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Abstract8

Wind turbine power curve cleaning, by way of removing curtailment,9

stoppage, and other anomalies, is an essential step in making raw data10

useable for further analysis, such as determining turbine performance, site11

characteristics, or improving forecasting models. Typically, data comes as12

SCADA (Supervisory Control and Data Acquisition) data, so contains not13

only environmental and turbine performance data but also the control ac-14

tion imposed on the turbine by the operator. Many different anomaly15

detection (AD) methods have been proposed to clean power curves; how-16

ever, few papers have explored filtering explicit and obvious anomalies17

from the SCADA prior to running AD. This paper actively explores this18

filtering impact by comparing the performances of 4 different AD methods19

with/without filtering. These are: iForest, Local Outlier Factor, Gaussian20

Mixture Models, and k-Nearest Neighbours. Each approach is evaluated21

in terms of prediction error, data removal rates, and ability to maintain22
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the underlying wind statistical characteristics. The results show the effec-23

tiveness of filtering with every technique showing improvement compared24

to its unfiltered counterpart. Furthermore, Gaussian Mixture Models are25

shown to provide favourable accuracy whilst maintaining wind variability,26

however, with the wide range of performances of methods, a user’s choice27

may be different depending on their needs.28

Keywords— Wind turbine, power curve, data cleaning, anomaly detection29

Nomenclature30

Abbreviations31

AD Anomaly Detection32

BIC Bayesian Information Criterion33

CPU Central Processing Unit34

DBSCAN Density Based Spatial Clustering of Applications with Noise35

FIML Full Information Maximum Likelihood36

GMM Gaussian Mixture Modelling37

iForest Isolation Forest38

IQR Interquartile Range39

kNN k Nearest Neighbours40

LOF Local Outlier Factor41

MAR Missing At Random42

MCAR Missing Completely At Random43

MNAR Missing Not At Random44

NN Neural Network45
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RMSE Root Mean Squared Error46

SCADA Supervisory Control and Data Acquisition47

WT Wind Turbine48

WTPC Wind Turbine Power Curve49

Symbols - Isolation Forest.50

c(n) Average of h(x) for n instances51

E(h(x)) Average path length across all iTress52

h(x) Averaged path length53

n Number of instances54

s(x, n) Anomaly score55

Symbols - Gaussian Mixture Models56

µp Mean of a given variable57

IQR Interquartile range, Q75−Q2558

k Number of mixtures assumed59

p Number of variables60

plower, pupper Lower and upper bounds of the box plot61

Q25, Q75 Lower and upper quartiles, equivalent to 25th and 75th quartiles.62

Symbols - k Nearest Neighbours63

k Number of nearest neighbours64

Symbols - Local Outlier Factor65

lrd local reach distance66

NMinPts Number of nearest neighbours to consider67

o A nearest neighbour of p when considering MinPts of nearest neighbours68
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reach− dist Reach distance69

x The instance being studied70

Symbols71

δIQRu Percentage difference in wind speed IQR72

γ Elimination rate73

em Prediction error as percentage of Pr74

h(ui) Predicted power for instance i with windspeed u75

IQRu,b, IQRu,a IQR of wind speed before and after AD76

n Number of instances in test set77

Nb, Na Number of instances before and after AD78

pi Actual power value for instance i79

Pr Rated power of the wind turbine80

u Wind speed81

Units82

GW Gigawatts83

km Kilometer84

kW Kilowatts85

m/s Meters/second86

MW Megawatts87

RPM Revolutions per Minute88
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1 Introduction89

The European Union and United Kingdom are committed to extensive targets to in-90

crease offshore wind energy capacity as part of the greening of the energy sector. This91

is to support the commitments of many nations to the Paris Climate Agreement. As92

of November 2020, the European Union has committed to increasing their 12GW of93

capacity to 60GW by 2030 and 300GW by 2050 [1]. Similarly the United Kingdom94

pledged to increase their 10GW capacity to 40GW by 2030 [2]. It is certainly an95

exciting time to be involved in wind energy academia as these targets will need to96

be supported by research to overcome the plethora of challenges facing such ambi-97

tious targets, such as continuing the reduction of levelized cost of energy, turbine life98

extension, increasing reliability, and improving forecasting models, to name a few.99

The common thread to these research topics is their reliance, in part, on SCADA100

data from already deployed wind turbines. SCADA (Supervisory Control and Data101

Acquisition) data is continuously generated by each wind turbine (WT) when deployed.102

It documents production (power output), turbine parameters (rotor RPM, blade pitch103

angle, braking, bearing temperatures etc), supervisory action imposed by the operator104

on the WT, and environmental conditions (air temperature, wind speed, ice indication105

etc). If we wish to use SCADA data to explore the relationship WTs have with the106

environment then anomalies must be removed and the power curve cleaned. The107

wind turbine power curve (WTPC) is simply a plot of wind speeds (u) against power108

produced by the WT.109

1.1 Anomalies in SCADA110

Anomalies are defined as instances that do not fit the patterns of the rest of the data.111

This misfitting makes it appear that the instances in question have been generated112

by an altogether different mechanism to that generating the ”normal” data [3]. It113

is important that these anomalies are identified and removed so as to not bias the114

relationships being studied. For WT SCADA data, anomalies are typically categorized115

into 3 types [4] and any anomaly detection (AD) method must be designed with these116
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in mind. These are described below and illustrated with Figure 1:117

• Anomaly type 1: These anomalies are characterized by no power output whilst118

above cut in wind speed i.e. parking/downtime imposed by the operator. In119

general AD terms, these instances would be characterized as contextual anoma-120

lies [3]. An instance is a contextual anomaly if it would be considered normal121

in a different context. The values of each feature are normal in isolation, but122

abnormal when considered together.123

• Anomaly type 2: These anomalies are characterized as steady and continuous124

positive power output at a power less than the turbine’s rated power, Pr, i.e.125

curtailment imposed by the operator. These can be characterized as contextual126

anomalies as well.127

• Anomaly type 3: These anomalies are randomly scattered across the feature128

space. Reference [4] suggested these may be caused by sensor malfunction or129

noise in signal processing. It is also possible these instances are generated by130

stop-to-operation transitions or vice versa. These are best described as point131

anomalies. Point anomalies are single instances that clearly do not conform to132

the nature of the rest of the data.133

Note that ”Contextual” anomalies are exactly that, driven by context so will dif-134

fer depending upon the end use of the SCADA data. For applications that seek to135

understand turbine performance, we would consider any significant deviation from136

the manufacturer’s specified WTPC as anomalous. For example, an instance where137

no power was generated at wind speeds above cut-in, such as curtailment by the op-138

erator, we would consider an anomaly. For condition monitoring applications, the139

same curtailed instance would not be considered anomalous as the operating mode is140

included in the context. This paper focuses on applications concerned with turbine141

performance so considers deviation from the WTPC as anomalous, be it from operator142

influence or otherwise.143
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Figure 1: Wind turbine power curve showing examples of anomaly types. Pr

indicates rated power of the WT.

