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Using multi-objective sparrow search algorithm to establish active distribution network 
dynamic reconfiguration integrated optimization 
 

Abstract 

This study contributes to establish the dynamic reconfiguration integrated optimization 

model of active distribution network (ADN) and proposes a novel solving approach based on 

multi-objective sparrow search algorithm. Distributed generation and time-varying load 

have an important impact on promoting sustainable development and reducing energy loss. 

Therefore, this study aims to investigate the ADN integrated optimization problem in 

consideration of distributed generation and time-varying load to improve the ADN power 

quality, economic and energy benefits. First, a multi-objective sparrow search algorithm is 

proposed aiming at the multi-objective, multi-constraint, non-linear and high-dimensional 

ADN integrated optimization problem, and the superiority of the proposed algorithm is 

verified. Second, the mathematical model of ADN integrated optimization is constructed. 

Finally, multi-scenario test is conducted in the classic test system to verify the effectiveness 

of proposed method, and the compromise solution is determined through the technique for 

order of preference by similarity to ideal solution (TOPSIS). The result shows that the 

proposed method effectively reduces the power loss and node voltage deviation by 75.76% 

and 70.06%. Accordingly, this study is significance for improving the operational stability of 

ADN, increasing the penetration rate of renewable energy and promoting economic 

production.  

 

Keywords: active distribution network; dynamic reconfiguration; integrated optimization; 

multi-objective sparrow search algorithm; renewable energy 
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Definition of acronyms and variables 

Acronyms Variables 

ADN Active distribution network Ca Operating loss coefficient ($/kW)  

Archive External archive size Cb Unit action cost of the connection 

switch ($/time) CD Critical difference 

DG Distributed generation Ce Electricity price ($/kWh) 

HV Hypervolume Cr Total operating cost ($) 

I Current Dis Euclidean distance 

IEEE 33 Institute of electrical and electronic 

engineering designed standard test 

system with 33 nodes 

f Objective function 

G, , B Real part, impedance angle and 

imaginary part of the admittance 

IGD Inverted generational distance N Population size 

MOGWO Multi-objective gray wolf 

optimization 

Nb Number of branches 

Nm Node number 

MOMVO Multi-objective multi-verse 

optimization 

Nn Number of nodes 

NS Number of connecting switch actions 

MOPSO Multi-objective particle swarm 

optimization 

{NSC}node {Shunt capacitor number}node number 

Nt Number of compensation equipment  

MOSSA Multi-objective sparrow search 

algorithm 

P Active power (kW) 

PDG  DG active power output (kW) 

NIS Negative ideal solutions QDG DG reactive power output (kVar) 

NSGA-II Non-dominated sorting genetic 

algorithm with elite strategy 

Pload Residential load active power (kW) 

Qload Living load reactive power(kVar) 

NSMFO Non-dominated sorting moth flame 

optimization 

Ploss Active power loss (kW) 

Qloss reactive power loss (kVar) 

PIS Positive ideal solutions Q Reactive power (KVar) 

PV Photovoltaic {QSVC}node {SVC reactive power output}node number 

SC Shunt capacitor R1, R2 Early warning value and safety value 

SP Spacing t Current number of iterations 

SSA Sparrow search algorithm Tmax Maximum number of iterations 

SVC Static var compensator U Voltage (kV) 

TOPSIS Technique for order preference by 

similarity to ideal solution 

W Population scale factor 

XSC SC access group number 

WT Wind turbine XSVC SVC reactive power output (kVar) 

ZDT Zero-ductility transition XSwich Disconnection switch number 
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Using multi-objective sparrow search algorithm to establish active distribution network 
dynamic reconfiguration integrated optimization 

1.  Introduction 

The penetration of clean and sustainable energy sources is increasing in modern power 

systems due to the continuous growth of global energy demand (Singh et al., 2020). Clean 

energy sources will gradually replace fossil energy sources in the future (Acharya et al, 2021; 

Coelho and Mariani, 2007). Fossil energy production and consumption has led to a range of 

problems (Chen and Tang, 2022; Coelho and Mariani, 2006). The consumption of fossil 

energy destroys the environment, so there is an urgent need for large amounts of clean 

energy to replace fossil energy (Liu et al., 2021; Coelho et al.,2014). Clean energy is a 

renewable energy source that has an important impact on sustainable development and 

environmental improvement (Sun et al., 2021; Tseng et al., 2021; Mellal and Williams., 2020). 

However, distributed energy sources have an impact on the power system (Li et al., 2021; 

Coelho and Mariani., 2009). 

Especially, in modern power system, the distribution network injects a high-density 

distributed generation (DG), which changes the original distribution network structure (Kiani 

et al., 2021). The output of DG has strong randomness and intermittency, which increases 

the complexity and uncertainty of the system. It will cause great changes in node voltage, 

power flow direction, network loss and branch power, and severely impact the economic 

and safe operation of the system (Xu et al., 2021). Nick et al. (2014) argues that technologies 

such as network reconfiguration and reactive power optimization can effectively optimize 

the distribution network operation. Active distribution network (ADN) is a distribution 

network with DGs inside, flexible topology adjustment and active control capability. 

Network reconfiguration changes the connection switch state to obtain the optimal 

power flow distribution under a set of constraints, so as to balance the load, improve the 

equipment utilization, increase the voltage stability and minimize the network loss (Cheng 

and Li, 2019). However, reactive power optimization is a complex multi-dimensional problem. 

Its control variables include static var compensator (SVC) compensation capacity, shunt 

capacitor (SC) input group number and so on (Ma et al., 2021). In system, reactive power 

optimization can reduce network loss, improve voltage distribution, reduce power 

generation cost and improve energy utilization (Chen et al., 2021). In sum, this study is 

necessary to find a model that can consider network reconfiguration and reactive power 

collaborative optimization, so as to maximize the comprehensive benefits of electric energy 

in the production and distribution process. 

In the current studies of distribution network reconfiguration, it is divided into static 

reconfiguration and dynamic reconfiguration according to different time periods. Static 

reconfiguration is to find the optimal topology for a certain period of time when the load 

power and the output of DG are constant (Azad-Farsani et al., 2021). It is the optimization of 

ADN based on fixed load and constant generation conditions. Yet, ADN must be dynamically 

reconfigured in consideration of the time-varying resident load and fluctuation of DG output, 

as well as other random factors. Dynamic reconfigured considers the operating conditions 

which include random output of DG and time-varying load in a continuous period of time (Ji 



 

4 

 

et al., 2021). ADN has a vast area and complex network topology. Therefore, the dynamic 

reconfiguration and reactive power collaborative optimization of ADN is a multi-objective, 

multi-dimensional, multi-variable and multi-constraint problem.  

Many literatures only convert the multi-objective optimization problem into 

single-objective optimization problem or conducts single-objective optimization to solve the 

problem. Only a few literatures regard it as a practical multi-objective problem. The major 

methods to deal with multi-objective problems include weighting method (Olamaei et al., 

2008), fuzzy set theory (Kefayat et al., 2015), penalty function method (Oh et al., 2020), 

Pareto optimal frontier (Raposo et al., 2020) and non-dominated sorting (Duan et al., 2015). 

The weighting method has fast solving speed and transforms multi-objective into 

single-objective. However, the weights are set in advance. The objective functions in actual 

problems may have complex coupling relationships, so the actual optimal value cannot be 

obtained (Ramaswamy et al., 2015). The penalty function method restricts the target space 

by penalizing infeasible solutions, but requires a higher penalty factor (Coello Coello, 2002). 

The Pareto optimal frontier is a solution set, which cannot reflect the trade-off between 

multiple goals. Adopting non-dominated sorting may destroy the spatial distribution and 

diversity of solution. 

Aiming at the gaps in the above-mentioned literatures, this study considers distributed 

generation, time-varying load and real-time electricity prices in the ADN integrated 

optimization problem, as well as the contradictory relationship between power quality, 

economic efficiency and energy loss. Meanwhile, a multi-objective sparrow search algorithm 

is proposed based on the characteristics of ADN integrated optimization problem, such as 

multi-objective, multi-constraint, non-linear and high-dimensional. Finally, multiple 

scenarios in the IEEE 33 system are used to verify the effectiveness of the proposed method. 

Additionally, the contributions of this study are as follows. 

⚫ A dynamic reconfiguration integrated optimization model of ADN considering load time 

variation, real-time electricity price and fluctuation of DG output is constructed. 

⚫ A novel multi-objective sparrow search algorithm (MOSSA) with better performance is 

proposed to solve the multi-objective, multi-constraint, non-linear and 

high-dimensional integrated optimization problem of ADN. MOSSA has better 

convergence speed, stronger search capability and higher quality solutions compared 

with current excellent multi-objective algorithms. 

⚫ Adopting MOSSA to solve the ADN problem, and the solution obtained by the proposed 

method has been proven to outperform the results obtained by the existing algorithms 

through multiple scenarios compared in the IEEE 33 system. 

⚫ The proposed MOSSA effectively reduces ADN energy losses, improves power quality 

and economic efficiency, and further increases the efficiency and penetration of 

renewable energy. 

