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Abstract. Non-exhaust emission (NEE) from brake and tyre wear cause dele-
terious effects on human health, but relationship with mobility has not been
thoroughly examined. We construct an in silico agent-based traffic simulator
for Central Seoul to illustrate the coupled problems of emissions, behaviour,
and the estimated exposure to PM10 (particles less than 10 microns in size)
for groups of drivers and subway commuters. The results show that significant
extra particulates relative to the background exist along roadways where NEEs
contributed some 40% of the roadside PM10. In terms of health risk, 88% of
resident drivers had an acute health effect in late March but that kind of emer-
gence rarely happened. By contrast, subway commuters’ health risk peaked at a
maximum of 30% with frequent oscillations whenever the air pollution episodes
occurred. A 90% vehicle restriction scenario reduced PM10 by 18-24%, and re-
duced the resident driver’s risk by a factor of 2, but not effective for subway
commuters as the group generally walked through background areas rather than
along major roadways. Using an agent-based traffic simulator in a health con-
text can give insights into how exposure and health outcomes can depend on
the time of exposure and the mode of transport.

Keywords: Agent-based Traffic Simulation · Non-Exhaust Emission · Expo-
sure and Health Loss · NetLogo

1 Introduction

Traffic-related air pollution (TRAP) has long been associated with adverse health
outcomes. The book Non-exhaust emissions (NEE): an urban air quality problem
for public health compiled recent scientific findings that addressed non-exhaust
particles which are formed of metallic, rubber, carbon black, and other organic
substances by combustion, wear, road abrasion, and particle resuspension [2].
All of these substances are as equally catastrophic as exhaust particles.

NEE can be affected by traffic queues, driving behaviour, and weather. In
traffic congestion, the ‘stop-and-go’ patterns of the traffic generate more wear
on brake pads and discs that adds to surges of ambient particulates during rush
hours [1,4]. Brake wear emissions are also spatially heterogeneous because the
vehicles would be expected to slow down when reaching a junction or going
downhill [1,16]. In addition, harsh braking and acceleration can generate more
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particles from tyres, brake discs, and linings. Transport for London has men-
tioned that the Central Business District (CBD) of London is more polluted
than the outer areas, regardless of 20mph speed limits [17]. The expert group
pointed out a strong relationship between aggressive driving behaviour and more
dispersion of particulate emission to the sidewalks that can possibly cause ad-
verse health consequence. Although the regulation for NEE has not yet been
made, the UK’s Air Quality Expert Group (2019) [1] and the European Envi-
ronmental Agency (2019) [6] have both reported the severity of NEE to human
health and are calling for more evidence.

To this end, the European Environmental Agency (EEA) is the only insti-
tute that estimated a traffic-based NEE based on their research [6]. According
to the research, NEE is calculated by four components, road wear, brake wear,
surface wear, and resuspension. The emission levels vary by the number of vehi-
cles within the unit distance (g/km), their mileage, emission factor, and speed
characteristics. While the information is advantageous to understand the annual
outcomes as a city-scale, the deterministic model limits the spatial dynamics of
air pollution driven by traffic flows on a finer time scale.

To link the challenges between NEE and the mobility of vehicles and humans,
agent-based modelling (ABM) is one of the key methods that can simulate urban
traffic and air quality on an individual level [18]. ABM not only can simulate
the movement of heterogeneous vehicles and individuals but also measures the
exposure level based on the path on which the agent is situated and the estimated
local pollution value [5,8,20]. A promising example is [8]’s integrated model,
where it integrated NOx emission, dispersion, activity patterns of population,
vehicle movement, and the exposure to the ambient NOx based on the time
spent in each locations - has not been attempted previously. Other agent-based
traffic models also have simulated vehicle emissions caused by urban car traffic
using general programming language [9], SUMO [3,11], or MATSim [10].

This paper examines the exposure and possible health effects of NEE on com-
muter’s health based on a traffic simulation. The specific questions are as follows:

– What is the difference in health effects between walking commuters and
vehicle commuters?

– How did air quality improve as a result of the simulation of policy scenarios,
and what were the characteristics of any improvements?

Given the limited resources available to mimic the agents’ attributes and their
behavioural patterns, we built an in silico agent-based traffic model.

