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Using enhanced crow search algorithm optimization-extreme learning machine model to
forecast short-term wind power

Abstract

Wind power has strong volatility and randomness that impacts the grid and reduce the voltage
quality of the grid when it is connected to the grid in large scale. The power sector takes the
wind abandonment measures to ensure the grid voltage stability to reduce the clean energy
utilization rate. The enhanced crow search algorithm optimization-extreme learning machine
(ENCSA-ELM) model is proposed to accurately forecast short-term wind power to improve the
efficiency of clean energy utilization. (1) The enhanced crow search algorithm (ENCSA) is
proposed and applies to short-term wind power forecast. The convergence performance test
revealed that the local development and global exploration capabilities of the ENCSA were
enhanced, and the test result of the proposed ENCSA algorithm outperformed other well-
known nature inspired algorithms and state-of-the-art CSA variants; (2) The output and input
of the forecasting models are determined by analysis of the influence wind power factors and
the wind power samples in autumn, winter and spring were forecasted by the ENCSA-ELM
model; and (3) The forecast results are analyzed by evaluation indexes. The simulation
experiments revealed that the error interval and evaluation indexes of the ENCSA-ELM model
outperformed the state-of-the-art wind power forecast models, traditional machine learning
models and ELM optimized by other algorithms. The proposed model on RMSE value and
MAPE value are controlled below 20% and 4%. Accurate wind power prediction has an impact
on maintaining the voltage stability of power grid and increases the efficiency of clean energy
utilization.

Keywords: extreme learning machine; forecasting; short-term wind power; clean energy;
enhanced crow search algorithm optimization

1. Introduction

The demand for energy has increased due to the rapid growth of the world economy. The
increase of fossil energy production and large consumption leads to a series of problems (Liu
et al., 2020). The massive consumption of fossil energy progresses to destroy the environment,
and large-scale mining accelerates the depletion of fossil energy (Dong and Shi, 2019). Clean
energy is a kind of renewable energy without the possibility of exhaustion, which has an
important impact on enhancing sustainable development level and improving environmental
quality (Kamat, 2007). The utilization of clean energy brings inestimable ecological and
economic benefits (Jacobson et al., 2011). As a kind of clean energy, wind energy has huge
reserves and high commercial development value and has developed rapidly in recent years
(Papadopoulos, 2020; Guermoi et al., 2018). According to the statistics of the Global Wind
Energy Council (GWEC), by the end of 2014, the installed capacity of wind power in the world
has reached 360GW, while the installed capacity of China is 115GW. It is estimated that by
2030 and 2050, the installed capacity exceeds 400 GW and 1000 GW to meet 8.4% and 17%
of China's power demand (Wang et al., 2020).

Wind energy has strong volatility and randomness (Xia et al., 2020). Large scale wind
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power integration impacts the power network operation, and result in the decline of power
quality. This characteristic leads to the phenomenon of wind abandonment and reduce the
utilization rate of clean energy. Accurate wind power forecasting technology provides decision
support for grid connected dispatching, reduce wind abandonment measures and maintain
the power quality, so it is significance to predict wind power (Vargas et al., 2019). According to
different prediction intervals, wind power forecasting methods usually include medium-long-
term forecast, short-term forecast and ultra-short-term forecast (Salcedo-Sanz., 2011; Foley et
al., 2012). The medium- and long-term wind power forecast period is several weeks or months,
which is used to formulate grid maintenance plans. The Ultra-short-term forecasting is aimed
at predicting wind power within the next 4 hours and is used for solving frequency modulation
problems and power grid dispatching (Ma et al., 2020; Dupre et al., 2020). The short-term
forecast is for wind power within 48 hours, which is used to make the generation plan of the
generator set and solve the peak shaving problem (Liu et al., 2018; Chen and Liu, 2020).

Wind power prediction methods are basically divided into three types along with
different prediction models (Barbounis et al., 2006; Jung and Broadwater, 2014). The first is
wind power forecast methods based on intelligent optimization algorithms and machine
learning models. The second is wind power forecast method based on statistical regression
models. The third is the combination methods. Statistical regression models such as
autoregressive moving average model (ARMA), autoregressive model (AR) and moving average
model (MA) analyze the changing law of the decomposed components by decomposing
various changing components in the time series (Zhang et al., 2019; Eissa et al., 2018). Song et
al.,, 2018 argued that most statistical regression models cannot deal with the irregular and
nonlinear characteristics of wind power series due to the linear form of prior assumptions.
This method is aimed at short-term wind power forecasting. With the rapid development of
artificial intelligence technology, different machine learning models have been proposed to
achieve high-precision forecast of wind power series with nonlinear and fluctuating
characteristics (CAl et al., 2020). Common machine learning models include support vector
machine (SVM) model, neural network model and relevance vector machine. (Ding et al., 2019;
Diyaley et al., 2019). The key of machine learning model is to select the optimal random
parameters (Chen et al., 2014).

In addition, Suresh et al. (2010) argued that the random parameters of ELM had great
influence on the prediction performance of ELM model. An improved GA algorithm is
proposed to optimize the random parameters of ELM to improve the prediction performance
of ELM. The extreme learning machine (ELM) model is used to forecast short-term wind power.
The random weights and random threshold parameters influence the wind power prediction
results; hence, the random parameters problem solves by using a novel crow search algorithm
(CSA). still, the CSA algorithm itself has the problem of easily falling into a local solution.
Wolpert and Macready, (1997) claimed that none algorithm can solve all optimization
problems according to the theory of no free lunch and means that when the same optimization
algorithm solves different problems and convergence performance is different. Developing
new optimization algorithms is still necessary when dealing with different problems. The
enhanced crow search algorithm (ENCSA) was proposed to obtain the optimal parameters of
ELM model and improve the prediction accuracy of wind power. In the ENCSA algorithm,
periodic migration strategy, adaptive flight step adjustment strategy and acceleration
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coefficient were introduced. Through the above improvement measures, the ENCSA algorithm
search capability was enhanced to search the random parameters. The proposed algorithm
shows stronger convergence performance and obtains more satisfactory convergence results
compared with well-known nature inspired algorithms and state-of-the-art CSA variants. The
enhanced crow search algorithm optimization-extreme learning machine (ENCSA-ELM) model
is proposed for short-term wind power forecasting. ENCSA-ELM has higher prediction accuracy,
stronger generalization ability and considers the influence of seasonal factors on wind power
compared with the traditional machine learning models and ELM optimized by different
optimization algorithms. The objectives of this study are as follows.

® To improve the search performance of CSA algorithm;

® To solve the influence of random parameters of ELM model on the forecasting results;

® To improve the forecasting accuracy of short-term wind power.

The contributions of this study are as follows. (1) presenting the ENCSA optimization
algorithm and applied it to short-term wind power forecasting; (2) searching the random
parameters of the ELM model by the ENCSA algorithm and the problem that ELM model
random parameters affected the prediction accuracy was addressed; (3) applying the ENCSA-
ELM model for short-term wind power forecast and the propose model was verified through
simulation experiments; and (4) Using accurate short-term wind power forecasting to reduce
the phenomenon of wind abandonment, to promote the clean energy development and to
assist the power department to formulate a reasonable dispatch plan.