This study is organized as follows: Chapter 2 surveys the literature on network 

reconfiguration and reactive power optimization. Chapter 3 introduces the ADN dynamic 

reconfiguration integrated optimization model and its optimization method. Chapter 4 

verifies the effectiveness of the proposed model in different scenarios of IEEE 33 system. 
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Chapter 5 summarizes the concluding remarks, analyzes the shortcomings of this study and 

proposes future research prospects. 

2.  Literature review 

Integrated optimization of active distribution network (ADN) has received significant 

attention due to the rapid growth of distributed energy sources in power system (Qian and 

Sui, 2021). Prior studies have proposed some ADN optimization tools, such as network 

reconfiguration and reactive power optimization. Network reconfiguration changes the 

switch connection state to optimize ADN operation. Reactive power optimization is achieved 

by reactive power compensation device output to compensate the system reactive power. 

Methods that use network reconstruction to achieve ADN optimization include particle 

swarm optimization (Mukhopadhyay and Das, 2020), genetic algorithm (Gupta et al., 2014), 

simulated annealing immunity algorithm (Chen et al., 2011), gray wolf algorithm (Nguyen et 

al., 2014), ant colony algorithm (Su et al., 2005), stochastic fractal search algorithm (Tran et 

al., 2020). Since the metaheuristic algorithms generally converge slowly, Nguyen et al. (2019) 

proposes an improved cuckoo search algorithm to solve the ADN reconstruction problem, 

which is able to find the global optimal solution with fewer iterations, but only considers the 

network loss ignoring renewable energy generation. Aiming to increase the renewable 

energy penetration, Pathan et al. (2020) uses an improved binary genetic algorithm based 

on the minimization of system operation interruption time and energy not supplied 

considering renewable energy sources and energy storage, which sets weights in advance 

according to individual preferences and transforms multiple objectives into a single objective, 

but there may be contradictory relationships between multiple objectives that can lead to 

not obtaining the actual optimal solution. Considering the contradictory relationship 

between objectives, Niknam et al. (2012) uses a multi-objective modified honey bee mating 

optimization algorithm for multi-objective optimization to find the Pareto optimal solution 

set and then select the optimal compromise solution using fuzzy clustering method, but only 

static reconstruction is performed. 

In addition, ADN must be dynamically reconfigured due to load time-variability, 

increase in DG and other stochastic factors (Kovacki et al., 2018; Sheidaei et al., 2021; Sun et 

al., 2021). Jafari et al. (2020) proposes a new hybrid algorithm that combines the trading 

market algorithm and the wild goat algorithm for parallel operations to perform dynamic 

reconstruction of ADN, which improves the computational speed but ignores DG. Zidan et al. 

(2013) proposes a method for determining the annual reconfiguration that considers the 

variable load curve and stochastic generation of DG, which is optimized using a genetic 

algorithm, but only considers energy loss minimization ignoring the operating costs. Aiming 

to minimize the operating cost and energy loss, Azizivahed et al. (2018) considers the 

real-time tariff and the time-varying load to establish a dynamic reconfiguration model with 

the objectives of network loss, operating cost and energy consumption, and also proposes a 

hybrid algorithm to optimize this model. However, only network reconfiguration is 

performed, and there is a huge upside in ADN operational performance. 

Reactive power optimization techniques are also widely used in ADN optimization. For 
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instance, Medani et al. (2018) uses the whale optimization algorithm to optimize the 

reactive power scheduling and find the optimal vector of control variables to achieve power 

loss reduction, but only considering the power loss. Aiming at multi-objective reactive power 

optimization, Medani et al. (2012) uses a simulated fisherman fishing optimization algorithm 

and proposes a reference area-based approach to improve the search speed. However, it 

only performs static optimization and does not perform dynamic optimization. Mahdad 

(2019) uses the fractal search algorithm for reactive power optimization resource scheduling, 

but ignores the effect of DG on the system and the optimization algorithm can be further 

improved. To further improve the performance of intelligent optimization algorithms, a 

variety of intelligent algorithm improvement methods are widely used to deal with more 

complex optimization problems (Gao et al., 2021; Tseng et al., 2021). Aiming at the problem 

of low accuracy of traditional particle swarm optimization (PSO), Zou (2021) proposes fuzzy 

particle swarm optimization algorithm based on PSO to establish static and dynamic 

mathematical models of the system for achieving reactive power optimization. However, the 

model only considers the network loss minimization, which cannot meet the practical 

requirements. To meet the practical needs, Wang et al. (2011) proposes a comprehensive 

and practical multi-objective reactive power optimization model, then adopts the fuzzy 

adaptive particle swarm algorithm optimization model, and finally uses fuzzy set theory to 

solve the multi-objective problem. However, this method converts multiple objectives into a 

single objective, but there may be contradictory relationships among the objective functions, 

so the actual optimal solution cannot be obtained. 

Previous literature lacks research on ADN integrated optimization, which usually uses 

only one optimization tool, such as network reconfiguration or reactive power optimization. 

Only a few studies use multiple tools for ADN optimization. ADN integrated optimization 

using multiple techniques can maximize the ADN operational performance. For instance, 

Tolabi et al. (2020) proposes a new thief and police algorithm to perform network 

reconfiguration and optimize the configuration of DG and capacitors, but it lacks dynamic 

analysis. Raut et al. (2019) proposes a novel improved elite-Jaya algorithm to solve the 

simultaneous network reconfiguration and DG assignment problems, which converts the 

multi-objective into a single-objective optimization, ignoring the conflicting relationships 

between the objectives. Srinivasan et al. (2021) proposes an autonomous group particle 

swarm optimization algorithm for active distribution network optimization, which first 

performs reactive power compensation and then network reconfiguration, but lacks 

dynamic analysis and without considering the impact of DG and dynamic loads on the 

system. 

In sum, previous studies lack to address the conflicting relationships between energy, 

power quality and economic efficiency. In addition, literature lacks tackling the impact of 

renewable energy generation and dynamic loads on modern power system and the use of 

multiple tools combined for ADN optimization. Therefore, this study constructs integrated 

optimization model of ADN considering DG, dynamic load and electricity price. Meanwhile, 

the dynamic reconstruction and reactive power optimization techniques are combined to 

optimize ADN, and MOSSA is proposed to solve the contradictory relationship between 
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power quality, economic efficiency and energy saving, which effectively reduces energy loss, 

promotes sustainable energy development and reduces economic cost. 

3.  Model description 

This study considers three aspects: economic benefit, energy loss and power quality. 

Minimizing the economic cost, active power loss and node voltage deviation of ADN is the 

goal. Considering the fluctuation of DG output, real-time electricity price and time-varying 

load, a dynamic reconfiguration and reactive power collaborative optimization model of 

ADN is established. 

3.1.  Decision variables 

The switch action state, static var compensator (SVC) compensation capacity and shunt 

capacitor (SC) access group number are selected as decision variables to obtain the optimal 

network topology and the output of reactive power compensation equipment in each period 

of ADN. 

Swich Swich SVC SVC SC SC

1 1 1,..., , ,..., , ,...,a b cX X X X X X =  X          (1) 

Where, X represents the set of decision variables; Swich, SVC and SC represent connection 
switches, static var compensator and shunt capacitor; Swich

1X  and Swich

aX  represent the 

action states of the 1-th and a-th connection switche respectively; SVC

1X  and SVC

bX  

represent the compensation capacity of the 1-th and b-th SVC; SC

1X  and SC

cX  represent 

the number of access groups of the 1-th and c-th SC. 

3.2.  Objective functions 

Economic benefit, energy loss and power quality are considered to optimize the 

operation of ADN, and the goal is to minimize the economic cost, active power loss and node 

voltage deviation. 

3.2.1.  Minimal economic cost 

1 .

1 1

( )
bNT

k t t

a t loss b S r

t k

F C P C N C
= =

= + +                     (2) 

Where, T, t and loss represent total time, operating hours and power loss respectively; 
.

k

t lossP  

and t

SN  represent the line active loss of the k-th branch in t period and the number of 

actions of the connecting switch in t period; 
bN , 

aC  and 
bC  represent the number of 

branches, the operating loss coefficient and the unit action cost of the connection switch 
(this study sets 

bC  to $10/time); and t

rC  represents the total operating cost of ADN in 

time t, including power purchase costs and equipment investment costs. 

1

( )
tN

t t t t j j

r e load DG t t

j

C C P P P Q C
=

= − +                    (3) 

Where, t, DG and load represent operating hours, distributed generation and residential 
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load respectively; t

DGP  and t

loadP  represent the total active power emitted by DG and the 

total load of ADN during t period; j

tQ  represents the compensation capacity of the j-th 

reactive power compensation device in the t period; t

eC , j

tC  and 
tN  represent the 

electricity price, the unit compensation capacity investment cost of the j-th compensation 
equipment and the number of compensation equipment during the period t; and P 
represents the investment recovery coefficient. 

The following is the investment recovery coefficient formula. 

