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An unusual aspect of the biology of nematodes is the covalent attachment of
phosphorylcholine (PC) to carbohydrate in glycoconjugates. Investigation of the
structure of these molecules by ever-increasingly sophisticated analytical procedures
has revealed that PC is general ly in phosphodiester l inkage with C6 of
N-acetylglucosamine (GlcNAc) in both N-type glycans and glycosphingolipids. Up to
five PC groups have been detected in the former, being located on both antenna and core
GlcNAc. The PC donor for transfer to carbohydrate appears to be phosphatidylcholine but
the enzyme responsible for transfer remains to be identified. Work primarily involving the
PC-containing Acanthocheilonema viteae secreted product ES-62, has shown that the
PC attached to nematode N-glycans possesses a range of immunomodulatory
properties, subverting for example, pro-inflammatory signalling in various immune
system cell-types including lymphocytes, mast cells, dendritic cells and macrophages.
This has led to the generation of PC-based ES-62 small molecule analogues (SMAs),
which mirror the parent molecule in preventing the initiation or progression of disease in
mouse models of a number of human conditions associated with aberrant inflammatory
responses. These include rheumatoid arthritis, systemic lupus erythematosus and
lung and skin allergy such that the SMAs are considered to have widespread
therapeutic potential.

Keywords: anti- inflammatory drug development, ES-62, glycoconjugate, immunomodulation,
nematode, phosphorylcholine
INTRODUCTION

During the human-infectious stage of the helminthic life cycle, parasites engage in a series of actions
designed to evade the host immune response (1). Initially, defensive manoeuvres such as tegument
moulting and membrane turnover were described (2, 3), but it is now understood that parasites can
further promote their longevity by directly manipulating host systems, via the release of biologically
active excretory/secretory molecules (E/S). The evolution of molecular parasitology in recent years
has enabled an increasingly precise characterisation of these molecules.
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Herein we examine nematode phosphorylcholine (PC)-
containing glycoconjugates, in the context of the structure and
function of these unique molecules. The first suggestion of the
relevance of PC in host-parasite interactions came with discovery
of PC on nematode carbohydrate-containing molecules, and also
anti-PC antibodies in rats exposed to Nippostrongylus brasiliensis
and Haemonchus contortus, following anecdotal reports of
similar results from Ascaris suum-infected rats (4). In vivo
studies revealed anti-PC antibody complexes were in fact
abundant in the sera of mice exposed to Brugia malayi and B.
pahanghi, as well as jirds, chimpanzees and human subjects
suffering filarial parasitosis (5–10). Analysis of the E/S profile of
the adult rodent filarial nematode Acanthocheilonema viteae
revealed that it is dominated by one PC-containing
glycoprotein, ES-62 (4, 11). Homologues of this protein have
since been detected in other filarial and also non-filarial
nematodes species, although it is unknown whether all of these
ES-62 homologues contain PC groups (12–17).
STRUCTURES OF THE A. viteae
PC-GLYCANS

ES-62 is the most characterised of the PC-bearing helminthic
molecules, and accordingly the one which forms the basis for most
of our understanding of the structure and function of nematode
PC-glycans. ES-62 originates from the anterior oesophageal cells
of A. viteae as a homotetrameric protein (18, 19). By subjecting
ES-62 to N-glycosidase F, it was demonstrated that PC is attached
to the protein backbone via N-linked glycans, a finding confirmed
by examination of ES-62 following exposure of A. viteae to
tunicamycin, an inhibitor of N-type glycosylation (20, 21).
Monomeric ES-62 contains four potential N-linked glycosylation
sites at residues 213, 254, 344 and 400 respectively (22). Fast atom
bombardment mass spectroscopy enabled the resolution of three
associated N-type glycan structures: a high mannose N-glycan
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(Man5-9GlcNAc2), a truncated oligosaccharide, trimmed to the
trimannosyl core and fucosylated (Fuc1Man3GlcNAc3-6), and a
novel glycan, which is similarly truncated and may be fucosylated
or not, and which acquires between 1-4 antenna GlcNAc residues
(Fuc0-1Man3GlcNAc3-6) to which PC is attached (Figure 1). More
recently, employment of nano-flow liquid chromatography
followed by electrospray ionization mass spectrometry by North
et al. (23) revealed that each of the N-linked glycosylation sites of
ES-62 can accommodate PC-bearing glycans. Furthermore, each
glycan’s structure was determined to contain up to five PC groups:
four from antennary GlcNAc residues, and a fifth attaching to core
GlcNAc. It has been estimated that the secreted tetrameric ES-62
can bear up to 72 PC groups, with the molecule’s structure
ensuring the bulk of these are positioned for receptor engagement.
PC-GLYCAN STRUCTURES IN
OTHER SPECIES