The remaining sections include the following contents. Section 3 gives the basic theory of
the wind power forecast model and analyzes the ENCSA algorithm. Section 4 introduces the
experimental samples. Section 5 gives the assessment indicators and prediction results of
short-term wind power. Section 6 introduces the important conclusions and the future study
plan.

2. Literature review
This section includes the review on forecasting short-term wind power and proposed method
on enhanced crow search algorithm optimization-extreme learning machine.

2.1 Forecasting short-term wind power

Short-term wind power forecasting has received extensive attention due to the
importance to power systems (Shi et al., 2012). Prior studies have proposed many short-term
wind power prediction methods (Catalao et al., 2011). These methods are basically divided
into statistical regression models, machine learning methods and combination models (Li et
al., 2020). The statistical regression models consider the time factor and does not consider
other factors. The machine learning method uses machine-learning model and combines with
external factors affecting wind power to forecast wind power.

The forecasting methods based on statistical regression for short-term wind power
included various autoregressive models. The forecast error of linear autoregressive model is
large because of the large fluctuation of wind power. Karakus et al. (2017) used polynomial
autoregressive model to predict wind power. Polynomial autoregressive model belongs to
nonlinear regression model, which has a good fitting effect on wind power prediction.
Nonlinear regression model is more suitable for wind power prediction. Jiang et al. (2017)
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combined multi-step-ahead method with statistical regression model to forecast the short-
term wind power. According to the wind power curve and order determination method, Dong
et al. (2011) established autoregressive moving average (ARMA) model with different orders.
The forecast values were obtained by adopting the weighted average method to the ARMA
models with different orders. This method improves the prediction effect to a certain extent,
but the step calculation increases the running time and calculation amount. Duran et al. (2007)
proposed the autoregressive model that considered exogenous variables. The model
considered the time span and delay of the electricity market. Traditional linear and nonlinear
AR wind power models do not consider seasonal factors. Lin et al. (2015) took seasonal
variables into the wind power forecasting model. The wind power was forecasted by the
nonlinear AR model, and the unknown parameters were identified by the random forest
method. Both linear statistical model and nonlinear statistical model merely consider the time
series when forecasting wind power, and do not involve the external factors; therefore, whilst
the amount of data increases and the prediction error of the model becomes larger.

Since the time series model only considers the time factor. When the external factors
change greatly, the forecast result of the model is affected (Li et al., 2018). Many studies
preferred machine learning models and combinatorial models (Liu et al., 2018; Li et al., 2020).
The support vector machine (SVM) is applied to the field of short-term wind power forecast
due to its strong mapping ability (Habib et al., 2020). SVM also has the problem of random
parameters (Fu et al., 2019). To reduce the influence of super parameters, Li et al. (2020) and
Li et al. (2018) used the cuckoo search algorithm and dragonfly search algorithm to select the
random parameter. Yuan et al. (2015) compared the wind power forecast effects of the least
squares SVM model with different kernel functions. The parameters of the optimal kernel
function were determined by optimization algorithm. SVM model is suitable for small samples,
and is difficult to train large-scale data, so it is generally used for short-term and ultra-short-
term wind power prediction. Zhang et al. (2020) proposed a hybrid model and used variable
mode decision to decompose wind power data. The decomposed linear and nonlinear series
were forecasted by the ARMA model and radial basis function network. Yin et al. (2019)
proposed a multi-layer decomposition method. The original sequence was decomposed by the
empirical mode decomposition method. Variable mode decision method was used to further
decompose the first subsequence. The features between each factor and wind power were
extracted by the convolution neural network. Finally, the predicted subsequence was
superposed to get the final wind power. Although the combination of machine learning model
and sequence decomposition model has better prediction effect, sequence decomposition
and sequence reconstruction can increase the computational cost.

2.1 Enhanced crow search algorithm optimization-extreme learning machine

Filtering technology and neural network model are used to predict wind power. Zheng
and Wu (2019) used clustering method to classify wind power samples of similar weather. The
characteristic quantity which had little influence on wind power was eliminated. The short-
term wind power was forecasted based on the extreme gradient boosting. Clustering
algorithms are generally sensitive to noise signals. When the noise signal in wind power is large,
the clustering effect has greatly affected. Cassola and burlando (2012) applied Kalman filter to
wind power prediction. Kalman filter combined prediction values with observation values to
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reduce the prediction error. Kalman filter is applicable to linear, discrete and finite-dimensional
systems. Wind power has strong nonlinearity, so Kalman filter is usually not used to predict
wind power. Liu et al. (2019) used wave transformation method to deal with the non-stationary
problem of wind power. The nonlinear wind power was decomposed by wave transformation.
Each decomposed sequence was forecasted by the long short term memory network model.

This kind of forecasting method based on decomposition sequence reduces the non-
stationary of wind power to a certain extent, which makes the model complex and increases
the calculation cost at the same time. Zhang et al. (2020) processed the heterogeneous data
of wind power to improve the forecasting effect. The wind power was predicted by the back-
propagation neural network (BPNN) model. Genetic algorithm was used to select random
parameters of BPNN. Korprasertsak and leephakpreeda (2019) compared the forecast effects
of the artificial neural network model, grey model and ARMA model. These three models were
used to forecast wind power at different time stages. The three models were combined with
the change of wind power over time and the result showed the smallest root mean square
error.

This study is found that statistical regression model only considers time factor; SVM
model is limited by samples; filtering technology is rarely used for wind power prediction due
to its own limitations; although the combined model can improve the prediction results to a
certain extent, the calculation cost is also greatly increased. This study proposes ENCSA-ELM
model to predict wind power, and used ENCSA algorithm to solve the influence of random
parameters on ELM model. The effectiveness and superiority of ENCSA algorithm and ENCSA-
ELM model were verified by simulation experiments. Compared with the statistical regression
model, the ENCSA-ELM model not only considers the external factors affecting wind power,
but also considers the influence of seasonal factors on wind power. Compared with SVM model,
the proposed model is applied not only to short-term wind power forecasting, but also to long-
term wind power forecasting, with stronger generalization ability. Compared with the
combination model based on sequence decomposition, ENCSA-ELM model has more
advantages than the combination model based on sequence decomposition. Through the
simulation test of ENCSA-ELM model, the ENmape of ENCSA-ELM model was controlled within
4% and ENg? was more than 90% in different seasons.

3. Prediction model principles
3.1 Extreme learning machine theory

The feed-forward neural network uses gradient descent to train the network. The
gradient descent method has certain limitations. Many parameter values need to be set in the
training process. The weights of the network need to be adjusted during the iteration process,
which makes the calculation speed of the model slower. These problems limit the model
development. To solve these defects, the ELM model is presented. The learning speed of the
ELM model is fast since the ELM model has only one hidden layer (Huang et al., 2012; Tang et
al., 2016). The ELM model has been used in various fields, such as wind speed forecasting,
fault diagnosis and life prediction.

