
The material cannot be used for any other purpose without further permission of the publisher and is for private use only.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

https://eprints.gla.ac.uk/261035/

Deposited on 15 December 2021

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk
Prognostic value and therapeutic utility of lung ultrasound (LUS) in acute and chronic heart failure: a meta-analysis

Short Title: LUS in heart failure: a meta-analysis

Tripti Rastogi M.D.a, Erwan Bozec Ph.Da, Pierpaolo Pellicori M.D.b, Antoni Bayes Genis M.D., Ph.Dc, Stefano Coiro M.D., Ph.Dd, Mar Domingo M.D., Ph.Dc, Luna Gargani M.D., Ph.Dc, Alberto Palazzuoli M.D., Ph.D, f, Nicolas Girerd M.D., Ph.Da

a Université de Lorraine, Centre d'Investigations Cliniques Plurithématique 1433, Institut Lorrain du Cœur et des Vaisseaux Louis Mathieu, CHRU de Nancy, INSERM DCAC, F-CRIN INI-CRCT, Nancy, France

b Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, Glasgow, UK

c Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain

d Cardiology Department, Santa Maria della Misericordia University Hospital, Perugia, Italy.

e Institute of Clinical Physiology, National Research Council, Pisa, Italy

f Cardiovascular Diseases Unit Department of Internal Medicine, University of Siena, Siena, Italy

Corresponding author:

Nicolas Girerd

Centre d'Investigation Clinique Pierre Drouin -INSERM - CHRU de Nancy, Institut lorrain du cœur et des vaisseaux Louis Mathieu, Nancy, France.

4, rue du Morvan. 54500 Vandœuvre-Lès-Nancy
Acknowledgements:

Dr Girerd is supported by the French National Research Agency Fighting Heart Failure (ANR-15-RHU-0004), by the French PIA project Lorraine Université d’Excellence GEENAGE (ANR-15-IDEX-04-LUE) programs, and the Contrat de Plan Etat Région Lorraine and FEDER IT2MP and reports honoraria from AstraZeneka, Bayer, Boehringer, Lilly, Novartis, and Vifor. Dr Gargani is supported by Italian Ministry of Health and Regione Toscana and reports personal fees from GE Healthcare, Phillips Healthcare and Caption Health. Dr Bayes-Genis reports grant and non-financial support from Boehringer-Ingelheim and personal fees from Abbott, AstraZeneca, Boehringer-Ingelheim, Novartis, Vifor, Roche Diagnostics, Critical diagnostics. Tripti Rastogi, Erwan Bozec, Pierpaolo Pellicori, Mar Domingo, Alberto Palazzuoli declared no conflict of interest.

Abbreviations:

CV, cardiovascular
HF, heart failure
LUS, lung ultrasound
LVEF, left ventricular ejection fraction
RR, risk ratio
Congestion drives the risk of hospitalization in heart failure (HF). Accurate and early identification and quantification of congestion could improve management, thereby leading to lower risk of poor outcomes (1). Lung ultrasound (LUS) is a quick and reliable imaging technique, based on the counts of B-lines, to assess clinical and subclinical pulmonary congestion. In this meta-analysis, we studied the prognostic value of B-lines and the treatment effect of LUS-guided therapy on cardiovascular (CV) outcomes in HF.

We conducted a systematic search of the published data in PUBMED/Medline using the keywords “lung ultrasound” AND “heart failure” AND “prognosis” for the period from 2010 to May 2021. Twelve studies assessing the prognostic value (2,293 patients) and three trials (493 patients) evaluating LUS-guided management in HF were finally included (mean LVEF range: 30 to 60%) (Figure 1(A)). Thereafter, studies on prognosis were grouped according to the clinical setting: 1) out-patient clinic, 2) at admission, and 3) at discharge for HF hospitalizations (Figure 1(B)). Clinical trials assessing LUS-guided therapy were analysed separately (Figure 1(C)).

We conducted a fixed-effect meta-analysis. Based on recommendations of available published literature, the following cut-offs for pooling the risk estimates were used: ≥15 in 28 zones (~0.5 B-line/zone); ≥ 3 in 5-8 zones (~0.4 B-line/zone); ≥ 4 in 4 zones (1 B-line/zone) LUS (1,2). Additionally, the RR for studies reporting 8 or more zone LUS was calculated to assess the effect size when maximizing the congruence of the thresholds of B-lines per zone in the discharge group. Authors were contacted for RR associated with pre-selected cut-offs if needed. In the clinical trials, B-lines ≥3 using 8 zone method was considered as significant for congestion in two studies (Figure 1(C)).

For most of the studies, the primary outcome was a composite of hospitalization for HF and all-cause mortality; two studies also reported urgent visits for worsening of HF. LUS-
guided treatment effect was evaluated by pooling the adjusted RR of primary outcome and hospitalization for HF from clinical trials. All analyses were conducted in R (v4.0.3).