Molecules closely mimicking the original ES-62 PC-glycan
structures (Figure 1) have been detected in anthropophilic
filarial species B. malayi, Onchocerca volvulus, Wucheria
bancrofti and Loa loa, and additionally in B. pahangi (feline),
O. gibsoni (bovine) and Dirofilaria immitis (canine) species (12,
13, 17, 19). Outside of filaria, these PC-glycan structures also
remain relatively consistent in parasitic nematodes; thus
Trichinella spiralis produces glycans which similarly appear to
bear PC moieties likely attached to GlcNAc residues on a
trimmed trimannosyl core, although this is followed by
further GalNAc transferase activity to extend the antenna (24).
A. suum (HexNAc3-5Hex3-4Fuc0-1PC1-2) and Trichuris suis
(Hex3HexNAc4-5Fuc2PC) additionally produce a number of
comparable glycan structures to the ES-62 PC-glycans (15, 25).
Fascinatingly, similar PC-modified N-glycans have also been
described in free-living species including Caenorhabditis
elegans (Hex3HexNAc3Fuc0-1PC) and Pristionchus pacificus
FIGURE 1 | ES-62 PC-glycans structure. This structure, proposed by FAB-MS (22) has been conserved throughout parasitic nematode species. Later
characterisation by ES/MS indicates the glycan structure can accommodate up to four antenna PC groups, with further PC attachment to core GlcNAc residues
occurring (12, 22, 23). Image modified from (12).
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(Hex3HexNAc5Fuc0-1PC1-3), with attachment occurring on non-
reducing GlcNAc or LacDiNac motifs. This suggests that such
PC-N-glycans may be conserved throughout the phylum (26,
27), although the PC-containing structures in free-living
nematodes are tri-antennary rather than tetra-antennary (tetra-
antennary N-glycans don’t appear to be formed in free living
species) as observed for ES-62. Moreover, PC-substituted
glycosphingolipids have been reported in embryonic-stage C.
elegans, as well as in A. viteae, O. volvulus, O. ochengi,
Litomosoides sigmodontis and A. suum species (28–30).
BIOSYNTHETIC PATHWAY OF
PC-GLYCANS

Employment of a combination of intracellular trafficking
inhibitors, oligosaccharide processing inhibitors, pulse-chase
radiolabelling experiments and FAB-MS analysis has permitted
characterisation of the intracellular processing events which attach
PC to newly produced glycans in A. viteae and C. elegans (23, 30–
33). It is within the medial Golgi that the process of PC attachment
to maturing N-glycans occurs (Figure 2). Initially, an antennary
GlcNAc residue is attached to the glycan structure by GlcNAc
Transferase I. PC is subsequently transferred from a donor, likely
phosphatidycholine, via a C-6 phosphodiester linkage of the
antenna GlcNAc residue. Two mannose sugars are then
trimmed from the core by Mannosidase II. Next, GlcNAc
Transferase II adds a second terminal GlcNAc residue and then
Frontiers in Tropical Diseases | www.frontiersin.org 3
additional PC may be added. As yet, the PC-transferase enzyme
involved in this process remains uncharacterised.
FUNCTION OF NEMATODE PC-GLYCANS:
STUDIES IN VITRO