( )

( )

1

1 1

y

y

a a
P

a

+ 
=

+ −
                                 (4) 

Where, a and y represent interest rate and equipment service life. In this study, a=0.06, SVC 

life is set to 15 years and SC life is set to 20 years. 

3.2.2.  Minimum active power loss 

2 2

. .
2 2

1 1 .

bNT
t k t k

k

t k t k

P Q
F R

U= =

+
=                          (5) 

Where, T, k, kR  and bN  represent total time, branch number, the resistance of the k-th 

branch and the quantity of branches; .t kP  and .t kQ  represent the injected active power and 

injected reactive power at branch k in period t; and .t kU  represents the voltage amplitude at 

branch k in period t. 

3.2.3.  Minimum node voltage deviation 

2 2

3 .

1 1

1 nNT

t i r

t in

F U U
N= =

 
= − 

 
                         (6) 

Where, t and T represent the running time and total time respectively; 
nN , 

rU  and 
.t iU  

represent the number of nodes, the reference voltage and the voltage amplitude at the i-th 
node during the t period. 

3.3.  Constraints 

3.3.1.  Power flow balance constraints 

. .

1

. .

1

( cos sin )       1,2 ...,  

( sin cos )     1,2 ...,   

n

i DG i load i i j ij ij ij ij n

j

n

i DG i load i i j ij ij ij ij n

j

P P P U U G B i N

Q Q Q U U G B i N

 

 

=

=


+ = + + =



 + = + − =






，

，

    (7) 

Where, i and j represent the start and end nodes of the branch respectively; nN , n, DG and 

load represent total nodes, total branches, distributed generation and residential load 

respectively; iP  and iQ  represent the active and reactive power injected into i-th node; 
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.DG iP  and .DG iQ  represent the active and reactive power output by DG at the i-th node; .load iP  

and .load iQ  represent the active and reactive power of load at the i-th node; iU  and jU  are 

the voltage of the i-th node and the voltage of the j-th node; and ijG , ij  and ijB  

represent the real part, impedance angle and imaginary part of the admittance between 
node i and node j. 

3.3.2.  Node voltage constraint 

.min .maxi i iU U U                              (8) 

Where, .maxiU , iU  and .miniU  represent the lower voltage limit, the present voltage and the 

upper voltage limit of the i-th node. .maxiU  and .miniU  are taken as 1.05Ui and 0.9Ui. 

3.3.3.  Branch current constraint 

.maxk kI I                                     (9) 

Where, kI  and .maxkI   represent the current and the maximum current allowed to flow in 
the k-th branch. 

3.3.4.  SVC switching capacity constraint 

.min .maxsvc svc svcQ Q Q                            (10) 

Where, SVC represents static var compensator; .minsvcQ , svcQ  and .maxsvcQ  represent the lower 

limit of SVC input capacity, input capacity and upper limit of SVC input capacity.  

3.3.5.  SC switching group number constraint 

.min .maxSC SC SCN N N                             (11) 

Where, SC represents shunt capacitor; 
SCN  is the number of SC input groups; 

.minSCN  and 

.maxSCN  are the upper and lower limits of the number of SC input groups. 

3.3.6.  Topological structure constraint 

h H                                     (12) 

Where, h and H represent the reconstructed network topology and feasible network 
topology set.  

3.4.  Simplification of network topology 

This study uses a loop matrix to ensure the generation of decision variables that meet 

the radial structure of ADN. The elements of row in the loop matrix is composed of the 

connection switch numbers of an independent loop in the active distribution network 

topology, and then select a connection switch number from each row in the matrix to form a 

set of decision variables. In addition, the incidence matrix A (Azizivahed et al., 2017) is 

adopted to verify the radial topology. 

The following are the steps to verify the radial structure. 

Step 1.  In the loop matrix, select one connection switch for each row to disconnect. 
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Step 2.  Establish an incidence matrix n mA  including all branches. 

1              

1      

0

n m

n m n m

if I from N

if I to N

else






= −



A    

    

                     (13) 

Where, n and m represent the branch number and node number respectively; nI  

and mN  represent the current of the n-th branch and the m-th node respectively. 

Step 3.  Delete the row of n mA  corresponding to the selected disconnect switch and the 

first column of n mA   corresponding to the root node. 

Step 4.  If the remaining matrix determinant is -1 or 1, it is radial topology. 

3.5.  Multi-objective sparrow search algorithm and its application 

ADN has complicated structure and numerous switches. The time-varying load and 

real-time electricity price need to be considered. Additionally, the increase of DG and 

reactive power compensation devices makes the optimization model more complicated. The 

proposed multi-objective sparrow search algorithm (MOSSA) is used to optimize the 

dynamic reconfiguration and reactive power collaborative optimization model of ADN for 

reducing the economic cost and energy waste and enhancing the power quality of ADN. 

Obtain Pareto front surface under different objective functions, and then get the optimal 

compromise solution through the technique for order preference by similarity to an ideal 

solution (TOPSIS).  

This chapter improves sparrow search algorithm (SSA) by introducing non-dominated 

sorting, external archiving mechanism, third-order chaos initialization method, nonlinear 

decreasing population scale factor and Cauchy mutation method, and finally obtains MOSSA. 

3.5.1.  Sparrow search algorithm 

Sparrow search algorithm (SSA) is an algorithm simulating the habits of sparrows, which 

has great optimization ability (Xue and Shen., 2020). The sparrow population is divided into 

discoverers and joiners, which are controlled by the population scale factor W. When aware 

of the danger, some sparrows with anti-predation behavior in the sparrow population are 

called scouts 

(1) Discoverers 

The discoverer has a wide range of foraging. 

1 21

1 2

exp( )          

                   

t

it

i

t

i

i
if R R

G

Q if R R

+

−
 

= 
 +  

X
X

X L

             (14) 

Where, 1t

i

+
X  and t

iX  represents the position of the i-th sparrow at the t+1 and t-th 
iterations; t, G, and Q represent the current iteration number, the total iteration number and 
a number that obeys normal distribution; R1 and R2 are random numbers of [0,1] and [0.5,1], 
representing early warning value and safety value;   is a random number of (0,1]; L is a 
1×d matrix with a value of 1 for each element; and d represents the variable dimension. 
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(2) Joiners 

The joiner forages around the discoverer. The updated description of its location is as 

below. 

1

2

           0.5

exp( )                 0.5

t

b j b

t
t t

j
w j

L if i N

Q if i N
j

+

 −   + 


=  −
 



X X A X

X X X
           (15) 

Where, bX  and t

wX  represent the position of the best and worst fitness sparrow; 1t

j

+
X  

and t

jX  represents the position of the j-th sparrow at the t+1 and t-th iterations; A is a 1×d 

matrix with a value of -1 or 1 for each element, and 1( )T T −=A A AA ; L is a 1×d matrix with a 

value of 1 for each element; d and Q represent the variable dimension and a number that 
obeys normal distribution; and j represents the sparrow number. 

(3) Scouters 

1
( )          
( )

                   

t t

Z wt

Z Z bt
b wZ

t t t

b b Z Z b

R if f f
f f

if f f





+

 −
 +  

− += 


+  − 

X X
X

X

X X X

           (16) 

Where, 1t

Z

+
X  and t

ZX  represent the positions of the Z-th scout at the (t+1)-th and t-th 

iterations; t

bX  and t

wX  represent the positions of the sparrows with the best fitness and 

the worst fitness at the t-th iteration;   is a random number with a normal distribution 

with a mean value of 0 and a variance of 1; 
wf  and 

bf  represent the global worst and 

optimal fitness values; 
Zf  represents the fitness value of the z-th individual;   is a 

constant for avoiding the denominator being 0; and  1,1R −  is a random number. 

3.5.2.  Multi-objective sparrow search algorithm 

The multi-objective sparrow search algorithm (MOSSA) proposed in this study can 

optimize multiple objective functions by introducing non-dominated sorting mechanism and 

external archiving mechanism on the basis of SSA. Additionally, chaos initialization strategy, 

Cauchy mutation strategy and nonlinear decreasing population scale factor are introduced 

to increase population diversity, accelerate convergence speed and enhance search ability. 

(1) Non-dominated sorting mechanism  

For the minimization problem of n objective functions ( )nf x , if any two decision 

variables 
ax  and 

bx  satisfy equation (17), it is called 
ax  dominates 

bx . 

 ( ) ( ) || ( ) ( ),    1,2, ,k a k b k a k bf x f x f x f x k n            (17) 

Where, 
ax  and 

bx  represent the a-th variable and b-th variable; ( )kf x  and n represent 

the k-th objective function and the number of objective functions. 

(2) External archiving mechanism  

MOSSA introduces an external archive to store the individual with the lowest Pareto 
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level in the iterative process. The update mechanism is as follows: 1) Compare the new 
solution with the solution in the archive. If the former is a non-dominated solution, the 
former is allowed to be stored in the archive; If the former dominates the latter, the former 
replaces the latter; and 2) If the archive exceeds the storage space, the congestion is 
calculated and the solution with high congestion is removed. 