2 Methods

2.1 Overview

Fig.1 illustrates the overall procedure of this study. This study retrieved hourly
pollution, Seoul population, origin-destination by sub-district level, and traffic
observation from the census and Seoul Institute. The remainder of this section
describes a summarised ODD protocol, sensitivity analysis, and calibration.
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Fig. 1. A flowchart of the methodological procedure of the model (left), the agent
types, and the vision of software (right)

2.2 A Summarised ODD Protocol

A complete, detailed model description, following the ODD (Overview, Design
concepts, Details) protocol [7] is provided in the supplementary material [15].
The purpose of this model is to understand commuter’s exposure to non-exhaust
PM10 emissions, and to make a preliminary estimate of their health effects. We
use the following patterns of the ‘at-risk’ population by transport modes, traffic
volume by road, and pollution levels by road in a context that is representative
of realistic conditions in the Seoul CBD.

The model includes the following entities of three mobile agents: (1) resident
cars with drivers, (2) non-resident cars3, and (3) subway commuters; and two
fixed agents: (1) traffic signals, and (2) entry points where the vehicles are fed
into the study area. The state variables and attributes characterising these enti-
ties are listed in the repository [15]. The spatial and temporal resolution of the
study area, is 30m×30m and 1 minute respectively. Our study area is the CBD
of Seoul (16.7km2), which in in the NetLogo model consists of 155 horizontal and
192 vertical patches. The model is implemented for 3 months between January
and March 2018 (approx. 130,000 ticks).

The most important processes of the model, which are repeated every time
step, are the update of particulates on roads and background areas, the journey of
vehicles and pedestrians, and the exposure and health loss in response to mobility
patterns and non-exhaust PM10 emissions. The agents are assumed to have a
healthy medical profile at the beginning of the simulation, but are expected to
have their health decreased when they are exposed to over 100µg/m3 of PM10.
Subway commuting agents are assumed to be exposed to the ambient level PM10

between early morning and late in the evening even if they do not appear on

3 We clarify that non-resident vehicles are those for which the origin is outside the
model domain. For example delivery vehicles - routing these non-randomly would
require knowing both intermediate and final destination data. For the present, we
treat these as random as this is better than omitting them completely, but the model
might be improved with knowledge of where they were headed



4 H.Shin and M.Bithell

the interface. If the health of an agent drops to a third of the initial state, the
model will recognise the individual to be ‘at-risk’. The cumulative updates of
the ‘at-risk’ population and the PM10 concentration by roads are exported to a
spreadsheet at the end of the simulation.

The most important concept of the model is emergence and stochasticity.
The emergence of the ‘at-risk’ population (i.e. those with health under a third
of the initial health status) occurs from a balance between exposure to a PM10

threshold of 100µg/m3 and recovery. The threshold is referred to the hourly
standard controlled by the S.Korean government. Stochasticity is another crucial
component because (1) the number of non-resident vehicles within the study
area can cause traffic congestions at any junction given that the vehicles move
randomly, and (2) the infiltration ratio (indoor-to-outdoor concentration ratio)
varies by the microenvironment and the time spent. This study estimates the
infiltration from the ambient PM10 of the current patch to indoor spaces such as
houses between 0.2-0.7 [12,13], workplaces at 0.2 [12], and transits - i.e. subway
and in-vehicles at 0.7 [12].

The model is initialised with a 1% sample of 69,806 resident vehicles with un-
leaded, diesel, and LPG fuel tanks, and 1% sample of 193,200 subway commuters.
The resident drivers who commuted beyond our study area were removed, which
resulted in 399 driving agents and 1,932 subway agents. During weekdays, trips
are made along the shortest path and will not change throughout the simulation,
except weekends where the agents have freedom to choose their trips and return
before the weekday starts. Since the aggregated OD information cannot provide
the exact location of agents, we allow some randomness to allocate the origin
and destinations for each simulation run.

Key processes in the model are the pathfinding algorithms, and the gener-
ation and dispersion of NEEs. For vehicle pathfinding (see Fig.2), we initially
retrieved road networks and removed minor streets, then employed an A* algo-
rithm for each vehicle to find the shortest path while avoiding dead ends and
obstacles [21]. As explained above, LSA is used for pedestrians to navigate the
shortest distance from origin to goal, which in this case is a straight line. This
algorithm may allow many agents to penetrate buildings during their journey,
which is somewhat awkward. The LSA algorithm was compared with a different
set of code that asked the agents to bypass buildings. However, the alterna-
tive code set took much longer execution time while the exposure levels hardly
showed any difference.