Figure 1 presents the topology of the ELM model. The ELM model includes three layers:
output layer, hidden layer and input layer. Based on the back propagation method, the feed-
forward neural network updates the weights during the iterative process. The ELM model has
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random initial weights that does not need to be updated during the iteration process (Huang
et al.,, 2011).

G e o

1 2 . Nir-1 Ni Hidden

1 2 s Ni-1 Ni Input

Figure 1. ELM model network structure
Assume that T={(c;, ei)|c/€ER", e/€R"} is the given training samples, F() is the activation
function. The ELM model is expressed as equation (2) (Choudhary and Shukla. 2021; Nizar et
al., 2008):
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where 8; represents the threshold of the hidden layer node; a; represents the weight that
connects the output and the hidden layer nodes; p; is the weight that connects the input and
the hidden layer nodes; ci represents the input sample of the model; e; is the output sample
of the model; Ns represents the number of samples.

The above equation is expressed as follows:

Ya=e (2)
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where e represents the sample label matrix; Y represents the hidden layer output matrix; o
represents the weight matrix; Ny is the number of nodes in the hidden layer.

The input weight and hidden layer threshold of the ELM model are randomly determined.
There is no need to adjust in the iterative process, only the output weight needs to be
calculated. The output weight matrix of the ELM model is as follows:

a=Y"Y)"'Y'e (6)

The ELM prediction model is obtained.
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The specific calculation process of ELM model is shown below:
(1) Determine the sample of the model.
(2) Randomly initialize hidden layer thresholds and input weights.
(3) Calculate the output matrix.
(4) Solve the output weight of hidden layer.

3.2 Crow search algorithm principle

In nature, crow is an intelligent bird. The ratio of crow's brain volume to body is the largest
among birds. The brain capacity is larger and the birds are smarter. This is more adaptable to
nature. In nature, crows make tools and use them to find food. The crow search algorithm (CSA)
imitates two behaviors of crow: hiding food and recalling the location of the food (askarzadeh,
2016; sayed et al., 2019). The CSA algorithm follows the following rules.

(1) Crows survive in groups.

(2) The crow hides its food and recall the location of the food.

(3) There is competition among crows. Crows steal food from each other.

(4) The crow avoids theft of food by leading competitors to other locations.

The CSA algorithm is developed based on the above rules. Suppose there are M crows in
the group. The position vector of the ji; crow in the group is Pos/*'(i=1,2,...,M;iter=1,2,...,Miter).
Where Miter is the maximum number of iterations. Pos/*’=[posj:",..., pos;qim™]. dim is the
dimension of the variable (Oliva et al., 2017). In the process of hiding food, each crow has an
optimal position.

In the CSA algorithm, crows obtain better food positions by searching or tracking other
crows. This behavior of crows is described by the perception probability (Awp,*") and is divided
into the following two situations (Gupta et al., 2018).

Case 1: Crow i did not find the tracking behavior of crow j. Then crow j finds the hiding
place of crow i. In the iterative process of CSA algorithm, the position of crow is represented
by mj*’. For case 1, the updated location of crow j is shown below:

Pos'*! = Pos'{” + Rx FL' x(m'}" — Pos'}") (8)
where R is a random value between 0 and 1; FL/*" represents the flying distance of crow during
the iteration. The flight distance determines the length of the crow’s flight to the food storage
location. When the flying distance is large, the crow has a strong global search ability; when
the flying distance is small, the crow has a strong local exploitation ability.

Case 2: when crow i finds the tracking behavior of crow j, crow i leads crow j to a random
position to avoid stealing his food.

According to the description of case 1 and case 2, the location update method of crow j

is shown in equation 9:
iter+1 __ iter iter iter iter iter
{Posj =Pos;”" + RxFL;" x(m;" —Pos;" )R> Awp; (9)
iter

Pos'‘""! = Pos,,,  R<Awp)
In the CSA algorithm, the search ability is changed by controlling Awp. When Awp is small,
crows search by themselves. So the crow has a strong local development capability. When Awp

is large, crows are led to random positions. The crow has a strong global search capability.



3.3 Enhanced crow search algorithm principles

The CSA algorithm itself has certain limitations to reflect in the following two aspects. (1)
The flight step size in the CSA algorithm is a fixed value and does not change with the number
of iterations, which limits the crow's global search and local exploitation capabilities. (2) The
crow population diversity is adjusted by Awp in the CSA algorithm. Awp is a certain value to
limit the coordination ability of the algorithm during the iterative process.

In view of the CSA algorithm limitations, this study proposes the ENCSA based on flight
migration strategy and adaptive flight step adjustment strategy. Through the regular flight
migration strategy, the crow population is prevented from the problem of population
simplification in the later iteration. The ENCSA algorithm enhances the ability of crow's global
exploration and local development through adaptive flight step adjustment strategy. So the
convergence speed of the algorithm is accelerated.

A. Regular flight migration strategy

The diversity of crow population is maintained by setting migration frequency (MF). At
the beginning of iteration, judge whether crows need to migrate. If crows need to migrate and
flies to other places to search. If crows don’t need to migrate and searches by themselves or
follow other crows. The location updating equation of the crow after migration is as follows:

Pos’"! = Pos'[" + Rx Lx(m,,,, — Pos'")
Sihs (10)
L —e fite
where R represents the random number of [0, 1] interval; mpest represents the optimal crow
position in crow group; fj represents the target value of crow j; fres: represents the target value
of the optimal individual; € represents the infinitesimal, which ensures that the fraction is
meaningful.
The migration formula of the crow group found that the crow group does not migrate to
a random position, but follows the crow with the best position in the group. The migration of
crows is not blind, so as to speed up the convergence of crows.
B. Adaptive flight step adjustment strategy
In the CSA algorithm, the flight distance is a fixed value. The search ability of the crow
cannot be adjusted with the increase of iteration. An adaptive flight step size is proposed.
When the number of iterations increases, the search ability of crows is adjusted. The

mathematical model of adaptive flight step is as follows:
Miter
FL" =02x¢ (11)

With the deepening of the crow search, the flight step size gradually becomes smaller. In
the initial stage of optimization, the crow has a larger flight step size, which makes the crow
have a strong global search capability. At the end of the iteration, the flight step size of the
crow becomes smaller, which makes the crow strengthen the local development capability.
C. Acceleration search factor

The adaptive search step can strengthen the crow’s global search and local development
capabilities. The acceleration search coefficient (ASC) is introduced to further improve the
crow's optimization capability. The mathematical model of ASC is shown in equation (12).

iter

ASC = ASC,yy +(ASC,p — ASCoy)x e Mitr’ (12)
where ASCmax(ASCmax=0.9) and ASCnin(ASCmin=0.2) are the maximum and minimum values.

Figure 2 depicts the variation curve of ASC changing with evolving algebra.
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Figure 2. Coefficient ASC variation curve

Figure 2 indicates that ASC values decrease with the evolving algebra. At the beginning of
the evolving algebra, ASC value makes crows have stronger global search capacity. At the end
of the evolving algebra, ASC value is smaller, which makes crows maintain stronger local
development ability. ACS balances the global and local convergence performance of the
proposed algorithm. The updating equation of crow position is as follows.