(3) Third-order chaotic initialization  

The third-order chaotic mapping strategy is used to initialize the sparrow population. 

The initial solutions have the characteristics of uniform spatial distribution and randomness. 

The initialization formula is as follows. 

3

.( 1) . .

. .

.

4 3

1,2, ,

( 1)
2

1

i b i b i b

b b
i b i b b

i

p

b

H H H

u l
H l

H
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Where, bl  and bu  represent the lower and upper limits of the b-dimensional variable ; .i bX  
and pN  represent the b-th dimensional coordinate in the search space of the i-th individual 
and the population number; .i bH  and .( 1)i bH +  represent the b-th and (b+1)-th dimensional 
coordinate of the i-th sparrow in the chaotic space. 

(4) Nonlinear decreasing population scale factor 

Early in MOSSA iteration, the current individual is usually far away from the global 
optimal solution. Increasing the value of population scale factor increases the proportion of 
discoverers, which is beneficial for the discoverers to perform global search. In the later 
stage of MOSSA iteration, reducing the value of population scale factor increases the 
proportion of joiners and give full play to the local search ability of joiners. The expression of 
the population scale factor W is as follows. 

( )max min

max

w w t
w w

T

− 
= −                       (19) 

Where, w, t, T, 
minw  and 

maxw  represent the population scale factor, the current number of 

iterations, the total number of iterations, the minimum value of w and the maximum value 
of w; and w nonlinearly changes from large to small as the iteration progresses. 

(5) Cauchy mutation strategy 
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Where, 
.i b

X  and 
.i b

C
X  are the b-th dimensional coordinates of the i-th sparrow before and 

after mutation; Cauchy is a Cauchy mutation operator; 
i

X  and 
i

C
X  are the i-th sparrow 

before and after mutation; and   is a random variable on [0,1]. Perform a non-dominant 



 

13 

 

ranking with the individual before mutation, and determine the optimum individual by the 
method of survival of the fittest. 

3.5.3.  Adopting TOPSIS to select the optimal compromise solution 

For multi-objective optimization problems, the objective functions may have 

contradictory relationships among them, and all objectives cannot reach the optimal values 

at the same time. Therefore, the multi-objective optimization algorithm obtains a set of 

optimal solution sets. 

The technique for order of preference by similarity to ideal solution (TOPSIS) is a 

multi-criteria selection method that can efficiently select the optimal compromise solution 

from a set of optimal solutions (Singh et al., 2020). TOPSIS introduces the positive ideal 

solutions (PIS) and negative ideal solutions (NIS), and the optimal value of each objective 

function after normalization is used as the solution in PIS, and the worst value of each 

objective function is used as the solution in NIS. Then, the solution with the minimum 

geometric distance from PIS and the maximum geometric distance from NIS in the Pareto 

solution set is selected as the optimal compromise solution. This study uses TOPSIS to select 

a compromise solution from the Pareto optimal solution set obtained from MOSSA. 

The steps for TOPSIS to choose the compromise solution are as follows. 

Step 1.  Establish normalized matrix 
1 2n nR . 
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Where, 
1n , 

2n , ,i jr  and ( )i

jf x  represent the number of variables, the number 

of objective functions, the elements in the normalized matrix and the j-th function 
of the i-th solution; and 

1 2n nR  is a normalized matrix. 

Step 2.  Determine positive ideal solution (PIS) and negative ideal solution (NIS). 
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Where, ,i jr , PIS and NIS represent the elements in the normalized matrix, the 

positive ideal solution and negative ideal solution; 
ju +  and ju −  represent the j-th 

PIS and NIS. 
Step 3.  Calculate distance and approximate degree. 
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Where, iC , id +  and id −  represent the degree of similarity, the distance from the i-th 

solution to PIS and NIS; and select the solution with the largest C value as the final selected 

compromise solution; ju +
 and ju −

 represent the j-th PIS and NIS; and ,i jr  represents the 

elements in the normalized matrix. 
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Figure 1.  Flow chart of MOSSA optimized ADN dynamic reconfiguration and reactive power 

collaborative optimization model 

The process of MOSSA optimizing ADN dynamic reconfiguration and reactive power 

collaborative optimization model is shown in Figure 1. 

4.  Case analysis and Test 

Firstly, in two independent studies of solving the test function and optimizing the 

proposed model, MOSSA is compared with current algorithms to verify the superiority. 

Secondly, to verify the effectiveness of the proposed model, a comparative analysis is 
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conducted under the four scenarios of IEEE 33 system. 

4.1.  Multi-objective sparrow search algorithm performance evaluation 

Multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic 

algorithm with elite strategy (NSGA-II), non-dominated sorting moth flame optimization 

(NSMFO) and multi-objective gray wolf optimization (MOGWO) algorithm are the latest 

proposed or classical excellent multi-objective optimization algorithms. NSMFO is an 

excellent multi-objective algorithm that imitates the life habits of moths (Sapre et al., 2021). 

NSGA-II (Zhang et al., 2021) and MOPSO (Tavana et al., 2016) are classical algorithms and 

usually used as a comparison algorithm. MOGWO is a multi-objective algorithm with strong 

search capability (Mirjalili et al., 2016). Therefore, this study selects NSMFO, NSGA-II, 

MOPSO and MOGWO as the comparison algorithms. The parameters of each comparison 

algorithm in Table 2 refer to the mentioned literature. 

Select zero-ductility transition (ZDT) series classic test function (Mirjalili et al., 2017) to 

test the performance of multi-objective sparrow search algorithm (MOSSA), and compare 

the test results with MOPSO, NSGA-II, NSMFO and MOGWO. 

4.1.1.  Standard test function and performance evaluation index 

The zero-ductility transition (ZDT) series functions have Pareto optimal frontiers with 

different shapes, and the parameters are shown in Table 1.  

Table 1.  ZDT series test functions 

Function ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

Variable dimension 30 30 30 10 10 

Spatial dimension 2 2 2 2 2 

Concave and convex convexity concavity concavity convexity concavity 

Continuity continuity continuity discontinuity multiplex mode continuity 

During the experiment, to ensure the objectivity of the results, the main parameters of 

all algorithms are as below: population size N=100, external archive size Archive=100 and 

maximum number of iterations Tmax=100. Table 2 shows the parameters of the NSMFO, 

NSGA-II, MOPSO, MOGWO and MOSSA algorithms. 

Table 2.  Parameter settings for five optimization algorithms 

Algorithms Parameters 

NSMFO N=100, Tmax=100, b=1 

NSGA-II N=100, Tmax=100, PC=0.9, Pm=0.5, ms=0.05 

MOPSO N=100, Tmax=100, C1=2, C2=2, w=0.3, Up=0.5 

MOGWO N=100, Tmax=100, bt=4, gm=2 

MOSSA N=100, Tmax=100, Wp∈[0.2, 0.7], R2=0.7, SD=0.1 

The population size of each algorithm is N=100, the number of iterations Tmax=100 and 

the external archive size Archive=100. In NSMFO, b is the spiral parameter. In NSGA-II, PC, Pm, 
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and ms represent the crossover probability, mutation probability and mutation strength. In 

MOPSO, C1, C2, w and Up represent self-learning factor, social cognitive factor, inertia weight 

and percentage of uniform weight, respectively. In MOGWO, bt and gm represent leader 

selection pressure parameter and removal pending member selection pressure. In MOSSA, 

Wp, R2 and SD represent population proportion factor, safety value and warning individual 

proportion, respectively. 

Inverted generational distance (IGD) is the Euclidean distance average of each reference 

point to the nearest solution, which reflects the approximation of the whole solution set to 

the reference set (Jiang et al., 2016). It is used to evaluate the convergence accuracy of the 

algorithm, and the smaller its value indicates the higher convergence accuracy of the 

algorithm. Spacing (SP) reflects the extensive degree of the whole solution set in the target 

space (Li et al., 2016). It is desired that the resulting solution set is widely distributed in 

space, so the SP indicator is chosen to measure the degree of distribution of the obtained 

solution set in space. Smaller SP value indicates more uniform spatial distribution of the 

solution set. Hypervolume (HV) is the volume of the space enclosed by the solution set and 

the reference points. It evaluates both the algorithm convergence and the diversity of 

solutions, and a larger value indicates a better comprehensive performance of the algorithm. 

CPU runtime is used to evaluate the computational speed of the algorithm. 

Therefore, IGD, SP, HV and CPU runtime are introduced as algorithm evaluation 

indicators to compare the property of different optimization algorithms. The corresponding 

calculation formula is as follows. 
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Where, IGD, SP and HV represent the inverted generational distance, spacing and 
hypervolume; 

tP , P and 
tN  are the actual Pareto front surface, the calculated Pareto 

solution set and the number of solutions in 
tP ; 

jd , N, and d  represent the minimum 

distance from the j-th solution to other solutions, the number of solutions in P and the mean 
value of 

jd ; dis( , )x y  represents the distance between x and y; and  , 
iV  represent the 

Lebesgue measure and the hypervolume formed by the i-th solution and the reference point, 
respectively. 