A higher number of B-lines was associated with an increased risk of primary outcome irrespective of the setting (out-patient clinic: RR=1.66, 95%CI: 1.28-2.15, p=0.0001, I^2=57.5%; at admission: RR=2.32, 95%CI: 1.46-3.70, p=0.0004, I^2=50.92%; at discharge: RR=2.46, 95%CI: 1.56-3.86, p=0.0001, I^2=0.00%) (Figure 1(B)). In sensitivity analysis, we included all the tertiles from Platz et al., study in discharge group and the results did not change (RR=2.60, 95%CI: 1.77-3.83, p<0.001, I^2 =0.00%). When 8 or more zones were used to assess B-lines at discharge, the increase in the risk of hospitalization for HF or death was similar (RR=2.47, 95%CI: 1.55-3.93, p=0.0001, I^2=3.50%).

In clinical trials, the pooled RR for the primary outcome (urgent visits for worsening of HF, hospitalization for HF and mortality) and for hospitalization for HF was 0.50 (95%CI: 0.35-0.72, p=0.001, I^2=0.00%) and 0.62 (95%CI: 0.40-0.87, p=0.007, I^2=41.01%), respectively (Figure 1(C)). The lower risk of primary composite outcome was reported to be largely driven by a reduction in urgent visits for worsening HF in the studies that included urgent visits in primary outcome.

This analysis provides inclusive results of available literature regarding LUS, combining results from different LUS techniques (4 to 28 zones), study design (cohorts and trials) and settings (out-patient and hospitalized patients). We expand the results of the previous meta-analysis by Platz et al., and Wang et al., by the inclusion of 8 zones LUS and the assessment of the prognostic value of LUS conducted at the time of admission (2,3). Wang et al., reported higher RR compared to our results possibly because of the absence of adjustment for clinically relevant variables (age, sex, NYHA class/LVEF, renal function, NT-pro-BNP and others). The fact that the number of B-lines persisted as a significant prognostic factor even after adjustment further emphasizes the clinical utility of LUS.
In clinical trials, LUS-guided therapy was consistently associated with lower risk of CV events perhaps due to a better optimization of HF therapy in LUS-guided group. However, a recent pilot study BLUSHED-HF did not identify a benefit from LUS-guided therapy versus standard care in acute HF (4). How to best use LUS-guided therapy in HF still needs to be defined.

Our study has two main limitations. First, the number of studies in each setting is limited. Second, significant heterogeneity exists across studies, possibly due to the grouping of different B-lines thresholds from different LUS protocols (different transducer orientation, scoring/counting methods), statistical adjustment and differences in post-discharge care. This heterogeneity reinforces the need for a standardized approach to assess B-lines according to a cut-off specific to each setting.

In conclusion, findings from this meta-analysis support the use of LUS for evaluating the risk of adverse outcome in patients with HF regardless of the clinical setting, and provide evidence in favour of a beneficial effect of LUS-guided management in out-patients.
References:

Figure Legend

Figure 1: Prognostic value of B-lines and therapeutic utility of LUS-guided therapy in patients with HF.
(A) Literature search results with exclusion criteria (B) Baseline characteristics and pooled risk estimates of the prognostic value of B-lines according to clinical setting of LUS. (C) Baseline characteristics and pooled risk estimates of the primary outcome in patients treated with LUS-guided therapy in clinical trials.
Figure 3: Systematic review and meta-analysis of Prognostic value and Therapeutic utility of LUS in Heart Failure

A

<table>
<thead>
<tr>
<th>Studies identified through database searching (N=196)</th>
<th>Studies after duplicates removed (N=175)</th>
<th>Studies assessed in aggregate (N=24)</th>
<th>Studies included in review (N=19)</th>
<th>Prognostic value of LUS (N=19)</th>
<th>Therapeutic utility of LUS (N=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: In our systematic review, we excluded articles in languages other than English.</td>
<td>Note: In our systematic review, we excluded articles in languages other than English.</td>
<td>Note: In our systematic review, we excluded articles in languages other than English.</td>
<td>Note: In our systematic review, we excluded articles in languages other than English.</td>
<td>Note: In our systematic review, we excluded articles in languages other than English.</td>
<td>Note: In our systematic review, we excluded articles in languages other than English.</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Author-year</th>
<th>Total (n)</th>
<th>Long-term events</th>
<th>Event details</th>
<th>Adjusted HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curtis 2019</td>
<td>50</td>
<td>50</td>
<td>Death</td>
<td>1.2 (0.4-3.9)</td>
</tr>
<tr>
<td>Dewar 2019</td>
<td>35</td>
<td>35</td>
<td>Death</td>
<td>1.0 (0.4-2.5)</td>
</tr>
<tr>
<td>Pellinton 2019</td>
<td>100</td>
<td>100</td>
<td>Death</td>
<td>1.2 (0.6-2.2)</td>
</tr>
<tr>
<td>Plas 2016</td>
<td>150</td>
<td>150</td>
<td>Death</td>
<td>1.2 (0.6-2.2)</td>
</tr>
<tr>
<td>Overall</td>
<td>577</td>
<td>577</td>
<td>Death</td>
<td>1.2 (0.6-2.2)</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Author</th>
<th>Criteria for inclusion (n)</th>
<th>Total (n)</th>
<th>Event details</th>
<th>Adjusted HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curtis 2019</td>
<td>50</td>
<td>50</td>
<td>Death</td>
<td>1.2 (0.4-3.9)</td>
</tr>
<tr>
<td>Dewar 2019</td>
<td>35</td>
<td>35</td>
<td>Death</td>
<td>1.0 (0.4-2.5)</td>
</tr>
<tr>
<td>Pellinton 2019</td>
<td>100</td>
<td>100</td>
<td>Death</td>
<td>1.2 (0.6-2.2)</td>
</tr>
<tr>
<td>Plas 2016</td>
<td>150</td>
<td>150</td>
<td>Death</td>
<td>1.2 (0.6-2.2)</td>
</tr>
<tr>
<td>Overall</td>
<td>577</td>
<td>577</td>
<td>Death</td>
<td>1.2 (0.6-2.2)</td>
</tr>
</tbody>
</table>