Pos'!""! = ASC x Pos'{ + Rx FLI" x (m" — Pos’") (13)
3.4 Analysis of convergence performance of the ENCSA algorithm

The convergence effects of intelligent algorithms are analyzed by multimodal and
unimodal functions (karaboga and Basturk, 2007; mirjalili et al., 2014). The unimodal function
has only one global optimal solution. The multimodal function has multiple local solutions.
Multimodal function is able to test the global search and local development capabilities of the
algorithms. Table 1 presents the expression and solution of the functions.

The moth-flame optimization algorithm (MFO), classical particle swarm optimization
algorithm (PSO), CSA and ENCSA algorithm are used to optimize the multimodal and unimodal
functions. The PSO, MFO and CSA algorithms belong to the group search algorithm, which
completes the search through cooperation between the populations. As a classic algorithm,
the PSO algorithm is often used as a comparison algorithm. The PSO algorithm imitates the
flight behavior of birds. The MFO algorithm is a novel bionic algorithm with a wide range of
applications (Mirjalili, 2015). The MFO algorithm imitates the flight path of moth when it flies
to the target. This study uses the MFO algorithm as a comparison algorithm. Table 2 shows the
parameter values of PSO, MFO, CSA and ENCSA algorithms.

Table 1. Convergence performance test function of intelligent algorithm

Function . . Function .
. Function expression . Variable range
attribute solution
dim
Unimodal g =) 0 [-100, 100]
j=1



dim

&= Z(ka) 0 [-100, 100]
j=l k=1
dim dim
gy =2 v |+[ 1wl 0 [-10, 10]
j=l j=1
dim dim
= — +1 -
I 4000 Hcos( \/—) 0 [-600, 600]
H dim
Multimodal gs :Z(vjz- ~10xcos(22v;))+10xdim 0 [-5.12,5.12]
j=1
—0.2x 7Zv 72005(272\/) -32 2
g¢ =—20xe 20— +e 0 [-32,32]
Table 2. Parameter setting of three optimization algorithms
Algorithms Parameters
PSO Miter=1000, N,=30, C1=C,=1.5, w=1.4
MFO Miter=1000, Np=30, b=1
CSA Miter=1000, N, =30, FL=2, Awp =0.1
Miter=1 N, = MF= Awp=0.1
ENCSA iter=1000, N, =30, 350, Awp=0.1,

ASCmax:o.g, ASCmin=0.2

The population size Np is 30. The maximum number of iterations Miter is 1000. In the PSO
algorithm, C; and C; represent learning factors. Ci represents self-cognition. C; represents
social experience. In the MFO algorithm, b is used to define the spiral shape. In ENCSA, Awp
represents awareness probability; MF represents migration frequency; ASC represents
accelerated search coefficient.

The test dimensions of algorithms are set to 10 and 30. The calculation time and search
accuracy of algorithms are analyzed by increasing the test dimension. For each test function,
each algorithm runs 30 times. The optimization results and calculation time of the algorithms
are recorded. During the test, the same computer platform is used. Table 3 and 4 show the
calculation results of each algorithm.

Table 3. Calculation results of unimodal test functions

Standard

Average L. Average
. Best Deviation . .
Algorithm . convergence operation time
10dim/ . (std)
° 30dim Lodim/ 10dim/ )
30dim . 10dim/ 30dim
30dim
-6 -1
PSO 8.73x10°%/ 7.98x10t/ 0.17/ 1.22/1.29
g 748.10 1.76x103 665.17
1
2.69x1033/ 4.16x103°/ 1.21x102%%/
MFO 1.06/ 1.39
3.24x10° 1.33x103 3.45x10° /
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1.05x10°/  3.04x10°® 3.37x10°¢
CSA 2/ 2/ 2/ 1.09/1.27
2.86x10 8.96x10 4.82x10
4.67x1072/  4.78x10°7/  1.09x10°/
E 1.26/ 1.2
NCSA  617x107  572x107  1.75x10°6 6/1.25
4.28x102/ 8.70/ 12.37/
PSO 2.68/ 6.49
2.40x10° 5.41x10° 2.11x10° /
9 3
MFO 1.21x10°/ 500/ ) 2.01x104/ 261/ 6.47
. 377.43 2.10x10 1.34x10
2
135x105/  5.47x10%/  6.34x10%/
CSA 2.64/6.
> 29.64 74.43 25.84 64/6.36
9.97x107Y/  6.98x10°%/  3.49x10°5/
E 2.83/6.32
NCSA  188x1071  9.13x10%3  4.99x10° 83/6.3
3.48x102
PSO 1;49 ! 073/2482  0.68/9.81 1.23/1.32
5.54x10-2L
MFO : 9;;10-4/ 0.66/35.61  2.53/22.45 1.18/1.47
gs ' i . .
531x105/  1.31x102 3.70x10°2
CSA X107/ x10%/ X107/ 1.25/1.34
0.42 1.56 0.71
7.96x10%/  5.61x1035/  7.32x103/
ENCSA 1.25/1.38
6.01x103  2.15x103¢  3.12x10% /

Table 3 presented the calculation results of the PSO, MFO, CSA and ENCSA algorithms for
unimodal functions. For g1 to gs, regardless of the best value, average value and std, the ENCSA
algorithm obtained better optimization results. When the calculation dimension was 10dim,
the calculation results of the PSO, MFO and CSA algorithms were more accurate than when
dimension was 30dim. As the number of dimensions increased, the computing power and
computing stability of PSO, MFO, and CSA algorithms decreased. For the ENCSA algorithm, the
calculation results at 10dim and 30dim were basically consistent, which showed ENCSA had
better calculation stability and calculation accuracy. For the average running time of the
unimodal function, the difference in running time of the four algorithms was small.

Table 4. Calculation results of multimodal test functions

Average Average
. Best Standard i .
Algorithm convergence o operation time
convergence ) Deviation (std)
® 10dim/ 30dim Lodim/ 10dim/ 30dim )
30dim 10dim/ 30dim
PSO 3.48x10?%/ 6.08 0.73/15.19 0.68/ 5.45 1.41/1.58
3.94x10?%/
MFO 0.14/ 12.08 7.67x102%/31.22 1.36/1.81
ga 6.19x10 / / /
CSA 1.72x102/0.12 0.17/0.25 9.83x102%/ 7.93x107 1.39/1.59
ENCSA 0/0 0/0 0/0 1.44/ 1.61
15.51/
PSO 6.96/ 83.21 5.54/ 24.67 1.39/1.58
gs / 118.79 / /
MFO 7.95/ 83.57 19.70/ 12.55/37.96 1.31/1.76
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165.42

CSA 2.98/10.96 8.45/ 25.38 4.27/9.64 1.44/1.51

ENCSA 0/0 0/0 0/0 1.41/1.56
3.87x102

PSO 7’;0 / 2.99/10.61 1.18/1.52 1.64/1.78
4.44x1015

MFO : 5(;;10-3/ 0.14/ 14.09 0.45/7.72 1.52/2.11

ge ’ 5

2.44x10

CSA 2’;2 / 1.43/3.50 1.06/ 0.96 1.62/1.82
8.88x10°16/ 8.88x10°16/ 1.00x1031/

ENCSA 1.66/1.77
3.88x10°16 8.88x10-16 1.00x10°3 /

The calculation results of the multimodal functions were shown in Table 4. For g4 to gs,
regardless of the best value, average value and std, the calculation results of the ENCSA
algorithm were the smallest. For g4 to gs, the ENCSA algorithm calculated the optimal solution
0. For multimodal functions, the calculation accuracy of PSO, CSA and MFO algorithms was
significantly reduced. The multimodal function has multiple local solutions. The PSO, CSA, and
MFO algorithms had poor ability to get rid of the local solutions, which made the algorithm's
calculation results worse. For multimodal functions, the ENCSA algorithm exhibited a strong
ability to get rid of local solutions. The calculation stability of the ENCSA algorithm was better.
For ga to gs, the calculation results of ENCSA algorithm was the same whether it is in 10 or 30
dim.