The smaller values of IGD and SP represent faster convergence and better spatial 

distribution of the obtained solution sets, respectively. Shorter CPU runtime means faster 

algorithm computation. The higher values of HV represent better convergence and diversity 

of solutions, and better overall performance of the algorithm. 
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4.1.2.  Analysis of test function results 

Each algorithm runs 30 times independently to ensure the objectivity and the 

evaluation index is the average of the results of 30 runs. To ensure the objectivity of the 

results, the population size of all algorithms is N=100, the number of iterations is Tmax=100 

and the external archive size is Archive=100. The average values of IGD, SP, HV and CPU 

runtime of different algorithms on the test function are shown in Table 3, Table 4, Table 5 

and Table 6. Figure 2, Figure 3 and Figure 4 show the Pareto frontiers of the five algorithms 

on each test function. 

Table 3.  IGD test results 

Method ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

NSMFO 1.38E-02 1.03E-02 2.88E-01 2.26E-01 1.15 

NSGA-II 1.54E-02 5.02E-02 3.06E-02 4.07 4.21E-03 

MOPSO 1.55E-02 1.42E-02 2.28E-02 94.53 2.82E-02 

MOGWO 6.55E-03 5.98E-03 9.40E-03 3.69 5.57E-03 

MOSSA 3.17E-03 3.43E-03 3.49E-03 3.31E-03 2.56E-03 

In Table 3, the bold font is the optimal value. Compared with NSMFO, NSGA-II, MOPSO 

and MOGWO, the MOSSA proposed in this study has obtained the best IGD on the all test 

functions. The MOSSA has the best convergence. The IGD of NSGA-II, MOPSO and MOGWO 

on the ZDT4 test function is too large, which is not in the same order of magnitude as the 

IGD of MOSSA. In the ZDT4 test function, under the condition of 100 iterations, NSGA-II, 

MOPSO and MOGWO all fall into local optimum, and optimal Pareto solution set cannot be 

found. The IGD of NSMFO under the ZDT6 test function is also too large and it falls into local 

optimum. However, the MOSSA can obtain the optimal Pareto solution set under all test 

functions. The MOSSA has strong search ability and the fastest convergence speed. 

Table 4.  SP test results 

Method ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

NSMFO 7.51E-02 8.43E-03 5.90E-02 7.29E-02 3.95E-02 

NSGA-II 8.98E-03 2.53E-02 1.53E-02 3.92E-01 7.26E-03 

MOPSO 6.50E-03 9.42E-03 1.25E-02 9.75E-02 1.75E-01 

MOGWO 8.05E-03 6.49E-03 1.18E-02 1.60E-01 5.55E-03 

MOSSA 4.51E-03 4.57E-03 4.74E-03 4.68E-03 1.63E-01 

The bold font in Table 4 is the optimal value of SP under each test function. By 

comparing and analyzing the SP indicators, the MOSSA obtained four optimal SP values on 

the five test functions, MOGWO has obtained one optimal SP value, and other algorithms 

have not obtained the optimal value. The spatial distribution of MOSSA solution is better, 

and its performance is only next to the NSMFO in the ZDT6 test function. The Pareto solution 

set obtained by MOSSA has a better spatial distribution. 

Table 5.  HV test results 

Method ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 
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NSMFO 6.46E-01 3.10E-01 9.54E-01 6.61E-01 0 

NSGA-II 6.45E-01 2.97E-01 1.009 5.09E-01 3.20E-01 

MOPSO 6.26E-01 2.98E-01 9.76E-01 0 3.08E-01 

MOGWO 6.57E-01 3.27E-01 1.024 0 3.20E-01 

MOSSA 6.62E-01 3.29E-01 1.043 6.62E-01 3.23E-01 

Table 5 shows the HV test results of each algorithm under different test functions, 

where the bolded font is the HV optimum. the HV values of MOPSO and MOGWO are zero 

under the ZDT4 test function, and the HV value of NSMFO is also zero under the ZDT6 test 

function, they converge slowly and cannot find the Pareto optimal solution set in the 

multi-modal complex test function. Compared with NSMFO, NSGA-II, MOGWO and MOPSO, 

the proposed MOSSA obtains the optimal HV values under all test functions. MOSSA has the 

best convergence, the best solution diversity and the best comprehensive performance of 

the algorithm. 

Table 6.  CPU runtime 

Method ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

NSMFO 9.21 9.50 10.29 9.15 11.91 

NSGA-II 2.02 2.60 2.03 3.15 2.75 

MOPSO 1.49 1.51 1.28 2.82 1.47 

MOGWO 106.68 95.12 78.88 8.76 116.23 

MOSSA 1.93 2.14 2.11 1.63 1.64 

Table 6 shows the CPU running time of each algorithm under each test function, and 

the bolded font is the minimum CPU running time. MOPSO is the quickest in the ZDT1, ZDT2 

and ZDT3 test function, but the search ability is insufficient, and it is easy to fall into local 

optimum, and the convergence speed and convergence accuracy are inferior to MOSSA. 

MOGWO is the slowest in the ZDT series test function, and it is easy to fall into local 

optimum in the complex multi-modal test function. MOSSA has the shortest CPU running 

time only under ZDT4 test function, but the calculating time in other test functions is little 

different from the optimal value, usually only second to the optimal value, and the 

convergence speed is the fastest, the accuracy is the highest, the spatial distribution of the 

solution is the best, and the algorithm has the best comprehensive performance. 
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(a) ZDT1 test result 
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(b) ZDT2 test result 
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(c) ZDT3 test result. 

Figure 2.  Test results of each algorithm in ZDT1, ZDT2 and ZDT3 
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(a) ZDT4 test result of NSMFO, NSGA-II and MOSSA 
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(b) ZDT4 test result of MOPSO, MOGWO and MOSSA 
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Figure 3.  ZDT4 test results 
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Figure 4.  ZDT6 test results 

Figure 2 indicates that in solving simple multi-objective problems, NSMFO, NSGA-II, 

MOPSO, MOGWO and MOSSA can all find the Pareto optimal frontier. But compared with 

NSMFO, NSGA-II, MOPSO and MOGWO, the solution of MOSSA is closer to the real frontier 

and the distribution is more uniform. The convergence and solution distribution of the 

MOSSA is the best. 

In Figure 3, MOPSO cannot find the real Pareto front surface under the ZDT4 test 

function, MOGWO falls into a local optimum and the Pareto solution set found by NSGA-II 

contains too few solutions. The solutions found by NSMFO and MOSSA are all on the real 

frontier, but in combination with Table 3 and Table 4, it can be found that the performance 

of MOSSA is better than NSMFO. The MOSSA can find the real Pareto front surface in solving 

the problem of multi-modal complex functions, and the convergence and solution 

distribution are better than NSMFO, NSGA-II, MOPSO and MOGWO. 

In Figure 4, NSMFO has not yet converged to the real Pareto front surface under the 

ZDT6 test function, and the solutions of NSGA-II, MOPSO, MOGWO and MOSSA are all on 

the real Pareto front surface. However, combined with Table 3, the MOSSA has better 

convergence than NSMFO, NSGA-II, MOPSO and MOGWO. 

4.1.3.  Friedman test and post-hoc Nemenyi test 

Friedman test (Carrasco et al., 2020) and post-hoc Nemenyi test (Derrac et al., 2014) 

are used to compare the results of IGD, SP and HV indexes obtained by each algorithm 

respectively. 

Friedman test is the non-parametric test to achieve the purpose of the analysis of 

variance test. The original hypothesis of this study assumes that none of the algorithm 

metrics are significantly different, and the alternative hypothesis assumes that the algorithm 

metrics are significantly different. When the original hypothesis is rejected, it indicates that 

the algorithms perform significantly differently, and post-hoc Nemenyi test is performed at 

this time. The post-hoc Nemenyi test is to compare the difference between the mean ordinal 

values of the algorithms with the critical difference (CD), and if it is greater than CD, then the 

algorithm with the higher mean rank is statistically superior to the algorithm with the lower 

rank. Conversely, there is no difference between the algorithms. The formula for CD is 
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. ( 1) / (6 )CD q k k N= + , K is the number of algorithms and N is the number of data sets. The 

q of this study is 2.459, five algorithms and five data sets are tested statistically, so the CD 

value is 2.459. 

Table 7.  P-values of IGD, SP and HV Indicators obtained by each algorithm 

Indicators IGD SP HV 

P-value 6.63E-02 1.04E-01 1.04E-02 

Table 7 shows the P-values of IGD, SP, HV indicators obtained by each algorithm, where 

the P-values of IGD and HV indicators are less than 0.01, indicating that the original 

hypothesis is rejected and there is a significant difference in the value of each test function 

of IGD and SP obtained by the algorithm, while the P-value of SP indicator is greater than 

0.01 and the original hypothesis is accepted and there is no significant difference between 

the value of each test function in the SP indicator obtained by the algorithm. 