To emphasize, contrary to the bulk of AD research, the mechanisms of anomaly144

types 1 and 2 are well understood. Fault, downtime, and curtailment instances should145

be explicitly labelled in the SCADA by any competent system. It only remains for the146

user to remove these instances.147

1.2 Literature Review148

Taking a broad view, the literature can be split into two groups based on their ap-149

proaches to cleaning WTPC data: group 1○, those that pre-process data prior to150

running AD and group 2○, those that do not. This is, of course, among many divi-151

sions that can be made.152

In group 2○, the non-pre-processing group, a wide range of approaches have been153

formulated. Notable examples include defining normal behaviour [5], using image-154

based approaches [6], using a ”Change Point Grouping Algorithm and Quartile Algo-155

rithm” [7], and using Gaussian Mixture Models (GMM) [8]. Common themes from156

these works is the difficulty in dealing with ”stacked” data, this is where anomalies157
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are so numerous they start to sway the statistical perception of ”normal”. Another158

theme is the difficulty to reliably produce good results when anomalies form increas-159

ingly large percentages of the data. All of these papers go straight to the anomaly160

detection method with no pre-processing of data to remove obvious outliers or missing161

data.162

In contrast to the above, group 1○ papers, those that implemented pre-processing,163

appear to have approached WTPC cleaning from a data-mining standpoint. In [9]164

the authors pre-processed SCADA data into categories of “unnatural”, “constant”,165

“exceeding”, “missing” or otherwise valid data. This was followed by determination of166

“irrational” data using a 2-step process. First, each instance of the remaining data was167

given a weighting depending on its distance from the manufacturer-specified WTPC.168

Second, the Local Outlier Factor (LOF) technique was applied with these weightings.169

The entire process resulted in some 4,190 instances of a 18,001 dataset being removed170

in their case study. Such explicit use of the manufacturer’s specifications, i.e. cleaning171

based on how it performs in theory rather than in practice, is completely at odds with172

group 2○’s unsupervised approach. The approach is questionable given that it is not173

straightforward to compare the specified WTPC of a WT to that being achieved on a174

given site. To point out the most glaring obstacles, differences in topography, terrain175

roughness, and wind regime will need to be compensated for, as will any potential176

wake effects from nearby turbines. There is a risk of introducing bias into the data,177

a non-problem of the unsupervised group 2○. Aside from this, [9] dealt with obvious178

invalid SCADA data, such as missing data, of which none of group 2○ papers even179

mention. Logically, any AD technique will find defining ”normal” easier if valid data180

makes up a greater percentage of the dataset; [9] pointed out that the LOF, which181

uses distances between instances, would struggle with stacked data. Unfortunately,182

the impact on power curve cleaning with and without pre-processing is not compared183

by the authors.184

Another paper that employed pre-processing was [10]. This study took a multi-step185

approach and implemented simple statistical methods prior to running the DBSCAN186

(density based spatial clustering of applications with noise) technique. The first step187
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eliminated negative power instances. The second and third steps applied the box plot188

rule (see Section 2.4 for an explanation of the box plot rule) to wind speed and189

power intervals respectively. Finally, the DBSCAN method was applied. The authors190

stated that the purpose of applying the box plot rule was to eliminate sparse outliers,191

so making the boundaries of the stacked outliers clearer and improve the efficacy of192

DBSCAN. The impacts of steps 1-3 were, unfortunately, not evaluated.193

Of all the papers referenced in the literature review, only two papers dealt with194

missing data, references [9] and [11]. The latter study, [11], concerns the detection of195

blade icing and does so by comparing 3 methods. These are: percentage deviation from196

the manufacturer’s WTPC, standard deviation of power for a wind speed interval, and197

using quantiles of power for a wind speed interval. Furthermore, this paper is the only198

one to use explicit fault or curtailment indications in the SCADA data; however, it199

should be noted that [9] did reference a study that used operator logs. This general200

lack of acknowledgment is unusual given that the international standard for power201

curve measurement, IEC 61400-12, prescribes a ”data quality check” of removing202

“unavailable” or ”out of range” measurements and data rejection based on power203

limited instances and faults with referencing to operator logs [12].204

On the topic of ice detection, deviation from the WTPC is a common approach205

for detection of ice accumulation on the blades. The authors note that ice detection206

studies are rarely referenced by the general WTPC cleaning community, and vice207

versa. Icing typically manifests itself as a deviation from the WTPC, more specifically208

a reduction in power compared to manufacturer’s specification. Other studies on this209

topic include [13] and [14]. In [13], the supervised learning Random Forest classifier210

(not to be confused with iForest) is used on pre-processed and labelled data. The data211

was pre-processed by the WT operator prior to being handed over to the authors,212

therefore the precise pre-processing methods are not discussed. In [14], kNN-regression213

is employed; however, data pre-processing is not mentioned.214

The prevailing attitude of group 2○ appears to be the less supervision a technique215

requires the better, provided this is not at the expense of results. Group 1○ better216

embraced the spirit of SCADA data but rarely acknowledge that explicit or implicit217
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indications of faults or curtailment exist, or suggest actively using this knowledge218

as part of pre-processing. Hesitation around using these indications is understandable219

given the potential for mislabelling, lags between a fault occurring and the alarm being220

logged, or the possibility that these logs simply do not exist. It follows that if an AD221

method can perform just as well without these logs then it would be undesirable to222

add steps into the process to unnecessarily act upon these logs. However, given the223

lack of acknowledgement, it is hard to say whether this hesitation is justified. It is the224

author’s experience that these explicit indications of operating status are included in225

SCADA far more regularly than they are not. After all, SCADA is Supervisory Control226

and Data Acquisition, if a system does not record these parameters it can hardly be227

called a SCADA system. As such, the lack of acknowledgement in the literature is228

surprising. The choice to omit knowledge of indications from an AD method is still a229

choice.230

1.3 Contributions and Paper Organisation231

The key contributions of this paper to current knowledge gaps are as follows:232

• The impact of filtering SCADA of explicit and obvious anomalies, such as faults233

and curtailment, based on indications in the data prior to running AD techniques234

was found to be understudied in the literature. This paper investigates this235

by comparing the performances of AD techniques with and without filtering236

applied.237

• Going beyond simply filtering out obvious/explicit anomalies, this paper also238

explores utilizing this data further. Where possible, the filtered data is used239

to form an anomaly-class. This allows classification-based anomaly detection240

methods to be used. Such an approach has not been found in the literature.241

• Underpinning the previous 2 contributions, simple rules for the filtering are242

developed based upon explicit fault and curtailment indications in the SCADA,243

as well as pitch values. These rules avoid the need to overly specify expectations244

of how the turbine should be performing, i.e. avoids the need to incorporate the245
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manufacturer-specified WTPC.246

• With the large assortment of AD techniques present in the literature, this paper247

provides comparison between 4 distinct techniques on their ability to clean the248