PC on nematode glycoproteins has immunomodulatory properties
as first shown by its inhibition of lymphocyte proliferation (34, 35).
The mechanisms behind such activity have been extensively
studied using ES-62 and to a lesser degree, PC alone or
conjugated to proteins such as bovine serum albumin (BSA), or
small molecule analogues (SMAs) of ES-62 based on its PC moiety
(Figure 3A) (36). For example, the PC-containing molecules
inhibit B cell receptor (BCR)-stimulated phosphoinositide-3-
kinase (PI3K) and protein kinase C activities (35–37), as well as
reducing the phosphorylation of Igb and the adaptor Shc1 resulting
in reduced Erk1/2MAPK activation (37, 38). This appears to reflect
that ES-62 promotes recruitment of the protein tyrosine
phosphatase, SHP-1 resulting in rapid dephosphorylation of
these BCR-stimulated substrates (38). Furthermore, ES-62
terminates ongoing Erk1/2 activity upon BCR stimulation by
recruitment of dual specificity phosphatase Dusp2, which
dephosphorylates their threonine and tyrosine activation motifs.

Such immunomodulatory actions have also been observed
with innate immune system cells. Thus, like ES-62, PC-based
SMAs 11a and 12b inhibit FcϵRI-mediated signalling and
degranulation, as well as proinflammatory cytokine secretion
FIGURE 2 | ES-62 PC-glycans synthesis. During medial Golgi processing, a GlcNAc residue is transferred to the 3-linked mannose of the trimannosyl core. PC is
transferred to this antennary GlcNAc residue by an as-yet uncharacterised transferase. Further PC moieties may be added to additional terminal or core GlcNAc.
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FIGURE 3 | ES-62/phosphorylcholine (PC) desensitises immune system cell signalling in vitro. (A) The B cell antigen receptor (BCR) signals via ITAM-containing Iga/
b accessory molecules to recruit proliferative signalling pathways like the ERK MAPK cascade in a tyrosine kinase-dependent manner. PC/ES-62 desensitises the
BCR both by recruiting SHP-1 to dephosphorylate Igb and uncouple downstream signalling and by inducing DUSP2 dephosphorylation of the TEY activation motif of
ERK1/2. (B) FcϵRI-mediated degranulation requires calcium and PKCa signalling whilst, at least in some mast cell subsets, cytokine secretion also requires crosstalk
with MyD88 signalling and all of these elements are targeted by PC/ES-62. (C) TLR4 homodimer and TLR1/2 heterodimer located at the cell surface on dendritic
cells and macrophages signal through the adaptor proteins TIRAP and MyD88 in response to LPS and bacterial lipopeptide (e.g., PAM3CSK4) respectively. TLR9,
which responds to unmethylated cytosine-phosphate-guanine (CpG) DNA, also signals through MyD88. MyD88 stimulates NF-kB regulated proinflammatory cytokine
production. ES-62 and PC-conjugated proteins subvert TLR4-MyD88 signalling to reduce proinflammatory cytokine secretion in response to TLR1/2, TLR4 and
TLR9 ligation. Small molecule analogues 11a and 12b interact directly with MyD88 thereby similarly inhibiting cytokine production. TLR3 signalling, which is MyD88-
independent, is not affected by these anti-inflammatory agents. ES-62 is internalised by macrophages and may also directly interact with MyD88 via its PC moieties.
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(Figure 3B) (39–42). This can in part be explained by reduced
calcium mobilisation and protein kinase C alpha (PKCa) protein
expression, actions also reproduced by pre-treatment with PC-
BSA (39–41). Moreover, antigen-presenting cells (APCs) like
dendritic cells and macrophages, that educate adaptive immunity
are also desensitised in response to ES-62 and PC (Figure 3C)
(43, 44). Thus here, PC-ovalbumin and SMAs (11a, 12b) inhibit
NF-kB mediated pro-inflammatory cytokine secretion
stimulated via MyD88-dependent toll-like receptors (TLRs;
TLR4, LPS; TLR9, CpG; TLR1/2 heterodimer, PAM3CSK4)
(43–50). ES-62 also supresses the synergistic NF-kB-mediated
pro-inflammatory cytokine secretion observed in response to
these stimuli when tested in combination with interferon gamma
(IFNg) (44, 51). In contrast, TLR3 signalling, which is
independent of MyD88, is unaffected by PC-ovalbumin or ES-
62 (43, 44, 52–54). This selectivity reflects that MyD88 protein
expression is reduced in the presence of ES-62 or SMAs, 11a &
12b (50, 55–58) and as this downregulation is also recapitulated
in certain mast cell subsets (41) and lymphocytes (50, 55–59), it
provides a unifying primary target for PC/ES-62 action in
limiting chronic inflammatory responses.