The average operation time of each algorithm reflects the time complexity of different
algorithms. The higher the time complexity of the algorithm, the longer the operation time of
the algorithm. For unimodal functions, the average operation time of four algorithms
increased with the increase of test dimension. Compared with CSA algorithm, the average
operation time of the proposed ENCSA algorithm did not increase significantly. For g1, the
average operation time of the proposed algorithm did not increase when the testing
dimension was increased. For g, when the testing dimension was increased, the average
operation time of CSA algorithm increased by 58.49%, and that of ENCSA algorithm increased
by 55.50%. For multimodal testing functions, the average operation time of ENCSA algorithm
was close to that of CSA algorithm. For ga, the average operation time of ENCSA algorithm was
higher than that of CSA algorithm. But for gs and gs, when the test dimension was 80, the
average operation time of ENCSA algorithm was smaller than that of CSA algorithm.
Comprehensive analysis presented that compared with prior algorithms, the complexity of
ENCSA algorithm did not increase significantly, and ENCSA algorithm obtained more
competitive convergence result.

The calculation result of the ENCSA algorithm was the best according to the calculation
values, which indicated that the calculation cost did not increase. The ENCSA algorithm’s
regular flight strategy enhances the algorithm's ability to get rid of local solutions. The adaptive
flight step size and acceleration search coefficient make the algorithm have strong global
search and local development capabilities. Especially for 30dim, the calculation speed of
ENCSA algorithm was faster. Compared with the CSA algorithm, the computing power of the
ENCSA algorithm had been greatly improved.
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This study compares the proposed ENCSA algorithm with state-of-the-art CSA variants,
such as PGCSA (Das et al. 2020), ICSA (Lu et al. 2020) and CSA based on opposition learning
(Shekhawat and Saxena, 2020). For the benchmark function gs, when the search dimension
was 10, the average convergence value and std of the PGCSA algorithm were 2.54x10'* and
2.80x107%3; when the search dimension was 30, the average convergence value and std were
7.98x10% and 2.21x10%. For the benchmark function gs, the PGCSA algorithm converged to
0 when the search dimension was 10 or 30. For the benchmark function gs, when the search
dimension was 10, the average convergence value and std of the PGCSA algorithm were
2.54x10** and 2.80x10!3; when the search dimension was 30, the average convergence value
and std were 7.98x107° and 2.21x107. Lu et al. (2020) set the test dimension to 10 and used
the benchmark function gs to test the proposed ICSA algorithm.

The optimal convergence value and std of ICSA algorithm were 0 and 0.054. Although
ICSA algorithm converges to O, it does not converge to the optimal value every operation.
Shekhawat and Saxena (2020) set the test dimension to 30, and used unimodal and
multimodal benchmark functions to test the proposed algorithm. For the benchmark function
g1, the average convergence value and std of the proposed algorithm were 1.33x10°° and
2.26x10°%%; for g,, the average convergence value and std of the proposed algorithm were
1.36x107°¢ and 6.87x107°®; for g3, the average convergence value and std of the proposed
algorithm were 2.57 and 3.39x10°%; for gs, the average convergence value and std of the
proposed algorithm were 5.44x10°7 and 2.98x107; for gs, the average convergence value and
std of the proposed algorithm were 2.91x10% and 8.91x10°%; and for gs, the average
convergence value and std of the proposed algorithm were 4.43x10° and 1.16x10%. The
benchmark function test results revealed that the convergence performance of the proposed
ENCSA algorithm in this study outperformed the state-of-the-art CSA variants.

4. Wind power data acquisition and short-term wind power prediction process
4.1 Data acquisition and analysis of influencing factors

The core business of ENGIE Group includes renewable energy, which is a major participant
in French green power production. The installed wind power capacity has reached 1730MW.
La Haute Borne wind farm is located in the northeast of France. The wind farm provides
opening wind power data sets (Engie, 2018). The wind farm has four wind power generation
equipment, namely R80721, R80711, R80790 and R80736. The static information of four wind
turbines is listed in Table 5. ENGIE provides two opening data sets. One data set counts the
power generation information of four wind turbines from 2013 to 2016, and the other data
set counts the power generation status of each wind turbine from 2017 to 2020. Among them,
statistical information includes generator technical parameters and meteorological
information. Generator technical parameters include rotor speed, cabin temperature, torque,
and pitch angle, etc. Meteorological information includes wind speed, temperature, direction,
etc. This study uses the data set recorded by R80711 power generation equipment. The power
generation equipment records data every 10 minutes. The daily wind power statistics include
144 data points. The statistical parameters include power, blade position, outdoor
temperature, grid voltage, wind speed, grid frequency and other parameters.

This study selects the wind power data in spring, winter and autumn of 2017 as the
simulation experiment samples. The statistical ranges intervals of wind power in spring,
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autumn and winter are from November 21 to November 26, from April 15 to April 20, and
from December 8 to December 13. The selected sample data include 6-day statistics with a
total of 864 sets of data. The wind power data of the first five days are taken as the training
samples of the forecasting models. The wind power data of the sixth day are taken as the test
samples of the model.

The statistical data include voltage, frequency, blade position and other parameters. Wind
direction and wind speed directly affect the output power. Wind is a phenomenon of air flow,
because the sun's irradiance on the earth's surface is not uniform. The change of temperature
affects the change of air density, thus affecting the air flow through the fan blades and
resulting in the change of output power of wind power equipment. Therefore, the output
variable is the wind power. The input variables are outdoor temperature, wind direction and
wind speed.

Table 5. Static information of La Haute Borne wind turbine

La Haute Borne wind turbine

Information
R80711 R80721 R80736 R80790
Name FRHBO_EO1_807 FRHBO_E03_807 FRHBO_EO04 807 FRHBO_E02_807
11 21 36 90
Model MM82 MM82 MM82 MM82
Manufacture Senvion Senvion Senvion Senvion
Rotor 82 82 82 82
diameter (m)
Hub height 80 80 80 80
(m)
Rated power 2050 2050 2050 2050
(kw)
Altitude 411 411 411 411
GPS 48.4569,5.5847 48.4497,5.5869 48.4461,5.5925 48.4536,5.5875
Commissionin 2009/01/15 2009/01/15 2009/01/15 2009/01/15
g date
Department Meuse Meuse Meuse Meuse
Region Grand Est Grand Est Grand Est Grand Est
2500 ~
§2000-
5 1500
Ci>1ooo~
§ 500
0+
6 Winter
Day Autumn
1 0" Spring Season
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Figure 3. Power curve

The wind power curves shown in Figure 3 are highly nonlinear. The wind speed has strong
uncertainty and nonlinearity and shows a large difference in a short time. The wind power
shows strong nonlinearity. The wind speed fluctuates with seasons, and wind power is
different in different seasons.