WTPC, whilst still maintaining the statistical variability in the wind speed249

feature.250

• Whilst papers in the literature have previously evaluated AD techniques on251

their ability to maintain data, ability to maintain statistical variability in the252

wind speed feature appears understudied. Such a metric would highlight good253

performers. This metric is introduced and applied here.254

• Finally, the importance of proper treatment of missing data, that is to say255

instances with some or all values missing or corrupted, is raised. Treatment of256

missing data appears to be rarely mentioned in the literature, in this paper the257

importance of such data in the context of anomaly detection is discussed.258

The remainder of this paper is organized as follows. Section 2 describes the259

methodology used in this paper. This includes descriptions of the 4 AD techniques,260

their operation, and how they are applied. Additionally, descriptions of 3 different261

filtering-based approaches to SCADA data are given. Section 3 describes the WTs262

and wind farms the SCADA data used in this paper originate from. Section 4 details263

and interprets the impacts of each AD method as well as comparing between them.264

Finally, Section 5 summarizes the key findings and contributions of the paper.265

2 Methodology266

The methodology of this study is shown in Figure 2. The methodology is composed267

of 3 main components:268

• Missing data treatment.269

• Anomaly detection and removal270

– Explicit and obvious anomaly filtering.271

– Anomaly detection proper.272
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• Evaluation273

Figure 2: Methodology for treatment of SCADA data for anomaly detection.

Treatment of missing data is discussed in Sections 2.1. From the choice to filter or274

not, 3 approaches of Unfiltered, Filtered, and Split are proposed in Section 2.2 along275

with a description of how filtering is performed. Five anomaly detection techniques,276

including ”do-nothing”, are described in Section 2.3 along with how they are applied.277

The combination of an approach and an AD technique is referred to herein as an ”AD278

method”. Finally, the evaluation of each AD method is detailed in Section 2.4.279
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2.1 Missing Data Treatment280

The treatment of missing data appears to be rarely discussed in papers relying on281

SCADA data. Looking again at the papers, only [9] and [11] make reference to handling282

missing data. As discussed in [15], missing data can be categorized into 3 groups:283

• Missing Completely at Random (MCAR): There is no correlation between the284

missingness of data and any variables.285

• Missing at Random (MAR): Missingness is correlated with a variable. The cause286

can be measured and included in missing data methods. Failure to include this287

would introduce bias into future data models.288

• Missing Not at Random (MNAR): Like MAR, missingness is correlated with a289

variable. However, the cause cannot be measured and so cannot be corrected290

for in missing data methods.291

The author notes the parallels between missing data and anomalous data. Take,292

for example, MAR and anomaly type 3. The descriptions are almost interchangeable.293

Reference [15] notes that common approaches to missing data are listwise deletion and294

data imputation. Listwise deletion is when an instance is simply deleted entirely. Both295

methods have been considered outdated for some time now due to their potential to296

introduce bias into data models. As a precursor to AD, one can see how these methods297

might be counterproductive by changing the nature of the data models.298

Keeping in mind the aim of not introducing bias, listwise deletion is only appro-299

priate if the data to be removed represents a small percentage of the overall data.300

This not only avoids introducing bias, but also maintains statistical power. Reference301

[15] suggested that less than 5% would be trivial. If greater percentages exist, then302

one must determine if the missingness is MCAR, MAR, or MNAR. For the purposes303

of this document, this is typically tested by a software package. Should MCAR or304

MAR be the cause, then Full-Information Maximum Likelihood (FIML) procedures305

are recommended. Similarly, the data imputation that would follow is also handled306

by the software and the theory is not explored here. In the unlikely event that the307

type of missingness is MNAR, then the methods available to correct the data become308
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few. Reference [15] suggested use of Pattern-Mixture methods, however, from a prag-309

matic approach to SCADA data WTPC cleaning, further use of that dataset should310

be questioned.311

In the context of WT SCADA data, it is common to have many instances that are312

entirely empty, barring features for WT identification, etc. These can be generated313

by many means such as clock time changes. These instances do not fall within the 3314

missing data categories and should be removed entirely.315

2.1.1 Application of Missing Data Treatment316

As per Figure 2, fully corrupted instances are first removed. The number of instances317

containing missing data is then calculated. If these represent less than 5% of the data318

then they are considered trivial (as per [15]) and are removed via listwise deletion.319

Given the number of WT SCADA sets available, if this 5% threshold is exceeded, the320

SCADA set will be abandoned and another adopted. This is a pragmatic approach to321

avoid the need to employ FIML software.322

2.2 Explicit and Obvious Anomaly Filtering323

As discussed in Section 1.2, SCADA data, by its nature, contains explicit indications324

of the operational state of a WT, such as fault alarms and operational time. Fur-325

thermore, some instances can be characterised as ”obvious” anomalies, namely high326

blade pitch values indicate the operator was stopping the turbine. Similarly, power327

reference values state the maximum power limit the operator imposed on the WT for328

each period. A value less than Pr indicates curtailment. These anomalies can be fil-329

tered from the datasets prior to running AD techniques. Alternatively, all data could330

be maintained, or the filtered data could be further leveraged. Arising from this, 3331

distinct approaches are proposed:332

• Unfiltered : No filtering occurs. As such, all SCADA data is kept and fed into333

AD processes.334

• Filtered : Filtering occurs and the filtered data is removed entirely. The remain-335
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ing data is fed into AD processes. Issues of stacking and high initial anomaly336

percentages should be reduced. However, any mislabelled instances are lost from337

the dataset, along with statistical power.338

• Split : The dataset is split in two according to the filtering rules. This forms an339

assumed-anomaly set and an assumed-normal set. AD techniques are run using340

both sets to identify instances that are mislabelled (i.e. in the wrong set). This341

approach attempts to make most use of all data.342

Comparison of Unfiltered, Filtered, and Split approaches will identify the impact343

of pre-processing the SCADA data.344

2.2.1 Application of Filtering345

SCADA data will be filtered out for Filtered and Split approaches if any of the following346

conditions are met:347

• SCADA ”Fault” feature indicates a fault;348

• SCADA ”Operational time” feature indicates the WT was not in operation for349

the full duration of recording period. In practice, this is if the WT operated for350

less than 10-minutes in the 10-minute period.351

• SCADA ”Power reference” feature value is less than 99% of Pr. This indicates352

the WT was curtailed.353

• SCADA blade pitch angle feature value is greater than 30°. This indicates the354

WT was stopped by the operator. As shown in Figure 3, stoppage occurs at355

pitch angles of 80-90°, a threshold of 30° is chosen to capture some operation-356

to-stop transition instances whilst not incorrectly filtering out normal instances.357

From Figure 4, it is clear that normal operation pitch angles end at approxi-358

mately 25°.359

RPM will not be used in indicating curtailment. Whilst a lack of rotation above360

cut-in wind speed would likely indicate curtailment, this introduces the need to define361

a WTPC. Given that the mechanism for stoppage is blade pitching (and braking),362
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using pitch avoids the need to define the WTPC or normal behaviour. This saves a363

considerable amount of time an effort for the user.364

Typical results of the filtering process are shown in Figure 3.365

Figure 3: Visualisation of the impacts of explicit and obvious filtering applied
to SCADA data from a WT from wind farm B. As shown by the orange, red,
and green instances, large amounts of non-normal instances can be filtered out.
The blue instances scattered across the figure, as well as the cluster of instances
around 25° pitch at 0kW, show that filtering alone is not sufficient and further
AD techniques need to be applied.
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Figure 4: Plot of pitch angle versus fraction of dataset smaller than said pitch
angle. Ten WTs from two wind farms are shown. A pitch angle of 30° is
indicated, greater than this an instance is labelled as curtailment according to
the filtering rules.

