn].

Then, by [32, Section 7.3], we know that �∗ = IndSn
An

is a spherical functor with
cotwist τ ∗[−1] and twist Ma[1], where τ is the automorphism which interchanges
the two sheets (and is represented by any transposition of Sn) of the cover and a is
the alternating representation ofSn . Therefore, by [37, Corollary 2.4], the left adjoint
� ∗ = ResSn

An
is also spherical with cotwist Ma[−1] and twist τ ∗[1].

In this section, we use the spherical functor � ∗ and the fully faithful functors from
Sect. 3.1 to construct interesting autoequivalences T̃ on the cover DAn (En) which
descend to give interesting autoequivalences T on the base DSn (En):

DAn (En)

�∗= IndSn
An

T̃ := T� ∗i

A i

� ∗i

DSn (En)

� ∗= ResSn
An

T .

More precisely, since the canonical bundle of [En/Sn] has order two and � is
unbranched, we can identify [En/An] with the canonical cover of [En/Sn] and then
our results below are obtained by applying [34, Theorem 3.4 & Remark 3.11]; which
is an extension (or a stacky analogue) of the results in [12, Section 4].

Corollary 3.11 If E is an elliptic curve and F : D(E × E) → DSn (En) and
�∗

n : D(E) → DSn (En) are the fully faithful functors from Theorems 3.3 and 3.6,
then the functors:

� ∗F and � ∗�∗
n ,

are spherical and the twists descend to give a new autoequivalences of DSn (En).

Proof This follows from [34, Theorem 3.4 &Remark 3.11]. Since the cotwistMa[−1]
of � ∗ is given by a shift of the Serre functor S[En/Sn ] = Ma[n] of DSn (En), we can
apply Kuznetsov’s trick [1, Theorem 11] to conclude that if i : A ↪→ DSn (En) is any
fully faithful embedding then the composition� ∗i is again spherical, and hence gives
an autoequivalence T� ∗i ∈ Aut(DAn (En)). Now τ� ∗ 	 � ∗ implies that this twist
is τ -invariant, which means that τ ∗T� ∗i 	 T� ∗iτ

∗; c.f. [32, Section 7.4]. Hence, one
can use the decent criterion in [34, Theorem 3.4 & Remark 3.11] to see that T� ∗i

descends to an autoequivalence of DSn (En). ��
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3.4 A remark on higher dimensions

This paper has demonstrated that the universal functor F : D(A × A) → DSn (An)

produces some interesting results in dimensions one and two. It is tempting to speculate
that it should do the same in higher dimensions but we are not sure how this should
work.

Note that fully faithfulness of �∗
n triv

Sn
1 : D(E) → DSn (En) is equivalent to the

structure sheaf O[N/Sn ] being an exceptional object. Similarly, if A is an Abelian

surface then the fact (14) that �∗
n triv

Sn
1 : D(A) → DSn (An) is a P

n−1-functor is
equivalent to the structure sheaf O[N/Sn ] being a Pn−1-object, where N := �−1

n (0);
see [31, Observation 1.2]. Indeed, one can use (

∧∗
(
n ⊗ C

2))Sn 	 C[t]/tn where
deg(t) = 2; see [43, Lemma B.5], to prove this on the equivariant side.

Given that the algebra structure of our functor is

(
∧∗


n)
Sn = C 	 H∗(Gr(0, n),C)

in dimension one and

(
∧∗

(
n ⊗ C
2))Sn 	 H∗(Pn−1,C) 	 H∗(Gr(1, n),C)

in dimension two, we naively guessed that the algebra structure

(
∧∗

(
n ⊗ C
3))Sn might coincide with H∗(Gr(2, n),C)

in dimension three. However, this cannot be true because Macaulay tells us that the
dimensions (1, 0, 3, 1, 6, 3, 10, 6, 15, 0, 0, 0, 0) of the invariants (

∧i
(
5 ⊗ C

3))S5

do not agree with the dimensions (1, 1, 2, 2, 2, 1, 1) of the cohomology groups
Hi (Gr(2, 5),C).
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