To generate NEE from each vehicle, we transform the EEA’s trip-based NEE
equation (g/km) to a unit-based emission (patch-by-patch) in order to mimic
the distribution of emission sources [6]. We use µg/30m to match the spatial
resolution (patch) of the model environment.

3 Sensitivity Analysis

This study uses one-factor-at-a-time (OFAT) method to examine the sensitivity
for each of the parameters. Since computational limitations are made more, it
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Fig. 2. (A) is a test of an agent finding the shortest path from the origin (red patch)
to its destination (light green patch) based on A*, and (B) is the application of A* for
a sample vehicle used in study site

is normal that full-factorial parameterisation should be considered. However, we
did not find any noticeable interaction effects in the outcome after testing the
combinations between emission, dispersion, and dilution over a selected period.
Each parameter is analysed from an average of 20 iterations to reduce possible
stochastic effects.

3.1 Dispersion and Dilution

We parameterise the angle of dispersion from each vehicle to understand whether
wider impact of non-exhaust PM10 to the neighbouring patches affects more risk
to people; and the adjust the ‘time until this dispersion dilutes’ (see Fig.3). The
baseline parameters enable vehicles to disperse 1) in a cone behind the vehicle
with an angle of 60◦ and 2) dilute within 0-3 minutes at which the particles
effectively settles out. 60◦ approximately accounts for 5-7 patches of PM10.

By controlling the dilution parameter by < 3 ticks (i.e. allowing the model to
give an integer between 0 and three at random), the first experiment simulates
the range of dispersion at 45◦ and 90◦. Then, controlling the dispersion to 60◦,
we increase the time of dilution by 5+β ticks (0<β<5) and 10+θ ticks (0<θ<10).

Fig. 3. Illustrations of dispersion parameters (left) and dilution parameters (right)

Results show that dispersion angle of each vehicle did not change the roadside
PM10 in most of the stations, except for Jongno, where the difference varied by
an average of 3µg/m3 at Emission 5 and 14µg/m3 at Emission 20 (see Table 1).
Looking at the station’s location in the real world as well as the model, Jongno
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was the only curbside station that was under 3 metres from the main road while
the others were much indented to the pavements. If the monitors in other roads
were close enough to the road, the outcomes could have been similar to Jongno.

Table 1. PM10 concentrations by emission factors and dispersion range (µg/m3)

Emission Cone Width (◦) Jongno Sejong Yulgok Samil Pirun

5
45 58.4 55.7 58.7 58.9 60.1
60 59.3 56.3 59 59.5 60.4
90 60.4 56.6 59.1 59.5 60.8

10
45 73.2 71.2 77.3 77 80.5
60 76.6 72.3 77.9 77.4 81
90 79.6 73.1 78.5 78.1 81.8

20
45 102 100 112 113 118
60 109 102 114 115 120
90 116 104 115 118 120

Unlike the dispersion results, all roads were very sensitive to the dilution
period (see Table 2). In Emission 5, the default period of less than 3 minutes
indicated an average figure of 60-62µg/m3, however, extending the period to 10
minutes increased PM10 to 67-69µg/m3, which was 10% higher than the default.

The difference between dilution periods increased proportionately to emission
factors, where the quickest dilution (0-3 mins) turned out to be 14-18µg/m3 lower
on average than the slower dilution (particles maintaining in the patch) when
we tested Emission 10, and 31-41µg/m3 lower when Emission 20 was tested.
If this analysis was to represent the length of dust emission and resuspension
in the real world, say 3 minutes of dust floating until dilution, the decrease of
PM10 can be explained by the floating particles from the vehicles mixing well
with the atmosphere. A disclaimer is that the dilution is only affected by the
duration of ticks (zero wind), and no other components (e.g. wind, rain) that
change dilution time. Note we tested Emission 1 but did not find a significant
difference to any parameters.