Table 8.  Average sequential values of each algorithm on different indicators 

Indicators NSMFO NSGA-II MOPSO MOGWO MOSSA 

IGD 3.4 3.8 4 2.2 1.6 

SP 3.6 4 3.4 2.4 1.6 

HV 2.4 2.5 1.7 3.4 5 

Table 8 shows the average sequential values of each algorithm on different indicators. 

The bolded font shows the data where the difference between the average sequence of the 

other algorithms and MOSSA is greater than the CD value. There is no significant difference 

between the IGD and SP metrics obtained by each algorithm in each test function. Among 

the HV metrics obtained under each test function, MOSSA statistically outperforms NSMFO, 

NSGA-II and MOPSO and it is not significantly different from MOGWO. Although there is no 

significant difference in IGD and SP metrics, combining Tables 3 and 4, MOSSA has the best 

IGD value in all tested functions, and the SP value is only second to MOGWO in the ZDT6 

function, and the best SP value is obtained in all other functions. MOSSA outperforms all 

other compared algorithms. 

4.2.  IEEE 33 test system and its parameters 

This study selects the IEEE 33 system as the test system. The total load, reference 

capacity and reference voltage of the system are 3715+j2350kVA, 10MVA and 12.66kV. 

There are 37 branches in the original network (including five tie-line branches). The 

distribution network generally operates in an open loop state, so five tie-lines are 

disconnected during normal system operation. The distribution system is a radial distribution 

network structure composed of 32 branches. System parameters are default parameters 

(Tolabi et al., 2020). Table 9 shows the parameters of the IEEE 33 system. 

Table 9.  IEEE 33 system parameters 

Branch Impedance (Ω) Apparent Branch Impedance (Ω) Apparent power 
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power (kVA) (kVA) 

1 0.0922+j0.0470 100+j60 20 0.4095+j0.4784 90+j40 

2 0.4930+j0.2511 90+j40 21 0.7089+j0.9373 90+j40 

3 0.3660+j0.1864 120+j80 22 0.4512+j0.3083 90+j50 

4 0.3811+j0.1941 60+j30 23 0.8980+j0.7091 420+j200 

5 0.8190+j0.7070 60+j20 24 0.8960+j0.7011 420+j200 

6 0.1872+j0.6188 200+j100 25 0.2030+j0.1034 60+j25 

7 0.7114+j0.2351 200+j100 26 0.2842+j0.1447 60+j25 

8 1.0300+j0.7400 60+j20 27 1.0590+j0.9337 60+j20 

9 1.0440+j0.7400 60+j20 28 0.8042+j0.7006 120+j70 

10 0.1966+j0.0650 45+j30 29 0.5075+j0.2585 200+j600 

11 0.3744+j0.1238 60+j35 30 0.9744+j0.9630 150+j70 

12 1.4680+j1.1550 60+j35 31 0.3105+j0.3619 210+j100 

13 0.5416+j0.7129 120+j80 32 0.3410+j0.5362 60+j40 

14 0.5910+j0.5260 60+j10 33 2.00+j2.00 0+j0 

15 0.7463+j0.5450 60+j20 34 2.00+j2.00 0+j0 

16 1.2890+j1.7210 60+j20 35 2.00+j2.00 0+j0 

17 0.3720+j0.5740 90+j40 36 0.50+j0.50 0+j0 

18 0.1640+j0.1565 90+j40 37 0.50+j0.50 0+j0 

19 1.5042+j1.3554 90+j40  

The first node in the system is the root node, and the 5-th and 16-th nodes have 

photovoltaic (PV) access. The PV installed capacity is 500kW. The constant power factor 

control method is adopted during operation and the power factor is set to 0.85 (lagging). 

The 12-th node has wind turbine (WT) access. The installed capacity of the WT is 500kW. The 

constant power factor control method is adopted during operation and the power factor is 

set to 0.9 (lagging). One static var compensator (SVC) is installed at node 7 and two shunt 

capacitors (SC) are installed at node 21 and node 30 respectively. The improved IEEE 30 

system topology is shown in Figure 5. The photovoltaic output power of the DKASC power 

station on September 6, 2015 is selected as the PV output power. The WT output prediction 

data (Guimaraes et al., 2021) is selected as the WT output power. Figure 6 shows the 

variation curve of load and DG. The load of each period of nodes in the system is the load of 

each node multiplied by the load unit value of this period. Table 10 shows real-time 

electricity prices. 
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Figure 5.  Improved IEEE30 system topology diagram 
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Figure 6.  Load and DGs output active power per unit value in each period 

Table 10.  Real-time electricity price list 

 Unit price ($/kWh) Time period 

 0.0547 23:00-7:00 

Electricity 0.1285 7:00-10:00, 15:00-16:00, 17:00-18:00, 21:00-23:00 

0.2000 10:00-11:00, 13:00-15:00, 18:00-21:00 

0.2252 11:00-13:00, 16:00-17:00 

4.3.  Algorithm performance analysis 

The time when PV output is the largest (13 o'clock) is selected for analysis to verify the 

superiority of the multi-objective sparrow search algorithm (MOSSA) in optimizing the 

proposed model. 

In IEEE 33 system, compare with non-dominated sorting moth flame optimization 

(NSMFO), non-dominated sorting genetic algorithm with elite strategy (NSGA-II), 
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multi-objective multi-verse optimization (MOMVO) and multi-objective sparrow search 

algorithm (MOSSA) under different scenarios. In IEEE 33 system, aiming to ensure the 

fairness of the comparisons, the population size of all algorithms is N=50, the number of 

iterations is Tmax=150, and the external profile size is Archive=50, and other parameters of 

each algorithm are shown in Table 2. 

4.3.1. Optimization of multi-dimensional objective functions by different algorithms 

Figure 7 shows the Pareto front surface obtained by NSMFO, NSGA-II, MOMVO, and 

MOSSA with different objective functions. Table 11 to Table 14 list the best compromise 

solutions selected by different algorithms through technique for order preference by 

similarity to ideal solution (TOPSIS) in the Pareto solution set of different objective functions. 
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(c) Economic cost and voltage deviation        (d) Consider three objective functions 

Figure 7.  The optimization results of multi-dimensional objective functions of algorithms  

In Figure 7, the Pareto front surface obtained by the MOSSA is closer to the origin than 

NSMFO, NSGA-II and MOMVO when considering two objective functions. The MOSSA has 

better convergence and solution set. The three-dimensional Pareto front surface obtained by 

MOSSA is a spatial surface, and the three goals of network loss, voltage deviation and 

economic cost have a strong coupling relationship. The solution set obtained by MOSSA 

contains more solutions than NSMFO, NSGA-II and MOMVO, and the performance of the 

MOSSA is better. 
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Table 11.  The compromise solution obtained by each algorithm with active power loss and voltage 

deviation as goals 

Method Open switches 
 {Qsvc}node 

(kVar) 
{Nsc}node SP 

Power loss 

(kW) 

Voltage 

deviation (p.u) 

NSMFO [4,11,21,30,27] {730}7 {2}21 {19}30 2.12E-01 35.36 1.43E-02 

NSGA-II [7,9,21,31,28] {180}7 {8}21 {19}30 6.84E-01 33.84 1.14E-02 

MOMVO [6,14,9,31,28] {490}7 {15}21 {20}30 5.60E-01 32.66 1.15E-02 

MOSSA [6,14,9,31,28] {640}7 {10}21 {20}30 3.36E-01 31.81 1.17E-02 

Table 12.  The compromise solution obtained by each algorithm with active power loss and economic 

cost as goals 

Method Open switches 
  {Qsvc}node 

(kVar) 
{Nsc}node SP 

Power loss 

(kW) 

Economic 

cost ($) 

NSMFO [5,13,9,15,27] {40}7 {1}21 {6}30 8.48 31.64 1.592E+03 

NSGA-II [5,34,9,14,28] {30}7 {0}21 {6}30 20.50 31.36 1.464E+03 

MOMVO [5,34,8,14,28] {0}7 {0}21 {7}30 18.79 30.83 1.513E+03 

MOSSA [7,12,9,31,3] {0}7 {0}21 {6}30 6.91 28.43 1.454E+03 

Table 13.  The compromise solution obtained by each algorithm with voltage deviation and economic 

cost as goals 

Method Open switches 
  {Qsvc}node 

(kVar) 
{Nsc}node SP 

Voltage 

deviation (p.u) 

Economic 

cost ($) 

NSMFO [4,34,35,31,28] {320}7 {7}21 {10}30 35.22 1.44E-02 2.526E+03 

NSGA-II [4,34,10,29,28] {280}7 {6}21 {20}30 24.83 1.73E-02 1.992E+03 

MOMVO [4,12,35,32,28] {50}7 {4}21 {18}30 82.14 1.44E-02 2.564E+03 

MOSSA [4,9,35,31,28] {440}7 {1}21 {10}30 13.72 1.41E-02 2.433E+03 

Table 14.  The compromise solution of each algorithm with active power loss, voltage deviation and 

economic cost as goals 

Method Open switches 
{Qsvc}node 

(kVar) 
{Nsc}node SP 

Power 

loss 

(kW) 

Voltage 

deviation (p.u) 

Economic 

cost ($) 

NSMFO [4,9,35,31,28] {210}7 {7}21 {13}30 22.87 41.83 1.45E-02 2.601E+03 

NSGA-II [7,14,9,31,28] {0}7 {0}21 {1}30 36.53 29.56 2.30E-02 1.953E+03 

MOMVO [7,14,21,32,28] {20}7 {0}21 {20}30 57.45 26.60 2.25E-02 2.225E+03 

MOSSA [7,11,21,32,28] {200}7 {4}21 {12}30 9.29 29.63 2.04E-02 2.268E+03 

Table 11 shows the compromise solution obtained by NSMFO, NSGA-II, MOMVO and 

MOSSA with voltage deviation and power loss as the target, and the font of the optimal 

value of each index is bold. The compromise solution obtained by MOSSA has the smallest 

power loss. Although the voltage deviation of the compromise solution obtained by MOSSA 

is not as good as that obtained by NSGA-II, they are all on the same order of magnitude. The 
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SP obtained by MOSSA is second to NSMFO, but in conjunction with Figure 7(a), the Pareto 

solution set of MOSSA is the closest to the origin and the algorithm has the best 

convergence. 