PC, either as part of ES-62 or attached to ovalbumin, appears
to “signal” through TLR4 (43, 44). Unlike LPS, the most defined
TLR4 ligand, PC maintains its activity in the context of a proline
to histidine substitution at position 712 on the receptor (43, 44,
60, 61). This residue sits within a cytoplasmic domain required
for interaction with the signalling adaptor Mal (itself required for
TLR4 interaction with MyD88), which suggests PC signals
through a different mechanism to LPS (62, 63). Indeed, SMAs
11a and 12b interact directly with the TIR domain of MyD88,
inhibiting homodimer formation (56). As ES-62 is internalised in
both mast cells and macrophages, it is possible that the parent
molecule also interacts with MyD88 through its PC moieties
(40, 64).

Complement is an innate mechanism that recognises
microbial PAMPs and facilitates microbicidal activity; it is also
intensely activated by PC, which has bound to C-reactive protein
(65–68). PC directly attached to proteins also activates
complement in vitro; but complement activation drops
considerably when PC is attached at the end of either synthetic
flexible linkers, or importantly, to glycans such as in ES-62 (69,
70). This functionality may benefit parasitic worms by
sequestering components of the complement cascade, resulting
in a low complement activation state.
PC IN MURINE MODELS OF DISEASE

PC on the glycans of ES-62 is also active in vivo, for example, it
alters the subclass of antibody produced in response to ES-62 in
mice, in that removal of PC results in the generation of IgG2a
antibodies that are absent when the intact molecule is employed
(71). Moreover, exploring the potential of a potent anti-
inflammatory molecule like ES-62 as a biologic intervention in
human disease has been dependent upon robust pre-clinical
evaluation using in vivo experimentation. In fact, ES-62, and
Frontiers in Tropical Diseases | www.frontiersin.org 5
the drug-like SMAs represent the only stand-alone nematode
PC-products that have been tested in vivo, although the
suppression of rodent arthritis by A. suum extract is suspected
to be attributed to a homologous PC-bearing molecule (72).
These treatments have been demonstrated to be safely tolerated
throughout the summarised experiments below, with potency
illustrated in the resolution of a range of inflammatory
conditions, irrespective of phenotype.

Arthritis
The performance of ES-62 has been most thoroughly described
in the collagen-induced arthritis (CIA) model of rheumatoid
arthritis, where it has displayed a potent ability to protect against
disease development when delivered prophylactically, and to
ameliorate established CIA when administered therapeutically
(73–76). Induction of CIA in DBA/1 mice instigates articular
inflammation dominated by Th17 cells (77, 78) and clinical
indicators of arthritic disease, including paw thickness, erythema
and loss of function, are reduced or absent in ES-62-treated mice
(Figure 4), with histological analyses confirming protection
against the synovial hyperplasia and cartilage erosion
traditionally seen in this condition (73). In comparison to
vehicle controls, ES-62-treated mice demonstrate a skewing
towards IL-10-producing regulatory B cell (Breg) phenotypes,
with a downregulation in effector cells bearing CD80, CD86 and
TLR4/MyD88, and a dramatic curtailing of IL-17 production by
Th17 and gdT cells (58, 73). Further molecular studies have
proposed that in resolving CIA, ES-62 targets signalling cascades
which drive effector T cell migration and activation. Somewhat
unexpectedly, suppression of IL-22 neutralised ES-62’s joint-
protective effects, with the data suggesting dual pathogenic and
protective roles in the initiation and established phases of disease
for this cytokine: indeed, exposure to ES-62 upregulated
protective IL-22 production by gd T cells (75, 79). Most
recently, it has become clear that the gut-bone marrow axis of
immune regulation plays a key role in ES-62’s anti-inflammatory
actions, with normalisation of gut microbiota being associated
with promotion of Bregs and suppression of osteoclast
differentiation (76, 80). Treatment in the CIA model with PC-
BSA, SMA 11a or SMA 12b also significantly suppressed arthritic
pathology (50, 55). Whilst SMA 11a appeared to mimic the
suppression of IL-17-polarised inflammation, interestingly, SMA
12b instead appeared to act predominantly via reduction of IL-
12p40 and IL-1b: thus, these SMAs appeared to target differential
downstream effectors of MyD88-NF-kB signalling.