2.3 Anomaly Detection Algorithms366

Five AD techniques have been chosen, including ”do-nothing”. Each method is named367

using the format approach.technique and all method names are summarized in Table368

1. Their theory and how they are applied is described below.369

Table 1: Names of AD methods used in analysis.

Approach
Technique Unfiltered Filtered Split
base (none) unfiltered.base filtered.base split.base
iForest unfiltered.iForest filtered.iForest split.iForest
GMM unfiltered.GMM filtered.GMM split.GMM
LOF unfiltered.LOF filtered.LOF split.LOF
kNN N.A. N.A. split.kNN

Where data is scaled, this will be performed using robust scaling. A robust scaler370

is used under the assumption that the data contains outliers. Scaling is performed via371

Scikit module preprocessing.RobustScaler [16]. This is a standardization method which372

scales data using the interquartile range (IQR, see Section 2.3.3 for a description of373

IQR). As such, it is more robust to outliers than Min-Max scalers. Min-Max scalers374
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scale all values between 0 and 1. A spuriously large values value, say a reading erro-375

neously 10 times larger than the true value, would lead to all the other values being376

crushed into a small range during Min-Max scaling.377

2.3.1 Do Nothing - Base378

This ”technique” represents no action being taken. Note that this is still after filtering,379

hence the unfiltered.base method uses all data and the filtered.base method uses only380

filtered data. The split.base method is identical to the filtered.base method as, by the381

nature of this being the base method, no further action can be taken.382

2.3.2 iForest383

Isolation Forest (iForest) is a relatively new technique in the field of AD and was384

developed and introduced by [17]. iForests are ensembles of ”iTrees”. These iTrees are385

an evolution of binary search trees in that they partition data, however, in iForests386

the splits are made at random. For multiple features, a random feature is selected387

followed by the random split. The shorter an instance’s path length the more likely388

an instance is to be an anomaly. The underlying theory being that normal instances389

occur in the same region as other instances, hence requiring many splits to be isolated.390

Conversely, anomalies exist in sparsely populated regions and so require far fewer splits391

to be isolated. This is shown in Figure 5.392

iTrees work through the dataset in samples, rather than process the entire dataset393

in one step. According to the authors, a small sample sizes allows iForest to overcome394

problems of masking and swamping. A sample size of 28 (256) is recommended.395
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Figure 5: Visualisation of the iForest technique isolating a normal instance (a)
and an anomalous instance (b). Figure from [17].

As per the original paper, iForests derive the anomaly score for an instance x from396

its averaged path length, h(x). The anomaly score for an instance x, given a set of n397

instances, is given as:398

s(x, n) = 2
−E(h(x))

c(n) (1)

Where c(n) is the average of h(x) given n and E(h(x)) is the average path length of399

x across all the iTrees. If s is close to 1, the instance is likely to be an anomaly, if less400

than 0.5, then it is likely not an anomaly. According to the authors, if all instances401

return an s value of approximately 0.5 then the set does not have any anomalies.402

The main advantage of iForests are that they are extremely quick to run. iForest403

does not perform any profiling, distance, density, or co-variance calculations so the404

computational power required is tiny relative to other AD techniques. iForest process-405

ing time can be further reduced by imposing a height limit upon the iTrees, beyond406

this an instance would be considered normal.407

iForest will be implemented in Python using Sklearn-ensemble-IsolationForest, an408

algorithm from Scikit-Learn [16]. Default settings of 100 trees and a sample size of 28409

will be used, along with no assumption for percentage of contamination. Note that no410

data scaling will be required prior to applying the iForest technique. With reference to411

the Split approach, there appears to be no way to further utilize the initially-anomalous412

data. As such, split.iForest and filtered.iForest methods are identical.413
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2.3.3 Gaussian Mixture Modelling414

Gaussian Mixture Model (GMM) is a model-based technique that can be adapted415

for AD. The underlying assumption is that the model being analysed is composed416

of k Gaussian distributions. Normal instances are generated from these Gaussian417

distributions whilst anomalies are not and so occur in low probability spaces [3].418

As per [18], for p variables, each distribution has a mean for each variable, µ =419

(µ1, µ2, ...µp). Each distribution will also have a covariance matrix, containing covari-420

ance values for each pair of variables. The means and covariance matrix values are421

estimated using Maximum Likelihood Estimates.422

Anomaly scores are simply the distance from the instance to the mean. This423

is usually Euclidean distance, however some methods use Mahalanobis distance. As424

such, each instance has as many anomaly scores as there are Gaussian distributions425

assumed. There appears to be no definitive way to convert these anomaly scores to426

classifications but many have been proposed. Reference [19] suggests assigning any427

score greater than 3 standard deviations away from the mean score as an anomaly.428

Reference [20] suggests using the box-plot rule. This is the range between the whiskers429

of a box plot, equivalent to plower and pupper given as:430

[plower, pupper] = [Q25 − 1.5× IQR,Q75 + 1.5× IQR] (2)

Where IQR is the interquartile range, equivalent to the difference of Q75 and Q25.431

The number of mixtures used in the model is typically determined using BIC432

(Bayesian Information Criterion) curves. The theories behind BIC curves are not433

explored here. The number of mixtures producing the lowest BIC scores should be434

used, however, this is not an absolute rule and often the curve ”elbow” will be used.435

The elbow is, essentially, the point of diminishing returns. Adding more mixtures no436

longer results in a similar drop in BIC score as it did for adding mixtures previously,437

even if some small drop is witnessed [21].438

GMM will be implemented in Python using Sklearn.mixture.GaussianMixture, an439

algorithm from Scikit-Learn [16]. The number of mixtures to use has been determined440
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using the BIC curve process on a reduced set of features. These were: all wind speed441

features, temperature, and mean active power (see Section 3 for full description of442

SCADA features). Ten randomly selected turbines were selected (5 from each wind443

farm, see Section 3) and their curves determined. The curve elbow was found to be444

at 3 mixtures as shown in Figure 6.445

Figure 6: BIC scores versus number of Gaussian mixtures assumed for 10
randomly selected turbines (5 from each wind farm). Raw SCADA data was
used.