4.2 Wind power forecast process

Section 3.1 presents the principle of the ELM model. Thresholds and weights are
initialized randomly in the ELM model. This method cannot guarantee the validity of the
threshold and weight values, resulting in poor prediction stability of the ELM model. At the
same time, the random thresholds and weights affect the training accuracy. In view of the
shortcomings of the ELM model, the random parameter values are determined by the ENCSA
algorithm. The forecast stability and accuracy are improved.

Variance is used as the training objective function.

é(l”’ez‘ —actl.)z (14)

Funcobjective =

m
where pre is the forecasting value of wind power during training; act is the actual wind power

value during training.
The operation steps of wind power forecast are shown below:
(1) Determine the output and input variables of the wind power prediction model.
(2) Divide the wind power training samples and wind power test samples of the
prediction models.
(3) Perform normalized preprocessing on sample data such as wind power.
(4) Set the relevant parameter values of the wind power forecast models.
(5) Use wind power training samples to train the model.
(6) Calculate the model objective function.
(7) Input the optimized random parameter values into the ELM model.
(8) Predict short-term wind power and denormalize the prediction results.
(9) Analyze and evaluate the forecast results.
Figure 4 shows the flow chart of wind power forecasting.
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Figure 4. Wind power prediction process

5. Simulation test and results evaluation
5.1 Evaluation index of wind power forecast results
In this study, the forecast results were evaluated by multiple indicators. RMSE reflects the
deviation between the forecast values and the actual values and also reflects the degree of
dispersion between samples. RMSE and MAPE reflect the forecast error. The smaller the MAPE
and RMSE values are, the higher the forecast accuracy of the model is. R? reflects the fitting
degree of prediction curve and real value curve. When the value of R? is close to 1, it indicates
that the model has a good fitting effect. When the value of R? is close to 0, it indicates that the

model has a poor fitting effect.
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where pTe represents the average of the predicted value; pre; represents the predicted value;
actj represents the actual value.

5.2 Simulation and discussion

The simulation experiments were carried out to verify the predict performance of the
ENCSA-ELM model in this section. This study selected three common models as comparative
models to forecast wind power. The three comparison models were SVM, Gaussian process
regression (GPR), BPNN, ELM, ELM optimized by MFO (MFO-ELM) and ELM optimized by gray
wolf optimization algorithm (GWO-ELM) models.

For the sample division, there is no definite method to divide training samples and test
samples. The number of data in the training sample set usually accounts for 66.67% to 80% of
the total, that is to say, the ratio of the number of data in the training set to the number of
data in the test set is 1:2 to 1:4. Zhou et al. (2021) set the ratio of training data to test data to
4:1 in the process of predicting short-term wind power. Li et al. (2020) set the ratio of wind
power training samples to test samples to 3:1. Duan et al. (2021) set the ratio of training
samples to test samples to 9:1 when verifying the proposed model. With reference to the
sample division method given in the above research, this paper sets the ratio of training
samples to test samples to 5:1. Therefore, in this study, the training set contains 720 sample
points, and the test set contains 144 sample points.

The short-term wind power in spring was forecasted by the ENCSA-ELM, CSA-ELM, BPNN,
GPR, SVM, ELM, MFO-ELM and GWO-ELM models. The 720 groups of wind power data from
April 15, 2017 to April 19, 2017 were taken as training samples of forecast models. The 144
groups of wind power data collected on April 20, 2017 were used as test data of forecast
models. The input variables of the forecast models were wind direction, external temperature
and wind speed. The wind power was selected as output variable. Figure 5 depicts the wind
power predictive results and errors on April 24, 2017.
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Figure 5. Wind power forecast results on April 20

Figure 5 (a) showed the wind power forecasting curves of SVM, BPNN, GPR, CSA-ELM,
ELM, MFO-ELM, GWO-ELM and ENCSA-ELM models for April 20th. The eight forecasting
models all presented strong forecasting stability and reflected the fluctuation state of wind
power. Figure 5 (b) presented the forecasting errors of eight models. The forecasting errors of
the ENCSA-ELM model were the smallest. The ENCSA-ELM model exhibited a high prediction
accuracy. The predicted wind power values of the ENCSA-ELM model were closest to the actual
values of wind power, and the RE values were controlled within |20%|. From 20:00 to 24:00,
the prediction errors of SVM, GPR, BPNN and CSA-ELM models become larger, and the RE
values exceeded 20%.

As shown in Figure 5(b), the prediction errors of SVM, GPR, BPNN, and ELM models had
spikes. There are two reasons for spikes: (1) the wind power sequence itself has strong
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randomness and volatility, which brings challenges to the predictive stability and accuracy of
the forecasting models; and (2) the random parameters in the machine learning models have
a greater impact on the prediction stability of the model. However, SVM, GPR, BPNN, and ELM
models themselves have no method to solve random parameters. Based on the above two
reasons, traditional machine models may have large errors in the process of predicting wind
power. In order to reduce the spikes in the prediction results, it is necessary to select the
optimal parameters of the machine learning model. The predictive performance of CSA-ELM,
MFO-ELM, GWO-ELM and ENCSA-ELM models outperformed ELM model, indicating that
parameter optimization improved the forecasting accuracy and stability of ELM model. The
proposed model exhibited a higher predictive stability. The prediction error distribution of
each model is depicted in Figure 6 and Table 6.

2 21<5% [5%-10% [_1>10%)

Figure 6. Prediction error statistics on April 20

Table 6. Error distribution of wind power of five models on April 20

Number

Model e <s% S%<|RE|<10% 10%<|RE|<15% 15%<|RE|<20% |RE|>20%
SVM 54 48 13 15 14
BPNN 30 46 43 13 12
GPR 20 41 42 31 10
ELM 52 36 19 13 24
CSA-ELM 90 32 10 4 8
MFO-ELM 110 19 8 2 5
GWO-ELM 125 16 1 1 1
ENCSA-ELM 132 11 1 0 0

Figure 6 showed the percentage of relative error absolute values (|RE|) in each interval.
Table 6 presented the number of predicted values in the error interval. ENCSA-ELM model
obtained more satisfactory forecasting results by analyzing error distribution in Table 6. Figure
6 indicated the number of error values of proposed model in the interval |RE|<5% exceeded
90%. The prediction errors of proposed model were all controlled within 15%. The number of
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error values of elm model in the interval |RE|<5% accounted for 36% of the total. The error
values of MFO-ELM, CSA-ELM and GWO-ELM models in the interval |RE|<5% accounted for
76%, 63% and 87% of the total respectively. The RE values of BPNN and GPR models in the
interval [- 5%, 5%] accounted for the smallest proportion of the total, which were 21% and 14%
respectively.