Systemic Lupus Erythematosus (SLE)
ES-62 has displayed efficacy in two separate models of SLE-
induced pathology. In characterising the renal components of
disease progression, MRL/Lpr mice receiving ES-62
demonstrated a significant and consistent reduction in
proteinuria, coupled with a resistance to arthritogenesis and
anti-nuclear antibody (ANA) production, evidenced at
termination (81). Protection against autoimmune inflammation
was again associated with increased IL-10-producing Bregs in the
kidneys and spleen. PC-based SMAs also proved effective in this
model, with both inhibiting IL-6 responses but whilst 12b was
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more effective in preventing ANA deposition, 11a was more
potent in suppressing proteinuria (59).

In the Gld.apoE-/-model of accelerated atherosclerosis in lupus
(82), mice maintained on a Western-style high cholesterol diet
were continuously delivered ES-62 by osmotic pump to mimic
serum levels during active infection (83). At termination,
examination of aortae revealed a dramatic ES-62-mediated
reduction in lesion area (approximately 60%), which was
associated with a decrease in collagen deposition and
macrophage frequency. Cholesterol levels and lymphadenopathy
remained unchanged. Distinct, but non-significant, trends in
glomerular cellularity and proteinuria were also detected. Of
note, the therapeutic effects in ES-62-treated mice were not
attributable to generation of antibodies to ES-62’s PC moieties
despite recent findings that such antibodies, which cross-react with
Frontiers in Tropical Diseases | www.frontiersin.org 6
PC-containing oxidised low-density lipoproteins, may prevent
atherosclerosis by inhibiting lipoprotein uptake by macrophages
(see below).

Asthma
Inflammatory damage in ovalbumin (OVA)-induced airway
hyperresponsiveness, a mouse model of asthma, is ablated by
prophylactic administration of ES-62 (40, 84). Administration of
ES-62 robustly inhibited eosinophil, neutrophil, and lymphocyte
infiltration upon inflammatory challenge (Figure 4). This is
associated with a suppression of Th2-like responses, with
significant reductions in IL-4 in lung tissue at termination, and
downregulation of IL-13 and IL-5 and upregulation of IFNg
production in ex vivo draining lymph node cultures. Increased
expression of the regulatory T cell marker FOXP3 was not
FIGURE 4 | ES-62/PC-mechanism of action in collagen-induced arthritis and ovalbumin-induced airway hyperresponsiveness. In collagen induced arthritis (CIA),
during the initiation phase, gdT cells and T helper (Th)17 cells secrete interleukin (IL)-17 and IL-22 causing joint pathology. By contrast, during established disease IL-
22 acts to limit pathology, indicating that this cytokine plays dual pathogenic and protective roles in CIA. Treatment with ES-62 or small molecule analogue (SMA)
11a inhibits IL-17 production and ES-62 promotes protective IL-22 production as well as restoring regulatory B cell (Breg) responses to counter pathogenic effector
B cell (Beff) responses including collagen-specific IgG2a production, thereby substantially reducing arthritis. In ovalbumin-induced airway hyperresponsiveness (AHR),
inflammatory immune system cells such as eosinophils and neutrophils infiltrate the lungs, generating IL-4 production, and a Th2 anti-inflammatory immunological
phenotype is evident in immune cells in draining lymph nodes as the cells secrete IL-5 and IL-13 upon re-stimulation ex vivo. ES-62 and SMA administration reduce
the infiltration of inflammatory immune cells and the former has also been shown to inhibit the ex vivo production of IL-5 and IL-13. Moreover, ES-62-activity in this
model has been found to be dependent on IFN-g and in addition, similar to CIA, the helminth product increases IL-10-producing Bregs.
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observed in ES-62-treated mice, in contrast with the mechanism
reported for other helminth molecules in suppressing the OVA-
induced asthma model (85, 86). Subcutaneous treatment with
SMAs 11a or 12b induced a similarly protective phenotype,
associated with a distinct reduction in lung neutrophil and
mast cell populations and in the chronic model of asthma,
such protection was associated with a decrease in lung MyD88
levels and an increase in splenic Bregs (87). There was again no
indication of any elevation in FOXP3 or Treg responses.