Unlike the other techniques, Sklearn-mixture-GaussianMixture does not have a446

build-in classification method; however, it does have the score samples method, which447

calculates probabilities of each instance belonging to each of the 3 mixtures. For each448

instance, the maximum of the 3 likelihoods will be taken. The box-plot rule will then449

be applied to determine normal and anomalous data.450

In the case of unfiltered.GMM all data will be used. For filtered.GMM only filtered451

data will be used. For split.GMM, an altogether different approach will be taken. The452

SCADA sets will be split into 2 groups based on the filtering, an assumed-normal453

group and an assumed-anomalous group. From each group, the data will be further454

split into train and test data on an 80-20% split. The training data will be used to455

train a GMM per group. The testing data will be fed into both models to see which456

model they have greater affinity. The results are recorded. This entire process is457
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repeated 4 more times with different portions of the data forming the test data (i.e.458

cross-validated) until every instance has been assigned as being more likely normal or459

more likely anomalous.460

2.3.4 LOF461

Local Outlier Factor (LOF) is a relative-density based technique proposed by [22].462

LOF is concerned with assigning a degree of outlier-ness to an instance, rather than463

a hard label of 0 or 1. The LOF method uses a local approach, rather than global,464

hence it is useful in applications where non-homogeneous densities are acceptable.465

The LOF method first requires the number of nearest neighbours, MinPts, to be466

chosen. Following this, the LOF of a point x is given as:467

LOFMinPts(x) =

∑
o∈NMinPts(x)

lrdMinPts(o)
lrdMinPts(x)

|NMinPts(x)|
(3)

To interpret the above, the LOF of an instance is the ratio of that instance’s local468

reach density, lrd, to that of the average lrd of its MinPts neighbours. The lrd of469

instance x is given as:470

lrdMinPts(x) = 1/

[∑
o∈NMinPts(x)

reach-distMinPts(x, o)

|NMinPts(x)|

]
(4)

The reach-dist is essentially the euclidean distance between two points, however,471

if the distance becomes very small, this reverts to a set value. This minor change472

has the effect of smoothing LOF scores and making differentiation between inliers and473

outliers easier.474

In Figure 7 the lrd of an anomalous instance p with MinPts value of 3 is illus-475

trated. The combined reach distances of p to its 3 nearest neighbours is clearly far476

larger than the same metric for those 3 neighbours. This results in a low lrd compared477

to the neighbours, i.e. a large volume is required to capture the specified nearest478

neighbours. Such a large relative difference in lrd then results in a high value for479

LOFMinPts(p), as per Equation 3.480

22



Figure 7: LOF in action, adapted from [22]. The 3 nearest neighbours of p are
shown by the green, blue, and red points. Each of their 3 nearest neighbours
are shown with the dashed lines of the same colours. Instance p is clearly an
outlier with respect to the rest of the set due to its large reach and resulting
low local reachability density.

According to [22], most instances should have a LOF value of 1. If the LOF value481

is greater than 1, it is likely an outlier and sits in a sparsely populated region. A LOF482

of less than 1 and it is likely an inlier in a densely populated region. There appears483

to be no definitive threshold LOF value to label an instance an outlier. The value484

that will be used in this study is 1.5, the default used by the Python module sklearn-485

neighbors-LocalOutlierFactor, as discussed below. Similarly, there is no single value for486

MinPts recommended by the authors of the LOF method, although no smaller than487

10 is recommended to avoid statistical fluctuations. An appropriate value is dependent488

on the dataset being investigated, if too large a value is used then clusters that are489

small, but valid, are unfairly treated.490

LOF will be implemented in Python using sklearn-neighbors-LocalOutlierFactor, an491

algorithm from Scikit-Learn [16]. A MinPts value of 700 will be used. This is based492

upon a brief analysis ofMinPts with removal rates for randomly selected turbines from493
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both wind farms. Removal rates were found to settle (in terms of visual impact on494

the WTPC) at approximately MinPts = 400, with no change between this value and495

MinPts = 1000. It may seem like an unfair advantage has been gotten by choosing496

the most favourable value of MinPts; however, note that all the data is unlabelled497

and that choice of MinPts here is based on removal rates, not accuracy. The fact that498

a conservative value of MinPts was ”manually” found is a matter of convenience to499

save coding and computational time, as this process could be automated.500

It is important to note that multidimensional data must be scaled prior to use in501

LOF so as to account for the different dimensions of features in distance calculations.502

LOF has no training stage and has only a fit-predict method. Note that the503

nature of LOF is to make an astronomical number of calculations. As such, for high504

dimensional data, users of this technique may need to reduce the number of dimensions505

used to make the computation time feasible. With reference to the Split approach,506

there appears to be no way to further utilize the initially-anomalous data. As such,507

split.LOF and filtered.LOF methods are identical.508

2.3.5 k Nearest Neighbours509

k Nearest Neighbours (kNN) is a nearest-neighbours technique. This technique is a510

classification method but is adapted here for AD. kNN dates back to 1951 and was511

introduced in [23]. The underlying assumption is that normal instances occur close512

to other normal instances, and the same is true for anomalies. As such, this method513

requires that labelled instances already exist so that new, unlabelled, instances can be514

classified.515

The kNN technique first involves specifying the number of nearest neighbours to516

consider, k. A distance metric, such as Euclidean, is then specified. An unlabelled517

instance is then considered against a labelled dataset. Its k nearest neighbours are then518

determined. The unlabelled instance is then assigned to whichever class comprises the519

majority of neighbours. This is illustrated in Figure 8. Variations upon this technique520

can be to add weightings to certain instances, for example if these instances have been521

chosen by experts.522

24



Figure 8: Assigning an unlabelled instance a class via kNN using k = 5. The
new instance would be assigned to the blue class.

kNN will be implemented in Python using Sklearn.neighbors.KNeighborsClassifier,523

an algorithm from Scikit-Learn [16]. This technique is exclusive to the Split approach524

as it requires classes to be assigned. First, the best k value will be chosen from options525

of 3, 5, 7, and 9. This will be determined by assigning all data classes based upon526

filtering. Then, the data will be split into train and test data on an 80-20% split. The527

value of k that produces the highest accuracy for the test set will then be used.528

Split.kNN will then be implemented in a similar fashion as split.GMM. All data529

will be given labels based upon filtering. Eighty percent of each group (normal and530

anomalous) will then be used to train a classifier. The classes of remaining remaining531

20% will then be predicted using the k value determined above. This will be repeated532

4 further times, with different portions of the data forming training and testing sets,533

to determine a classification for every instance, i.e. 5-fold cross validation.534

Note that there is a need to scale features when using kNN due to the use of535

distance metrics.536

25



2.4 Evaluation537

To paraphrase from [8], the goal of AD in cleaning the WTPC is ”to reject potential538

[anomalies] whilst broadly retaining the statistical characteristics of the WTPC, in539

particular the mean values of the measurements”. As such, the efficacy of each AD540

method is assessed by three measures:541

• Prediction error on the ”cleaned” dataset, eM .542

• Elimination rate, i.e. percentage of data removed, γ.543

• Change to wind speed interquartile range, δIQRu.544

Prediction error, eM : A neural network (NN) will be fitted to each AD method’s545

cleaned WTPC using a standard train-test split. The prediction error will then be546

found and converted to a percentage of the Pr to allow for comparison between turbines547

of different ratings. This is calculated as follows:548

eM =
RMSE(u, h)