The wind power in autumn was forecasted by the SVM, BPNN, GPR, ELM, MFO-ELM,
GWO-ELM, CSA-ELM and ENCSA-ELM models. The 720 sets of wind power data collected from
November 21, 2017 to November 25, 2017 were selected as the training samples for eight
prediction models, and the 144 sets of wind power data collected on November 26, 2017 were
taken as the test data. Figure 7 presents the forecast results of each model for the 24-hour
wind power on the 26th of autumn.
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(b) Wind power prediction error in autumn
Figure 7. Wind power forecast results on November 26

Figure 7 (a) revealed the forecasting results for autumn wind power. The forecasting
curves were consistent with the trend of the actual wind power curve. On the whole, the
predicted values of the eight models fitted well with the true values. Figure 7 (b) presented
the hourly forecast error of each forecast model for autumn wind power. The ENCSA-ELM
model still exhibited a high prediction accuracy. Only a few of RE values exceeded 20%. Most
of the error values were controlled within 20%. A large number of error values of SVM, BPNN,
GPR, ELM, MFO-ELM and CSA-ELM prediction models exceeded 20%. For BPNN model, the
maximum RE exceeded 80%. The maximum RE of the CSA-ELM model exceeded 60%. The
prediction stability of the ELM model was poor, and the RE at multiple moments exceeded
50%. For autumn wind power, the predictive stability and prediction accuracy of the proposed
model were better. Figure 8 and Table 7 reveal the relative error distribution of each model.
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Figure 8. Forecast error statistics on November 26

Table 7. Error distribution of wind power of eight models on November 26

Number
Model
|RE|<5% 5%<|RE|<10% 10%<|RE|<15% 15%<|RE|<20% |RE|>20%
SVM 42 40 18 15 29
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BPNN 59 28 22 15 20

GPR 45 31 29 11 28
ELM 47 28 17 13 39
CSA-ELM 70 33 16 12 13
MFO-ELM 88 39 12 3
GWO-ELM 99 28 13 3 1
ENCSA-ELM 107 27 6 3 1

Figure 8 depicted the prediction errors of eight models for wind power in autumn. The
number of error values in the interval [-5%, 5%] of the proposed model accounted for the
highest proportion of total samples, exceeding 70%. CSA-ELM, MFO-ELM and GWO-ELM
models obtained more satisfactory predictive results compared with ELM model. The error
values in the interval |RE|<5% of CSA-ELM, MFO-ELM and GWO-ELM models accounted for
49%, 61% and 69% of the total samples, but only 33% of the RE of the ELM model was in the
interval [-5%, 5%]. The error values of SVM, BPNN and GPR models in the interval |RE|<5%
accounted for 29%, 41% and 31% of the total samples. The prediction error of ENCSA-ELM
model was relatively small. Table 7 listed the RE error distribution of the eight forecast models.
The prediction errors of proposed model were basically controlled within 10% compared with
other models. For 144 sample points, the |RE| errors of 107 sample points of proposed model
were smaller than |5%]|, and only one sample point error exceeded 20%.

The wind power in winter was predicted by the SVM, BPNN, GPR, ELM, MFO-ELM, GWO-
ELM, CSA-ELM and ENCSA-ELM models. The 720 sets of wind power data collected from
December 8, 2017 to December 12, 2017 were taken as the training samples for eight
prediction models. The 144 sets of wind power data collected on December 13, 2017 were
selected as the test data. Figure 9 depicts the forecasting effects.
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(a) Power prediction curves in winter
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Figure 9. Wind power forecast results on December 13

Figure 9 presented the forecasting curves for winter wind power. The local enlarged
drawing in Fig. 9 showed that the predicted curve of ENCSA-ELM model was closest to the
actual power curve. In the initial stage of prediction, SVM and GPR model had a large deviation
from the actual value. For SVM model, the maximum relative error exceeded 150%. The
maximum relative error of the GPR model exceeded 100%. Compared with CSA-ELM, MFO-
ELM, GWO-ELM and ENCSA-ELM models, the prediction curve of the ELM model fluctuated
more, and the maximum RE exceeded 50%. Figure 9 (b) revealed that the ENCSA-ELM model
showed high predictive stability and RE errors fluctuated smoothly. Figure 10 and Table 8
depicted the relative error distribution of each forecasting model.
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Figure 10. Forecast error statistics on December 13

Table 8. Error distribution of wind power of eight models on December 13

Number

Model |RE|<5% 5%<|RE|<10% 10%<|RE|<15% 15%<|RE|<20% |RE|>20%
SVM 105 28 5 3 3
BPNN 94 29 7 6 8
GPR 100 25 5 4 10
ELM 105 22 5 4 8
CSA-ELM 119 20 4 0 !
MFO-ELM 136 4 4 0 0
GWO-ELM 138 4 2 0 0
ENCSA-ELM 137 6 1 0 0

Figure 10 revealed that compared with other prediction models, GWO-ELM and ENCSA-
ELM models got satisfactory prediction results. The error values of the GWO-ELM and
proposed models in the interval |RE|<5% accounted for 96% and 95% of the total samples.
The error values of SVM, BPNN, GPR, ELM, MFO-ELM and CSA-ELM models in the interval
|RE|<5% accounted for 73%, 65%, 69%, 73%, 94% and 83% of the total samples. The
prediction errors of the ENCSA-ELM model basically were within the [-5%, 5%] interval. Table
8 listed the prediction error distribution of the eight models. For 144 sample points, the error
of 137 sample points of proposed model was less than 5%, and no error was more than 20%.
The predictive errors of proposed model were controlled within 10%.

As the complexity of the algorithm is higher, the time frequency is greater, and the
running time required by the algorithm is longer. Therefore, this paper takes the running time
of the algorithm as an evaluation index to analyze the complexity of each algorithm. Table 9
and Figure 11 revealed the evaluation results of different wind power prediction models.

Table 9. Evaluation of model prediction results

Evaluation index

Season Model RIMISE MAPE (%) R (%) Runn|(r§ time
SVM 59.17 10.37 95.31 0.25
BPNN 66.52 11.71 95.33 0.28
GPR 79.71 13.22 94.40 11.45
Spring ELM 67.26 13.69 94.03 1.59x1073
CSA-ELM 29.93 5.96 98.79 19.14
MFO-ELM 22.15 4.15 99.34 19.33
GWO-ELM 17.31 2.46 99.60 20.48
ENCSA-ELM 16.45 1.88 99.64 19.59
SVM 49.42 13.12 96.11 0.26
BPNN 46.28 9.78 97.02 0.30
Autumn
GPR 52.08 11.56 96.88 12.75
ELM 58.20 14.80 95.50 2.82x1073
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CSA-ELM 32.15 8.44 98.10 18.02