Clinical trials

<table>
<thead>
<tr>
<th>Author</th>
<th>Criteria for inclusion (n)</th>
<th>Total (n)</th>
<th>Event details</th>
<th>Adjusted HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curtis 2019</td>
<td>50</td>
<td>50</td>
<td>Death</td>
<td>1.2 (0.4-3.9)</td>
</tr>
<tr>
<td>Dewar 2019</td>
<td>35</td>
<td>35</td>
<td>Death</td>
<td>1.0 (0.4-2.5)</td>
</tr>
<tr>
<td>Pellinton 2019</td>
<td>100</td>
<td>100</td>
<td>Death</td>
<td>1.2 (0.6-2.2)</td>
</tr>
<tr>
<td>Plas 2016</td>
<td>150</td>
<td>150</td>
<td>Death</td>
<td>1.2 (0.6-2.2)</td>
</tr>
<tr>
<td>Overall</td>
<td>577</td>
<td>577</td>
<td>Death</td>
<td>1.2 (0.6-2.2)</td>
</tr>
</tbody>
</table>

(A) Study flowchart

- **Description of studies included in the review:** A total of 196 studies were identified through database searching. After removing duplicates, 175 studies were assessed in aggregate. Finally, 19 studies were included in the review. The inclusion and exclusion criteria are described in Table B.

- **Prognostic value of LUS:** The adjusted hazard ratios for death were presented for each study. (N=19) | Prognostic value of LUS (N=19) | Therapeutic utility of LUS (N=19) |

- **Therapeutic utility of LUS:** The adjusted hazard ratios for death were presented for each study. (N=19) | Prognostic value of LUS (N=19) | Therapeutic utility of LUS (N=19) |

(B) Criteria for inclusion

- **LUS score:** Based on a combination of LUS features and clinical characteristics, LUS was categorized into three groups: LUS score ≤ 3, LUS score 4-6, and LUS score ≥ 7.

- **Event details:** The event details were categorized into death, rehospitalization, and combined death/rehospitalization.

(C) Clinical trials

- **Participants:** The number of participants included in each trial is presented. (N=19) | Prognostic value of LUS (N=19) | Therapeutic utility of LUS (N=19) |

- **Event details:** The event details were categorized into death, rehospitalization, and combined death/rehospitalization. (N=19) | Prognostic value of LUS (N=19) | Therapeutic utility of LUS (N=19) |

(D) SI units

- **Long-term events:** Death

(E) SI units

- **SI units:** Death

(F) SI units

- **SI units:** Death

(G) SI units

- **SI units:** Death

(H) SI units

- **SI units:** Death

(I) SI units

- **SI units:** Death

(J) SI units

- **SI units:** Death

(K) SI units

- **SI units:** Death

(L) SI units

- **SI units:** Death

(M) SI units

- **SI units:** Death

(N) SI units

- **SI units:** Death

(O) SI units

- **SI units:** Death

(P) SI units

- **SI units:** Death

(Q) SI units

- **SI units:** Death

(R) SI units

- **SI units:** Death

(S) SI units

- **SI units:** Death

(T) SI units

- **SI units:** Death

(U) SI units

- **SI units:** Death

(V) SI units

- **SI units:** Death

(W) SI units

- **SI units:** Death

(X) SI units

- **SI units:** Death

(Y) SI units

- **SI units:** Death

(Z) SI units

- **SI units:** Death

Note: SI units are used throughout the document to ensure consistency and accuracy. (N=19) | Prognostic value of LUS (N=19) | Therapeutic utility of LUS (N=19) |