Pr
× 100% (5)

Where Pr is the rating of the WT, and RMSE(u, h) is the test-set prediction root549

mean square error of a neural network trained on the training set, given by:550

RMSE(u, h) =

√∑i=1

n
(h(ui)− pi)

2

n
(6)

Where n is the total number of instances in the prediction set, h(ui) is the predicted551

value of power for instance i with wind speed u, and pi is the actual power for that552

instance.553

A simple NN will be constructed using TensorFlow and run using Google Colab’s554

TPUs (Intel® Xeon® CPU @ 2.30GHz, 64 GB RAM). A shallow configuration is555

chosen to allow for testing within a reasonable time frame. With 10 unique methods556

to run across 20 WT SCADA sets, this results in constructing, training, and testing557

200 NNs. The NN will consist of 1 input layer, 1 output layer, and 2 dense inner layers558

each with 64 neurons. Activation functions of the middle layers will be Rectified Linear559

Units. Given that the NN has only 1 input (wind speed) and 1 output (power), and560
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that the focus of results is in the comparison between methods, such a shallow NN is561

deemed appropriate and optimization of each NN is unnecessary. Obtaining results for562

a large number of turbines, therefore determining more reliable averages, is preferable563

to highly accurate results for a small numbers of turbines.564

Elimination rate, γ: As per [10], elimination rate is defined as the percentage of565

data removed:566

γ =
Nb −Na

Nb
× 100% (7)

Where Nb is the original number of instances in the SCADA set, and Na is the567

number of instances after the AD method has removed the anomalies it has identified.568

If methods have similar prediction errors, the method that retains more data would569

clearly be superior. Conversely, any methods that rig the system by removing high570

percentages of data, so as to only make predictions over a very small range, can be571

identified as performing poorly.572

Change to wind speed interquartile range, δIQRu: The spread of the wind573

speed feature will be recorded both before and after anomaly removal via IQR. As per574

Section 2.3.3, IQR is simply the difference of Q75 and Q25. Note: this is different575

from the box plot rule which includes the whiskers of the box plot. Change to IQRu576

is calculated as:577

δIQRu =
IQRu,b − IQRu,a

IQRu,b
× 100% (8)

Where IQRu,b is the IQR of wind speed before the AD process, and IQRu,a is the578

IQR of wind speed after the AD process. IQR is chosen as it is robust to outliers than579

simply taking the absolute range as an anomalous measurement might read an order of580

magnitude higher, thus the change to absolute range would be drastic if this instance581

was (correctly) removed. By incorporating this IQR change and percentage removal582

a better representation of the method’s quality can be achieved. Given that the AD583

methods will be applied in an unsupervised way, with error being calculated using a584

dataset the AD method has been applied to, in theory, a method could achieve a low585

error by reducing the SCADA set down to a narrow, predictable band. Incorporating586
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data and wind speed variability retention allows for better understanding of a method’s587

appropriateness for AD in WTPC cleaning.588

3 Data Description589

3.1 Wind Farms590

SCADA data from 2 offshore wind farms has been provided. These are referred to as591

wind farms A and B. The characteristics of both wind farms are summarised in Table592

2.593

Table 2: Characteristics of the 2 wind farms used in the analysis.

Wind farm A B

Location North Sea, UK Northern Europe
Distance from shore < 25km < 25km

No. turbines < 50 > 50
Turbines used in analysis 10, randomly selected 10, randomly selected

SCADA duration 24 months 18 months
SCADA frequency ten-minute ten-minute

3.2 Feature Engineering594

The features provided in the SCADA sets is shown in Table 3. Note that wind speeds595

are from nacelle anemometers for all WTs. Timestamps were not included in the AD596

process, each instance is considered in isolation. All features of ”Yaw” and ”RPM”597

were also dropped. These features are ineffective for determining curtailment (see598

Section 2.2.1) and are not useful in generalizing the turbine power output for a site’s599

given wind regime. Air density was not calculated due to a lack of pressure readings;600

regardless, variations in air density have little impact upon the WTPC [24].601

All other features are included in the AD process (including the treatment of602

missing data). No further features were present in the SCADA set. The author notes603

that SCADA features will vary between SCADA systems and some may contain more604

explicit indications of operating mode.605
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Table 3: SCADA features with indication of use in Anomaly Detection. Blanks
indicate that the feature was not present in the SCADA data.

Feature Mean Min Max Std. Dev.

Timestamp N
wind speed Y Y Y Y

Yaw N N N N
Pitch Y N N N
RPM N N N N

Power ref. Y
Power Y N N N

Temperature Y
Operation time Y

Fault Y

4 Results and Discussion606

All SCADA datasets were cleaned of missing data instances via listwise deletion prior607

to performing filtering and AD. The percentage of the SCADA that was erroneous608

was less than 5% in every case and, therefore, less than the threshold value for being609

considered negligible. For wind farms A and B, erroneous instances made up an average610

of 0.23% and 0.06% respectively. This excludes instances in which all features were611

missing. As such, no substitution of SCADA sets was necessary.612

Each anomaly detection method was applied to each of the 20 turbine SCADA sets.613

The impacts of each AD method upon the WTPC are visualized in Figure 9 with614

colours indicating instances as being determined normal, anomalous, or filtered out615

by the AD method. Note that kNN technique only applies to the split approach and616

that iForest and LOF techniques are identical between filtered and split approaches,617

hence these results are not shown.618
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Figure 9: Visualisation of the impacts of different AD techniques and ap-
proaches when applied to a WT from wind farm A. As per the legend, different
colours indicate whether instances were filtered out prior to AD or later labelled
as ”normal” or ”anomalous” by the AD technique. In each subplot, the test-set
predictions of the NN used for evaluation is shown by the purple line.

From an inspection of Figure 9, the differences in performances between tech-619

niques and approaches can be seen. Comparing unfiltered.base and filtered.base, it is620
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clear that applying simple filtering rules greatly cleaned the WTPC. However, many621

Type 3 (random) anomalies still exist, as does a group of Type 2 (curtailment) in-622

stances immediately under the flat part of the WTPC. This group of instances is most623

visible in the LOF methods. Inspecting the unfiltered methods, it appears none man-624

aged to deal with the Type 1 (stoppage) anomalies well, especially not at lower wind625

speeds. Additionally, none managed to remove the Type 2 group discussed previously.626

Looking at the iForest results, this technique did not handle the flat, Pr part of627

the WTPC well. This technique does appear to have dealt with Type 3 anomalies628

reasonably well. Moving on to the GMM technique, all three variations appear to629

have removed the majority of Type 3 anomalies. Unfiltered.GMM appears to have630

struggled at the knee of the WTPC and not removed a group of Type 2 anomalies631

at approximately 80% of Pr. The filtered and split variations of GMM are the only632

methods which removed the Type 2 group at approximately immediately under the633

flat part of the WTPC. Inspecting the LOF technique, it appears to have been very634

conservative and only removed the most isolated of instances. Stacking was clearly635

an issue for unfiltered.LOF. Filtered.LOF only eliminated a handful of instances after636

filtering occurred. Finally, kNN appears to have performed worse than filtered.base.637