Table 12 shows the compromise solution obtained by NSMFO, NSGA-II, MOMVO and 

MOSSA with power loss and economic cost as the target. The bold font is the optimal value 

of each index. Compared with NSMFO, NSGA-II and MOMVO, the MOSSA has the lowest 

power loss, economic cost and SP value. The compromise solution of MOSSA has the 

optimal value of each goal, and the Pareto solution set of MOSSA has the most uniform 

distribution. Combined with Figure 7(b), the Pareto front obtained by MOSSA is closest to 

the origin, it has the best convergence, and each index is the best. 

Table 13 shows the compromise solution obtained by NSMFO, NSGA-II, MOMVO and 

MOSSA for minimizing voltage deviation and economic cost, and the font of the optimal 

value of each index is bolded. The compromise solution obtained by MOSSA has the smallest 

voltage deviation and its only inferior to the compromise solution obtained by NSGA-II in the 

cost index. Compared with the NSMFO, NSGA-II and MOMVO, the SP obtained by MOSSA 

has the smallest value. The solution set distribution of MOSSA is the most uniform.  

Table 14 shows the compromise solution obtained by NSMFO, NSGA-II, MOMVO and 

MOSSA with active power loss, voltage deviation and economic cost as the target. The bold 

font is the optimal value of each indicator. Compared with NSMFO, NSGA-II, and MOMVO, 

the MOSSA has the smallest value of SP. The solution set distribution of MOSSA is the most 

uniform. The compromise solution obtained by NSMFO has the optimal value in the voltage 

deviation, but the power loss and economic cost are higher than MOSSA. The compromise 

solution of NSGA-II obtains the smallest economic cost, but the voltage deviation is higher 

than the compromise solution of MOSSA. The compromise solution obtained by MOMVO 

has the lowest active power loss. The compromise solution obtained by MOSSA is more 

balanced in the target of active power loss, economic cost and voltage deviation. Using the 

MOSSA to optimize the model proposed in this study for dynamic reconfiguration and 

reactive power collaborative optimization of ADN can consider various goals and obtain a 

comprehensive optimal solution. 

In addition, this study compares the optimization results of the proposed MOSSA for 

ADN with those of the latest methods applied to ADN optimization. For example, Ji et al. 

(2021) proposes the improved second-order cone program (ISOCP), Nguyen et al. (2019) 

proposes the improved cuckoo search algorithm (ICSA), Jafari et al. (2020) proposes the 

exchange market algorithm and wild goats algorithm ((EMA-WGA), and Tolabi et al. (2020) 

proposes the thief and police algorithm (TPA). 

In the initial state of the system, the power loss is 196.60kW, the node voltage 

deviation is 0.0995 p.u, and the voltage minimum is 0.91 p.u. The ISOCP reduces the power 

loss to 91.22kW and the voltage deviation to 0.0499 p.u. The ICSA reduces the power loss to 

139.55kW and the voltage minimum is 0.9378 p.u. The EWA-WGA reduces the power loss to 

142.42kW. The TPA reduces the power loss to 22.14kW and the operating cost to 38,590$. 

The proposed MOSSA reduces the power loss to 29.63kW, the voltage deviation to 0.0204 

p.u, and the economic cost to 2268$. The optimization results show that the performance of 
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the proposed method is better than the methods proposed in the latest literature, further 

verifying the effectiveness of the proposed method. 

4.4.  Model performance analysis 

This study evaluates the IEEE 33 test system in terms of energy saving, power quality, 

and economic benefits. Three performance parameters, including total power loss, total 

node voltage deviation and total economic cost, are used to evaluate the IEEE 33 test system 

using the optimized technique. Total power loss measures the system energy benefit rate 

from the perspective of energy saving, and its lower value indicates the better energy 

efficiency of the system. Total node voltage deviation measures the system from the 

perspective of power quality, and the lower its value indicates the smoother the system 

voltage fluctuation and the better the power quality. Total economic cost evaluates the 

system from the perspective of economic efficiency, and the lower its value indicates that 

the system is more economically efficient. 

Comparative experiments are carried out in four scenarios to verify the effectiveness of 

the proposed model in IEEE 33 system. The four scenarios are set up as follows. 

Case1:  Without considering DGs, network reconfiguration and reactive power optimization, 

ADN operates normally. 

Case2:  Considering PV and WT, ADN only performs dynamic reconfiguration. 

Case3:  Considering PV and WT, ADN only performs reactive power optimization. 

Case4:  Considering PV and WT, using the proposed model, ADN performs dynamic 

reconfiguration and reactive power coordination optimization. 

Table 15.  24-hour simulation results of three scenarios in the IEEE 33 system 

Tim

e 

Open Switches {QSVC(kVar)}node {Nsc}node 

Case2 Case3 Case4 Case2 Case3 Case4 Case2 Case3 Case4 

1 [7,14,35,3

2,28] 

[33,34,35,3

6,37] 

[7,14,9,32

,28] 

{0}7 {10}7 {60}7 {0}21 

{0}30 

{0}21 

{16}30 

{4}21 

{11}30 

2 [7,10,35,3

2,28] 

[33,34,35,3

6,37] 

[7,10,35,3

2,28] 

{0}7 {40}7 {40}7 {0}21 

{0}30 

{0}21 

{16}30 

{5}21 

{13}30 

3 [7,10,35,3

2,28] 

[33,34,35,3

6,37] 

[7,14,9,32

,28] 

{0}7 {0}7 {60}7 {0}21 

{0}30 

{0}21 

{16}30 

{2}21 

{10}30 

4 [7,14,35,3

2,28] 

[33,34,35,3

6,37] 

[7,11,35,3

2,28] 

{0}7 {20}7 {90}7 {0}21 

{0}30 

{0}21 

{15}30 

{4}21 

{8}30 

5 [7,14,35,3

2,28] 

[33,34,35,3

6,37] 

[7,11,35,3

2,28] 

{0}7 {20}7 {140}7 {0}21 

{0}30 

{0}21 

{17}30 

{7}21 

{13}30 

6 [7,14,35,3

2,28] 

[33,34,35,3

6,37] 

[7,11,35,3

2,28] 

{0}7 {0}7 {90}7 {0}21 

{0}30 

{0}21 

{18}30 

{5}21 

{10}30 

7 [7,14,35,3

2,28] 

[33,34,35,3

6,37] 

[7,10,35,3

2,28] 

{0}7 {20}7 {120}7 {0}21 

{0}30 

{0}21 

{17}30 

{9}21 

{13}30 

8 [7,14,35,3

2,28] 

[33,34,35,3

6,37] 

[7,14,9,32

,28] 

{0}7 {40}7 {30}7 {0}21 

{0}30 

{0}21 

{17}30 

{11}21 

{11}30 
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9 [7,14,35,3

2,28] 

[33,34,35,3

6,37] 

[7,14,35,3

2,28] 

{0}7 {230}7 {150}7 {0}21 

{0}30 

{0}21 

{19}30 

{7}21 

{11}30 

10 [7,11,21,3

2,28] 

[33,34,35,3

6,37] 

[4,14,9,32

,27] 

{0}7 {140}7 {210}7 {0}21 

{0}30 

{0}21 

{20}30 

{1}21 

{13}30 

11 [7,11,21,3

2,28] 

[33,34,35,3

6,37] 

[4,13,9,32

,27] 

{0}7 {130}7 {200}7 {0}21 

{0}30 

{0}21 

{20}30 

{1}21 

{16}30 

12 [7,11,35,3

2,28] 

[33,34,35,3

6,37] 

[4,12,9,32

,28] 

{0}7 {160}7 {230}7 {0}21 

{0}30 

{0}21 

{20}30 

{2}21 

{18}30 

13 [7,10,35,3

2,28] 

[33,34,35,3

6,37] 

[4,13,9,32

,27] 

{0}7 {200}7 {10}7 {0}21 

{0}30 

{0}21 

{20}30 

{0}21 

{18}30 

14 [7,14,35,3

2,28] 