MFO-ELM 20.55 4.64 99.22 18.53

GWO-ELM 18.71 4.35 99.35 19.19
ENCSA-ELM 17.13 3.59 99.46 18.47

SVM 48.01 5.27 99.23 0.26

BPNN 60.37 5.76 98.96 0.39

GPR 60.16 6.40 98.92 11.70

. ELM 65.94 5.53 98.42 1.61x103
Winter

CSA-ELM 38.92 3.22 99.43 18.58

MFO-ELM 22.32 1.87 99.81 18.31

GWO-ELM 20.42 1.62 99.84 19.34
ENCSA-ELM 18.60 1.49 99.87 18.60
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Figure 11. Model prediction error comparison

Table 9 listed the evaluation results of the eight wind power prediction models. The
comparison results of the evaluation indexes of wind power forecasting were depicted in
Figure 11. The RMSE value of the ENCSA-ELM model was controlled below 20 in different
seasons. Compared with traditional machine learning models, the RMSE and MAPE values
were the smallest. For spring wind power forecasting, the MAPE value was 8.49%, 9.83% and
11.34% smaller than that of the SVM, BPNN and GPR models. For the prediction results of the
wind power in autumn, the MAPE value of ENCSA-ELM model was 9.53%, 6.19% and 7.97%
smaller than that of the SVM, BPNN and GPR a models. For the forecasting results of winter
power, the MAPE value of ENCSA-ELM model was 3.78%, 4.27% and 4.91% smaller than that
of the SVM, BPNN and GPR models. Similarly, compared with ELM, CSA-ELM, MFO-ELM and
GWO-ELM models, the proposed model obtained more satisfactory wind power forecasting
results.

The ELM model prediction performance was obviously improved when random
parameters were optimized by the optimization algorithms. For wind power prediction results
in different seasons, the average RMSE of ENCSA-ELM model was 17.39, which was 1.42, 4.28
and 16.28 smaller than those of GWO-ELM, MFO-ELM and CSA-ELM models. The average
MAPE of ENCSA-ELM model was 2.32%, which was 0.49%, 1.23% and 3.55% smaller than those
of GWO-ELM, MFO-ELM and CSA-ELM models. For R?, the R? values of the eight models
reached more than 90%. The ENCSA-ELM model had the highest R?. Both of the two
evaluations of the proposed model’s R?> reached more than 99%. The evaluation results
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revealed that the ENCSA-ELM model had the highest forecasting accuracy. The proposed
model still achieved better evaluation results compared with other models.

ELM model consumed the shortest running time compared with the traditional machine
learning models. The training time of the model is greatly shortened because ELM does not
use gradient descent method. The running time of the model became longer when the ELM
model was combined with optimization algorithms. This is because the algorithms need to
optimize the random parameters of the ELM model in the training process, which increases
the training time of the model. CSA-ELM, GWO-ELM, MFO-ELM and ENCSA-ELM models
consumed similar running time, indicating that the four models had similar time complexity.
The GWO-ELM model consumed slightly more time than the other three models. The running
time of the ENCSA-ELM model was slightly higher than that of the CSA-ELM model, indicating
that the complexity of the proposed ENCSA-ELM model did not increased significantly. The
evaluation results in Table 9 revealed that compared with the traditional machine learning
models and the ELM optimized by different algorithms, the proposed model obtained more
competitive prediction accuracy and fitting effect. Regarding the time complexity, the running
time consumed by the proposed model was slightly higher than that of the CSA-ELM model,
but less than that of the GWO-ELM model. Comprehensive analysis demonstrated that the
wind power forecast results obtained by the proposed model were the most competitive
compared with the other seven models.

This study compares the proposed model with the state-of-the-art short-term wind
power prediction models in order to further verify the effectiveness of the proposed ENCSA-
ELM model. For example, Duan et al. (2021) proposed a hybrid short-term wind power
prediction model and resulted the evaluation index RMSE 58.77. Liu et al. (2020) developed
WD-LSTM model to forecast wind power, the MAPE of the proposed model was 5.83. Tu et al.
(2020) proposed the DR-SVM model to predict wind power in different seasons. For wind
power in winter, spring and autumn, the MAPE values of the DR-SVM model were 6.86%,
15.31%, and 9.39%, respectively. Li et al. (2020) proposed the WD-IASO-SVM model to predict
short-term wind power, and used two sets of simulation experiments to verify the proposed
model. For Cases 1 and 2, the MAPE values of the proposed models were 5.43% and 9.26%
respectively. Huang et al. (2020) formulated the OWDPC-LSTM model to forecast short-term
wind power. The MAPE values of the proposed OWDPC-LSTM model were 4.09% and 5.85
when the number of cluster centers were 3 and 4. Compared with the state-of-the-art short-
term wind power prediction models proposed above, the wind power prediction result
obtained by the ENCSA-ELM model are more competitive. Therefore, the model proposed in
this study provides a new method for short-term wind power forecasting.

6. Concluding remarks

To meet the balance of power supply and demand, the power sector needs to formulate
areasonable dispatch plan to ensure the economy and safety of the power supply of the power
system. The wind power anti-peak-shaving characteristic brings the challenges to grid-
dispatching plan when wind power is connected to the grid on a large scale. When the
prediction accuracy of wind power is not enough, the grid can stabilize the impact of wind
power output fluctuation on power supply stability by setting aside enough spinning reserve
capacity. The additional spinning reserve capacity not only increases the operating cost of the
grid, but also brings hidden dangers to the grid stable operation. The power sector can
formulate dispatch plans more reasonably through high-precision wind power forecasting and

26



reference to the load forecast values obtained, thereby effectively reducing the spinning
reserve capacity reserved for stabilizing wind power volatility and reducing the operating cost
of the power system. This study proposes the ENCSA-ELM model to predict the short-term
wind power. Meanwhile, traditional machine learning models such as SVM, ELM, BPNN, GPR
and ELM models optimized by different intelligent algorithms are selected as the comparison
methods. The concluding remarks are presented as follows.

e The ENCSA algorithm was proposed to improve the CSA algorithm limitations. After testing,
the convergence accuracy of the ENCSA algorithm was improved obviously. For multimodal
functions, the ENCSA algorithm exhibited good convergence accuracy. The abilities of local
development and global search of the ENCSA algorithm were strengthened.

e The ENCSA-ELM model was proposed. The RE values were controlled within |20% |, the R?
values were over 99% and the MAPE value was controlled under 10%.

e The forecast results of proposed model were analyzed by evaluation indexes. The results
revealed that compared with the SVM, GPR, BPNN and CSA-ELM models, the ENCSA-ELM
model exhibited higher prediction stability and accuracy.

e Improving the prediction accuracy of wind power can reduce the phenomenon of wind
abandonment and assist the power department to formulate a reasonable dispatch plan.

The proposed prediction model achieved high prediction accuracy for short-term wind
power. The proposed wind power forecast system had some limitations. The proposed ENCSA
algorithm cannot all converge to the global optimal value for unimodal and multimodal test
functions, and the convergence performance of the proposed algorithm needs to be further
improved. This study only analyzes the influence of temperature, wind direction and wind
speed on wind power. Less external factors are considered. Finally, the potential of ENCSA-

ELM model is tapped to improve the generalization ability of the proposed model. The

limitations of the proposed wind power forecast system will be solved in future research.
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