It appears initially anomalous points have been reclassified to normal, rather than the638

other way around.639

As per the methodology, prediction error as a percentage of Pr (eM ), elimination640

rate (γ), and interquartile range of the wind speed feature (IQRu) were determined641

for each cleaned dataset, along with a percentage change (δ) from the base case, where642

appropriate. The results have been averaged across the 20 turbines and are shown in643

Table 4 and Table 5.644
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Table 4: Results by method. Note that split and filtered approaches are identi-
cal for the techniques of base, iForest, and LOF. Elimination rate includes both
filtered data and that detected as anomalous.

eM IQRu

Method pre post
δeM
(%)

γ pre post
δIQRu

(%)
unfiltered.base 11.35 NA NA NA 5.86 NA NA
unfiltered.iForest 11.35 4.89 56.95 16.02 5.86 5.16 11.94
unfiltered.GMM 11.35 5.53 51.23 6.20 5.86 5.77 1.60
unfiltered.LOF 11.35 8.06 28.94 1.67 5.86 5.84 0.47
filtered.base 11.35 3.78 66.71 10.97 5.86 5.54 5.50
filtered.iForest 11.35 3.73 67.17 27.47 5.86 4.78 18.51
filtered.GMM 11.35 3.38 70.25 15.13 5.86 5.50 6.29
filtered.LOF 11.35 3.72 67.19 11.74 5.86 5.52 5.91
split.GMM 11.35 3.39 70.11 14.11 5.86 5.48 6.62
split.kNN 11.35 4.05 64.35 7.99 5.86 5.62 4.12

Table 5: Subsequent rates of evaluation metrics, calculated by method. Note
that split and filtered approaches are identical for the techniques of base, iForest,
and LOF.

Method
δeM
/γ

δeM
/δIQRu

δIQRu

/γ
unfiltered.base NA NA NA
unfiltered.iForest 3.55 4.77 0.75
unfiltered.GMM 8.26 31.97 0.26
unfiltered.LOF 17.33 61.73 0.28
filtered.base 6.08 12.12 0.50
filtered.iForest 2.45 3.63 0.67
filtered.GMM 4.64 11.16 0.42
filtered.LOF 5.72 11.36 0.50
split.GMM 4.97 10.58 0.47
split.kNN 8.06 15.61 0.52

4.1 Impact of Filtering645

The impact of filtering alone can be isolated by comparing unfiltered.base and fil-646

tered.base. From Figure 9, it is clear that a large amount of data was removed, this647

averaged 10.97% for these wind farms. This resulted in a substantial improvement648

to prediction error, eM , with an average decrease of 66.7% from unfiltered.base to fil-649
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tered.base. This occurred at a minimal change to IQRu with only a 5% reduction.650

The average eM of unfiltered and filtered methods was 7.46% and 3.65% respectively.651

Clearly, filtering was extremely beneficial to prediction error due to the reduced influ-652

ence of stacked anomalies.653

4.2 Error and Elimination Rate654

The relationship between eM and γ is explored in Figure 10. Elimination rate includes655

both data filtered out prior to AD as well as data labelled as anomalous by the AD656

method. A polynomial line of best fit has been added.657

Figure 10: Results: Comparison of AD method averaged performance, γ versus
em. On the x-axis are the percentages of SCADA data removed, γ, this includes
both filtered and that eliminated by the AD technique. On the y-axis are
prediction errors of the ”cleaned” SCADA data, em, presented as a percentage
of Pr.

Looking at these results, it is initially difficult to separate which is the greatest658

driver of reducing error, the approach or the method. From Figure 10, there appears659

to be a correlation between prediction error and amount of data removed, as shown by660

the line of best fit. This is intuitive, as removing anomalies should increase accuracy661
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and will reduce the amount of data remaining. However, the gradient of the line of662

best fit shows that not all anomalies have equal influence on error. Using the line663

of best fit, removing 10% of instances reduces error by 55.2% compared to retaining664

all instances. Removing a further 10% of data only reduces error by a further 16.2%665

(total reduction of 71.2%). Going beyond a γ of 17% appears to have no substantial666

improvement on prediction error with the final method of filtered.iForest coming in at667

a γ of 27.5% and an eM of 3.73%. The high γ rates of the iForest methods appears to668

be due to classifying large portions of the rated (flat) part of the WTPC as anomalous.669

Note that this is a simple part of the curve to make power predictions for, hence the670

generally low em is more impressive.671

In terms of improvement to prediction error per percentage of data removed672

(δeM/γ), the unfiltered.LOF method’s performance is, by some margin, the best at673

17.3 (see Table 4). This is slightly more than double that of the next best method,674

which is unfiltered.GMM at 8.26. However, assessment of unfiltered.LOF ’s perfor-675

mance must be tempered by its poor absolute prediction error. Except for the base-676

case itself (unfiltered.base), unfiltered.LOF ranks as the worst method for eM . At a677

high level, this trade-off suggests that different requirements of the SCADA data can678

determine the choice in AD method. For example, if outright smallest prediction error679

was preferred, no matter the elimination rate, filtered.GMM may be suitable. If the680

preference was to retain data as far as possible then unfiltered.LOF may be selected.681

4.3 Error and wind speed Variability682

A similar trend can be seen for eM and change to wind speed variability, δIQRu, as683

shown in Figure 11. This equates to an approximately linear relationship between γ684

and δIQRu.685

From the results for filtered.base it appears that some reduction in IQRu is accept-686

able. This method reduces IQRu by 5.5% and, looking at the WTPC in Figure 9, it687

appears that this method has high precision but low recall. Precision is the measure688

of how many instances labelled as ”anomaly” truly were anomalies. Recall is the total689

amount of anomalies identified as a portion of all the anomalies i.e. true positives690
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versus the set of true positives and false negatives.691

Comparing filtered and unfiltered methods, it is clear that the latter have the692

lowest δIQRu. The unfiltered methods average a IQRu of 5.66 (change of 3.5%),693

whilst filtered methods have an average of 5.33 (change of 9.1%). The split methods694

fair marginally better than filtered methods at an average of 5.39 (change of 8.14%).695

Significantly further along the x-axis we have the two iForest methods. These696

methods have comparable prediction error results as others. Looking at their WTPCs697

in Figure 9, it seems the high δIQR for these SCADA sets is a result of labelling698

high and very low wind speeds as anomalous.699

Figure 11: Results: Comparison of AD method averaged performance, δIQRu

versus em. On the x-axis are the percentage changes to windspeed IQR of each
method, before and after it was applied, δIQRu. On the y-axis are prediction
errors of the ”cleaned” SCADA data, em, presented as a percentage of Pr.