[33,34,35,3

6,37] 

[6,14,9,31

,28] 

{0}7 {60}7 {530}7 {0}21 

{0}30 

{0}21 

{20}30 

{7}21 

{12}30 

15 [7,14,21,3

2,28] 

[33,34,35,3

6,37] 

[4,34,35,3

1,28] 

{0}7 {30}7 {310}7 {0}21 

{0}30 

{0}21 

{19}30 

{1}21 

{12}30 

16 [7,14,21,3

2,28] 

[33,34,35,3

6,37] 

[7,14,21,3

2,28] 

{0}7 {0}7 {10}7 {0}21 

{0}30 

{0}21 

{20}30 

{2}21 

{13}30 

17 [7,14,35,3

2,28] 

[33,34,35,3

6,37] 

[7,14,35,3

2,28] 

{0}7 {210}7 {250}7 {0}21 

{0}30 

{0}21 

{20}30 

{8}21 

{15}30 

18 [7,10,35,3

2,28] 

[33,34,35,3

6,37] 

[7,14,9,32

,28] 

{0}7 {10}7 {140}7 {0}21 

{0}30 

{0}21 

{18}30 

{7}21 

{14}30 

19 [7,14,9,32

,28] 

[33,34,35,3

6,37] 

[7,14,9,32

,28] 

{0}7 {0}7 {60}7 {0}21 

{0}30 

{0}21 

{20}30 

{10}21 

{17}30 

20 [7,14,9,32

,28] 

[33,34,35,3

6,37] 

[7,14,9,32

,28] 

{0}7 {10}7 {80}7 {0}21 

{0}30 

{0}21 

{20}30 

{10}21 

{13}30 

21 [7,14,9,32

,28] 

[33,34,35,3

6,37] 

[7,14,9,32

,28] 

{0}7 {20}7 {140}7 {0}21 

{0}30 

{0}21 

{20}30 

{8}21 

{14}30 

22 [7,14,9,32

,28] 

[33,34,35,3

6,37] 

[7,14,9,32

,28] 

{0}7 {30}7 {10}7 {0}21 

{0}30 

{0}21 

{18}30 

{9}21 

{13}30 

23 [7,14,9,32

,28] 

[33,34,35,3

6,37] 

[7,14,9,32

,28] 

{0}7 {0}7 {60}7 {0}21 

{0}30 

{0}21 

{18}30 

{14}21 

{14}30 

24 [7,10,35,3

2,28] 

[33,34,35,3

6,37] 

[7,14,9,32

,28] 

{0}7 {0}7 {60}7 {0}21 

{0}30 

{0}21 

{17}30 

{5}21 

{9}30 

Table 16.  The 24-hour total loss, total voltage deviation and total economic cost in four scenarios in the 

IEEE 33 system 

Case Total power loss (kW) Total voltage deviation (p.u) Total economic cost ($) 

Case1 3.2685E+03 1.9776 4.4620E+04 

Case2 1.0802E+03 0.8196 2.4837E+04 

Case3 1.2210E+03 0.8820 4.5591E+04 

Case4 7.9216E+02 0.5920 5.0910E+04 

Case1 is the basic case and has not been optimized. Table 15 shows the 24-hour 

optimization results for Case2 to Case4. Table 16 shows the 24-hour goal values under four 



 

30 

 

scenarios in IEEE 33 system. The bold font is the optimal value of each goal. In the Case2, 

compared with the initial state Case1, the total network loss, total voltage deviation and 

total economic cost are reduced by 66.95%, 58.56% and 44.34%. In the Case3, compared 

with the initial state Case1, the network loss is reduced by 62.64% and the voltage deviation 

is reduced by 58.56%. Case3 uses reactive power compensation device for compensation, 

considering the cost of the device, so the total economic cost increases by 2.18%. In the 

Case4, the total network loss and total voltage deviation are reduced by 75.76% and 70.06% 

compared with the initial state Case1. Case4 performs reactive power compensation and 

dynamic reconfiguration, considering the cost of devices and the switching cost of the 

contact switch, so the total economic cost increases by 14.10%, and the other two goals are 

significantly reduced. In the Case4, the lowest values are achieved on the total power loss 

and total voltage deviation. Compared with Case2, the total power loss and total voltage 

deviation in Case4 are reduced by 22.67% and 27.77%.  

The total power loss and total voltage deviation in Case4 are reduced by 35.12% and 

32.88% compared with Case3. Case4 also considers the switching cost of dynamic 

reconfiguration, so the total economic cost is higher than Case3, but the other two 

indicators are significantly better than Case3. Case3 only performs reactive power 

optimization. Although the total economic cost is saved, the values of other indicators are 

higher than Case4 and the power quality is lower than Case4. Considering PV and WT, 

real-time electricity prices and time-varying load conditions, the proposed model is used for 

dynamic reconfiguration and reactive power coordination optimization of ADN, which 

significantly reduces the active power loss, voltage deviation and energy loss and effectively 

improves power quality. 

 

(a)  Voltage distribution of case 1               (b)  Voltage distribution of case 2 
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(c)  Voltage distribution of case 3                (d)  Voltage distribution of case 4 

Figure 8.  Three-dimensional diagram of the 24-hour node voltage distribution under four cases 

Figure 8 shows a 3-dimensional graph of the 24-hour node voltage distribution under 

four scenarios. Case1 does not perform network reconfiguration and reactive power 

optimization. The minimum value of the node voltage within 24-hour fluctuates around 0.93 

and the node voltage fluctuates greatly. Most of the node voltages are concentrated around 

0.94. The node voltage is too low and the power quality is poor. Case2 only performs 

dynamic reconfiguration. The minimum value of the node voltage within 24-hour is around 

0.95, and a large number of node voltage values are concentrated around 0.97. 

Case3 only performs reactive power optimization. The lowest voltage mainly fluctuates 

around 0.96 and most of the voltage is concentrated around 0.98. Compared with Case1, the 

voltage fluctuations of the Case2 and Case3 are weakened and the power quality is 

improved. DG access, network reconfiguration and reactive power optimization can reduce 

voltage fluctuation, but there is still much room for improvement. Case4 uses the proposed 

model to carry out ADN integrated optimization. The minimum node voltage fluctuates 

around 0.97 and the number is small. Most of the voltage values are concentrated around 

0.99. The node voltage fluctuations are significantly smaller than those in Case1, Case2 and 

Case3, effectively smoothing the network voltage fluctuations and the power quality is 

significantly improved. 
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Figure 9.  24-hour active power loss under four scenarios 

Figure 9 shows the 24-hour power loss in four scenarios. Case2 and Case3 have a 
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decrease in network loss every hour compared with the initial state Case1. Dynamic 

reconfiguration, reactive power optimization and DG access can all reduce network losses, 

but there is still much room for improvement. Case4 has the least power loss every hour. 

The proposed model can effectively optimize the operation of ADN, reduce power loss and 

energy waste compared with Case1, Case2 and Case3. 

5.  Concluding Remarks 

This study uses a new MOSSA-based optimization method to solve the ADN integrated 

optimization problem considering distributed power sources, real-time tariffs and 

time-varying loads. The ADN optimization problem is a multi-dimensional and 

multi-constrained nonlinear optimization problem. Hence, this study proposes MOSSA to 

solve ADN integrated optimization problem considering photovoltaic, wind power and 

dynamic load, and the effectiveness is verified. In addition, the ADN integrated optimization 

mathematical model is constructed based on the goals of minimizing power loss, economic 

cost and node voltage deviation, and multiple scenarios are established in classical test 

system to verify the validity of the proposed method. The following are the findings of this 

study. 

⚫ The MOSSA is tested by ZDT series test functions, and its convergence, solution set 

distribution and comprehensive performance are proved to outperform NSMFO, NSGA-II, 

MOPSO and MOGWO. 

⚫ The ADN integrated optimization model considering photovoltaic, wind power, dynamic 

load and real-time tariff is constructed, and the MOSSA-based approach formulates an 

excellent optimization scheme with the highest power quality and the best energy and 

economic benefits. 

⚫ The lowest total power loss and total node voltage obtained by the proposed MOSSA in 

the IEEE 33 test system are 792.16KW and 0.592 p.u, with most of the voltage values 

concentrated on 0.99 p.u. Compared to the initial state, the total power loss and total 

node voltage deviation obtained by MOSSA are reduced by 75.76% and 70.06%. 

This study is significance to the realization of sustainable energy. The proposed MOSSA 

has better optimization performance and can be regarded as an effective means to solve the 

ADN dynamic reconfiguration integrated optimization problem. The proposed dynamic 

reconfiguration integrated optimization model of ADN provides an effective solution to 

reduce energy loss and improve power quality of ADN. However, this study has limitations 

because the randomness of photovoltaic power generation and wind power generation is 

not considered. More factors should be considered in future studies to make the research 

results more suitable for actual projects. In addition, more forms of renewable energy can 

be added to the system for increasing the penetration rate of renewable energy, and 

achieving the goals of carbon peak and carbon neutral. 
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