3.2 Health Loss & Recovery

Context The percentage of the population at risk (i.e. those with health under
100) emerges from a balance between exposure to a PM10 threshold of 100µg/m3

and recovery. In practice, the emergence can be an acute response to PM10

exposure before the natural recovery begins to take effect. The emergence pattern
will differ by which means of transport the individual is commuting with. The
agent’s health will decline on the assumption that it encounters over 100µg/m3

where they are currently located.

IfPM10 ≥ 100,
dH

dT
= −α(Hmax −H(t)) +Hrecov (1)

In Equation (1), Hmax denotes an agent’s health status at the beginning and
H(t) is strictly less than Hmax. H(t) is the current value, and Hrecov is the recovery
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Table 2. PM10 concentrations by emission factors and (the duration until) dilution
(µg/m3)

Emission Duration Jongno Sejong Yulgok Samil Pirun

1
3 45.5 45.8 45.8 46 46.1
5 46.1 46 46.5 46.2 46.4
10 46.7 46.5 46.8 46.7 47

5
3 60 60 62 62 62
5 66 66 66 66 67
10 67 67 68 68 69

10
3 81 81 86 85 85
5 94 95 96 96 99
10 99 99 100 100 102

20
3 123 123 134 133 133
5 153 150 155 155 159
10 164 160 165 164 167

rate. If the agent is on the patch that exceeds the PM10 threshold of 100, its
health values would decrease exponentially away from their initial value H(0).
The factor α sets the rate of change per unit of time when the health impact
applies. This factor is chosen from a random uniform distribution between zero
and a maximum on each tick to allow for the fact that, even within a patch,
since these are 30m across, the individual exposure levels will be very different.

Output To test the sensitivity of health loss parameters, we adjust the α from
Equation 1 at 0.1, 0.15, and 0.2.

For subway commuters, the at-risk emergence is discovered on January 20th-
22nd, late February, and early&late March (see Fig.4). The maximum risk rate
was 30% in 0.1, but skyrocketed to 100% over 0.15. Although a lot of uncer-
tainty from other parameters has contributed towards the outcomes, the tipping
point of the health loss parameter is somewhere between 0.1 and 0.15. Sev-
eral oscillations were also discovered during the extreme PM10 events. This was
because subway commuters have different commute hours that led them to be
exposed to ambient PM10.

Resident drivers experience fewer occurrences of health risk between 0.05

and 0.15, which can be compared on the dates of January 22nd, February 12th,
and March 8th. On March 24-25th, however, the majority of drivers suddenly
experienced health risk due to the continuation of extreme PM10 occurred during
March 24-25th. While resident drivers had a relatively short period of commute
time that prevented frequent health risk, the extreme levels of PM10 led most
of the drivers to an acute health crisis.

3.3 Walking Speed

We adjust various levels of walking speed for subway commuters to test how
walking speed affects the degree of risk population (see Table ??). Given the
default speed at 0.5-0.9, the section tested 1) 0.2-0.4 patch per minute, and 2) 0.4-
0.7 patch per minute. The range is given under the assumption that people have



8 H.Shin and M.Bithell

Fig. 4. Temporal change of risk rates for subway commuters (% of those with health
under 100)

different walking speeds. Walking speed over 0.5 might seem rather unrealistic,
but this experiment intends to illustrate how speed affects exposure levels.

The time series graph clearly show that the onset and peak levels are very
sensitive to walking speed (see Fig.5). When the pedestrian’s walking speed was
‘Extremely Slow’ (0.2-0.4), more than 40% of the population is at risk on five
different occasions with the highest peak of 47%. However, the risk rate declines
by 10% when the walking speed increased to ‘Slow’ (0.4-0.7) and further declines
by 30% when the speed increased to 1.6-1.8. This corresponds to the previous
sensitivity analyses because slowing down the walking speed can mean that the
person is prolonging the exposure time, which in turn causes a further health
loss.

4 Scenario Forecasting

Once the parameters are calibrated, we conduct ‘what-if’ scenarios to understand
1) how vehicle restrictions can improve air quality, and 2) the consequent health
outcomes. As with the sensitivity section, the models were averaged from 20
iterations.