4.4 Advantages to Splitting?700

As discussed previously, it is clear that from an absolute error perspective filtered701

produces far better results than unfiltered, but we must also consider split. As discussed702

in the methodology, the methods of base, iForest, and LOF are the same as for split703
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and filtered so cannot be used to isolate the impact of split. GMM differs between704

split and filtered, and kNN is unique to split.705

For GMM, split and filtered had broadly similar results. This is especially clear706

when looking at Figure 10. Whilst the 2 approaches had similar results in terms of707

error and IQRu, split provided a very slight advantage with γ. Filtered.GMM removed708

15.13% of data, marginally more than split.GMM with 14.11%. As such, split.GMM709

may be appropriate in applications where high data retention is preferred.710

For split.kNN, this method appeared to have good performance in terms of eM/γ711

and eM/IQRu but ultimately ranked poorly in terms of absolute eM . A reason for712

this can be found by comparing split.KNN ’s initial class assignments (i.e. the same as713

filtered.base) against final assignments, as shown in Figure 12. It appears the method714

has incorrectly flipped many instances back from anomalous to normal so increasing715

γ but reducing eM . For the example WT shown in the figure, some 21,000 instances716

were initially labelled as anomalous. Of these, approximately 9,000 (42%) flipped717

class to ”normal”. Approximately 4,000 initially ”normal” instances were assigned as718

”anomalous”. This is likely due to unbalanced class numbers whilst new instances719

were being assigned. In the example, there were 3.5 times more initial ”normal”720

instances than ”anomalies”. This challenge should be accounted for in future research,721

potentially through use of weightings.722
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Figure 12: Visualisation of the change of classes from initial to final classifi-
cation for the split.kNN method when applied to a WT from wind farm A. For
the legend, ”N” refers to ”normal”, ”A” for ”anomalous”, and ”>” the change
from initial to final classification. The number of instances belonging to each
category is shown in the legend.

4.5 Choice of AD Method723

As discussed previously, the AD methods have been shown to have different perfor-724

mance characteristics in terms of prediction error, elimination rate, and change to the725

wind speed feature characteristics. The choice of AD method would therefore depend726

on the what the user of the SCADA data wishes to achieve. Two distinct scenarios727

are: (a) the lowest prediction error possible without unnecessary removal of SCADA728

data and change to wind speed variability; and (b) improving prediction error whilst729

maintaining as much SCADA data as possible.730

For scenario (a), we start by examining filtered.base. As discussed previously, it731

appears likely that this method has high precision but low recall. As such, these results732

are used as a starting point from which to compare the other methods. This is shown733

in Table 6. Using this table, we can remove any methods with lower elimination rates734

on the ground of being less effective. These are: unfiltered.base, unfiltered.GMM, unfil-735
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Table 6: Results by method and relative to the filtered.base method. Note that
split and filtered approaches are identical for the techniques of base, iForest,
and LOF. Elimination rate includes both filtered data and that detected as
anomalous.

Method em

em
relative to
filtered.base

γ
γ
relative to
filtered.base

IQRu,a

IQRu,a

relative to
filtered.base

unfiltered.base 11.35 -7.57 0.00 -10.97 5.86 0.32
unfiltered.iForest 4.89 -1.11 16.02 5.06 5.16 -0.38
unfiltered.GMM 5.53 -1.76 6.20 -4.77 5.77 0.23
unfiltered.LOF 8.06 -4.29 1.67 -9.30 5.84 0.30
filtered.base 3.78 - 10.97 - 5.54 -
filtered.iForest 3.73 0.05 27.47 16.50 4.78 -0.76
filtered.GMM 3.38 0.40 15.13 4.16 5.50 -0.05
filtered.LOF 3.72 0.05 11.74 0.77 5.52 -0.02
split.GMM 3.39 0.38 14.11 3.14 5.48 -0.07
split.kNN 4.05 -0.27 7.99 -2.98 5.62 0.08

tered.LOF, and split.kNN. Whilst this is not a guarantee that the remaining methods736

eliminated the same instances as filtered.base, looking at Figure 9, this does appear to737

be the case. Of the remaining 6 methods, the 2 iForest methods, (filtered.iForest and738

unfiltered.iForest), can be removed as they have low rates of δem/δIQRu compared to739

the other 4 methods, as per Table 5.740

This leaves 4 unique methods in consideration. In order of eM , these are: fil-741

tered.base itself (3.78%), filtered.LOF (3.72%), split.GMM (3.39%), and filtered.GMM742

(3.38%). The 2 GMM methods were clearly the more accurate and both are recom-743

mended for scenario (a). As discussed in Section 4.4, it is slightly more advantageous744

to use split.GMM over filtered.GMM ; however, it should be noted that split.GMM was745

considerably more challenging to implement than filtered.GMM due to the cross vali-746

dations required (see Section 2.3). As such, some users may prefer filtered.GMM.747

For scenario (b), we are concerned with methods with high rates of δeM/δIQRu748

i.e. improvement to prediction error at minimal cost to the wind speed feature. The749

3 methods with the highest rates in this category are: unfiltered.LOF (61.73), unfil-750

tered.GMM (31.97), and split.kNN (15.61), according to Table 5. From Figure 9,751

unfiltered.LOF was clearly overly conservative and can be eliminated. The remaining 2752
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methods showed similar results for their WTPCs; however, unfiltered.GMM is the bet-753

ter choice with a δIQRu approximately half that of split.kNN whilst still maintaining754

a marked decrease in error from the base case (δeM of 51.23%).755

5 Conclusion756

Three pre-processing approaches have been compared, along with 5 anomaly detection757

techniques for a total of 10 unique AD methods. These methods have been applied to758

SCADA data from 2 different wind farms for a total of 20 turbines. The efficacy of the759

AD methods have been studied in terms of improvements to power prediction error,760

amounts of data removed, and ability to retain the underlying statistical characteristics761

of the wind speed feature. From this, and with respect to the SCADA sets used in the762

study, the following conclusions are drawn:763

• It is beneficial to pre-process the SCADA data by filtering out obvious anomalies764

and explicit instances of faults/curtailments prior to applying anomaly detection765

techniques.766

• A pitch angle of >30° is proven to be a reasonable threshold for the above767

pre-processing.768

• All anomalies do not have equal impact upon error. The rate of prediction error769

reduction reduces as more data is removed and anomalies become harder to770

detect.771

• The AD method of choice is dependent on the application, with some methods772

achieving lower error at the cost of increasing percentages of data removal and773

reduction in wind speed variability.774

• The GMM technique is shown as an effective method to significantly reduce error775

whilst maintaining statistical characteristics of wind speed data. This is espe-776

cially so when combined with pre-processing anomalies, in which error reduces777

by more than 70% compared to no pre-processing and no anomaly detection778

technique.779
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• The split.GMM method appear to maintain marginally more data than its780

filtered counterpart, however, the increased complexity in implementing this781

method may make it undesirable.782

Additionally, the importance of proper treatment of SCADA data regarding miss-783

ing data has been raised. Given that SCADA data is the basis of so many findings,784

conclusions, and concepts it is paramount that this treatment is discussed so that all785

that follows can be relied upon or can be replicated by others.786
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