Fibrotic Lung Disease
SMAs 12b and 11a have also performed strongly in the LPS- and
bleomycin-induced models of fibrotic lung disease, reducing
collagen deposition, structural corruption and cell infiltration
to levels comparable with the dexamethasone control (88). Two
additional SMAs derived from 11a (16b and AIK-29/62) were
also tested, and displayed a similar potency in reduction of
collagen deposition and lung tissue weight at termination.

Dermatitis
The effect of ES-62 on mast cell function was also assessed in the
oxazolone sensitisation model of skin hypersensitivity (40).
Treated mice displayed a 60-70% reduction in ear swelling,
which correlated with an absence of TNFa, IL-3, and IL-6
mRNA. Degranulation of mast cells captured from sensitised
and challenged mice treated with ES-62 was also inhibited ex
vivo, although no reduction in FcϵRI expression was detectable,
implying an interference in the activation cascade in the
generation of these effects. Treatment with SMAs 11a and 12b
similarly supresses ear thickening in this model, with reductions
of up to 82% being measured in comparison to the negative
control (50). Interestingly, no reduction in TNFa or IL-6 mRNA
was detected, suggesting that in this model the SMAs may show
some differences in mechanism to native ES-62.

Obesity-Accelerated Ageing
In this most recent study, Crowe et al. (89) report the effects of
ES-62 administration on ageing-induced ill health, in the context
of mice being fed a high calorie ‘Westernised’ diet throughout
life. ES-62 was shown to protect against ageing-related liver
fibrosis, with collagen deposition severely limited in both male
and female ES-62-mice up to 500 days of age. Treatment with a
combined dose of SMAs 11a and 12b also showed protection
against liver fibrosis, particularly in female mice, whilst male
mice were noted to experience reduced metabolic dysregulation
over a time course of some 340 days (90). Interestingly, in male,
but not female mice, treatment with ES-62 extended the median
lifespan, inhibited late-ageing weight loss, and significantly
reduced age-related ileal and colonic erosion, whilst
normalising gut microbiota.

Type 1 Diabetes, Multiple Sclerosis
and Colitis
It should be noted that ES-62 and its PC-based SMAS do not
resolve all chronic inflammatory responses, failing to afford
protection in mouse models of Type 1 diabetes, multiple
sclerosis and colitis (91).
Frontiers in Tropical Diseases | www.frontiersin.org 7
SERENDIPITOUS INDUCTION OF
ANTI-INFLAMMATORY ANTIBODIES