4.1 Vehicle Restriction

In Fig.6, traffic levels cut by 50% can result in a reduction of 1.2-2.7µg/m3 (2-4%)
of PM10, while a further restriction by 90% of the normal traffic significantly can
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Fig. 5. Assessing subway commuters’ health by different walking speed parameters

reduce PM10 in the study area by 11.4-15.7µg/m3 (18-24%) (see also Table 3). It
is quite uncertain whether vehicle restriction scenarios without considering the
meteorological effects would entail a realistic figure, but according to [14]’s work
- 50% cut of brake disc emissions led to a 4-14% reduction in ambient PM10 -
we at least can suggest that Seoul’s vehicle restriction plan can curb PM10 by a
significant level.

Table 3. Overall average of PM10 on five roads by car restriction scenarios

Scenario Type Jongno Sejong Yulgok Samil Pirun

Business as Usual PM10 60.7 61.3 62.5 62.4 63.6

50% Restriction
PM10 58.0 59.6 60.2 61.2 61.3
Difference to BAU 2.7 1.7 2.3 1.2 2.3

90% Restriction
PM10 47.9 49.8 48.1 51.0 47.9
Difference to BAU 12.8 11.5 14.4 11.4 15.7

4.2 Health Loss from NEE and PM10 Exposure

Our subsequent scenario is whether the vehicle restriction lead to less harm to
health. As a result, over 10% of drivers were put into risk on January 23rd 2018,
but when the incoming vehicles were cut by 90%, the ‘at risk’ drivers reduced by
5% (see Fig.7A), which seemed to be effective. However, it could not prevent the
surge of health risks at late March when roadside and background PM10 were
both persistently high (<1% difference).

In contrast, restricting vehicles did not seem to be effective on pedestrians
(see Fig.7B). This was because most pedestrians walked on the background path-
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Fig. 6. Boxplot of PM10 by each restriction scenario

ways and their long commute time escalated the chance to get exposed to high
PM10.

It is worth pointing out that the ‘alarmingly high’ days of ambient PM10 as
well as the sudden increase of roadside PM10 happens more frequently in Seoul
during the winter period. Even worse, the particulates tend to remain in the
atmosphere as the ‘bowl-shaped’ topography of central Seoul resist the wind
speed.

5 Conclusion

This paper investigated a traffic simulation for central Seoul to investigate the
coupled problem of NEE and exposure to PM10 in groups of pedestrians and
resident drivers. In summary, road traffic was found to have contributed around
40% of the average roadside PM10 concentrations, with much higher contribu-
tions on a finer time scale. The rise of PM10 was largely due to the amount of
traffic that emitted NEE on roads, regardless of the fuel type and mode of power
[1]. These findings are consistent with the case study of [19], where 48% of road-
side PM10 in Ruhr was contributed by particulate emissions, but because the
”48%” figure was a summation of emissions from both exhaust and non-exhaust
PM10, the non-exhaust PM10 emission alone are closer to the findings of this
study. In addition, longer exposure for pedestrians led to a larger accumulated
exposure overall, the majority of drivers were exposed to the highest levels of
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Fig. 7. Health risk of resident vehicle drivers (A) and subway commuters (B)

pollution (>150µg/m3), which was largely due to the time spent in congested
areas. The health effects, however, depended strongly on how the impact and
recovery from exposure were parameterised.

In the vehicle restriction scenario, roadside PM10 showed a 18-24% (11-
17µg/m3) decrease when the majority of cars (90%) were banned from the city
centre, while an average of 2-5µg/m3 decrease was seen in the study area when
50% ban was implemented. In other words, at least 90% of vehicle reduction is a
noticeable level for air quality improvement. Upon our further investigation on
vehicle restriction and health effects, we found a decent improvement of health
risk to drivers happen when 90% ban scenario was introduced but unable to seek
a similar effect on subway commuters.

This study was the first to jointly examine the contribution of NEEs and the
adverse health effects on a group of commuters from a microscopic approach.
The application of NEEs on a patch level sufficiently recreated the generation
of brake and tyre wear and the following dispersion that can possibly happen in
the real world. Perceiving the severity of NEE to ambient PM10, future studies
should consider more sophisticated ways that particles from brakes and tyre wear
are generated and dispersed on roads, and whether the shortest-distance trip on
major roads is better than taking a less congested route but one with extended
travel time in terms of reducing one’s exposure level.
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