Anti-PC antibodies have been found to reduce inflammation in
ischemic mouse models and are plentiful in human subjects at
low risk of atherosclerosis (92–94). In addition, in the context of
rheumatic disease, an inverse correlation between anti-PC
antibodies and, organ damage and disease activity in SLE
patients has been demonstrated (95, 96). Although the exact
mechanism(s) underlying the protective effects of anti-PC
antibodies is still under investigation, anti-inflammatory and
cardioprotective benefits of anti-PC antibodies in SLE and also
Sjögren’s syndrome and mixed connective tissue disease are
associated with regulatory T cell polarisation, oxidised low
density lipoprotein uptake inhibition and enhanced apoptotic
cell clearance (96–99). Interestingly, IgM anti-PC antibodies are
greatly increased in response to ES-62 in murine models of lupus
and in high calorie diet (HCD)-fed mice (82, 89). These
antibodies were not cross-reactive to oxidised low density
lipoprotein nor conformed to the T15 idiotype (characteristic
of most of the protective anti-PC antibodies reported) (82, 93,
100, 101). Nevertheless, machine learning identified anti-PC IgM
levels as the best predictor of effective ES-62 treatment in HCD-
fed mice (89). Thus, overall, it would perhaps be premature to
rule out a protective role for ES-62-induced anti-PC antibodies
in terms of protecting the host against obesity-accelerated ageing
at this stage. Also of interest, natural IgM antibodies appear to
promote a regulatory phenotype of B cells, which then reduce
inflammation in vivo (102). Natural antibodies are secreted by B1
B cells independently of T cell stimulation, have limited diversity
and recognise multiple antigens (103–107). Indeed, ES-62
stimulates B1 B cell activation in vivo and increases regulatory
B cell numbers in several in vivo models (74, 76, 81, 87, 108).
CONCLUSION AND FUTURE DIRECTIONS

Increasingly sophisticated analytical procedures are being
applied to the elucidation of the structure of nematode PC-
containing glycoconjugates. This has revealed a general
uniformity across the nematode phylum and also that these
novel carbohydrate structures may have not one, but multiple,
PC groups attached. PC-containing nematode glycoconjugates
possess immunomodulatory properties such that they are
potentially therapeutic but full exploitation of this with respect
to PC-containing glycoproteins such as ES-62 is handicapped by
an inability to produce fully active recombinant forms, as no
convenient protein expression system exists that encodes the
(unidentified) requisite PC transferase enzyme (109–112). PC-
based SMAs can alternatively circumvent this problem and may
represent the form in which active nematode molecules make it to
the clinic. At the same time, three issues which remain to be
resolved are: (i) increased understanding of the molecular
complexity underlying the range of immunomodulatory
activities of secreted PC-containing proteins like ES-62. For
example, we have learned of how ES-62 is reliant on expression
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of TLR4 for PC-dependent activity against macrophages and
dendritic cells (46), but it appears that additional receptors may
exist in cells such as lymphocytes with which ES-62 can interact in
a PC-dependent manner (66). Moreover, ES-62’s modulation of
immune cell function can be associated with effects on multiple
cell signalling pathways, e.g., in mast cells, ES-62 impacts on cross
talk amongst TLR4-, ST2- and FcϵRI-dependent pathways (113),
highlighting the level of complexity that may need to be dissected.
(ii) a greater understanding of the function of PC-glycoconjugates
found as internal rather than secreted products of nematodes –
this is unlikely to relate to immunomodulation because as
described earlier the structures are found within free-living
species in addition to parasitic species. One possibility relates to
growth and development. Consistent with this, chemical blockage
of production of PC-containing glycosphingolipids by targeting
enzymes upstream of PC addition impairs embryonic
development in C. elegans, although a direct role for PC has
not been shown (114). (iii) the identity of the aforementioned
nematode enzyme which transfers PC to carbohydrate – as such
Frontiers in Tropical Diseases | www.frontiersin.org 8
structures are absent from mammals, this enzyme if identified
could offer a potential novel drug target. Interestingly, we have
shown previously that enzymes acting upstream of the PC
transferase in C. elegans can be knocked down by RNAi and
that this results in reduced transfer of PC to proteins (115). We
believe this approach could be employed in investigating the
identity of the PC transferase when applied to genes of likely
related function based on sequence homology in nematode
genomes. Similarly, CRISPR (112) knockdown of potential
related genes offers a more recent but similar approach, as do
proteomics approaches focusing on the site of PC transfer, the
Golgi. Of benefit to these analyses should be an in vitro assay of
PC transferase activity developed by Cipollo and colleagues (33).
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