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We consider scalar extensions of the Standard Model (SM) and their effective field theoretic
generalizations to illustrate the phenomenological connection between precision measurements of the
anomalous magnetic moment of the muon aμ, precision Higgs measurements, and direct collider
sensitivity. To this end, we consider charged beyond Standard Model (BSM) scalar sectors of the
Zee-Babu type for which we develop a consistent and complete dimension-5 and -6 effective field theory
extensions. This enables us to track generic new physics effects that interact with the SM predominantly via
radiative interactions. While the operator space is high dimensional, the intersection of exotics searches at
the Large Hadron Collider (LHC), Higgs signal strength, and anomalous muon magnetic measurements is
manageably small. We find that consistency of LHC Higgs observations and aμ requires a significant
deformation of the new states’ electroweak properties. Evidence in searches for doubly charged scalars as
currently pursued by the LHC experiments can be used to further tension the BSMEFT parameter space and
resolve blind directions in the effective field theory (EFT)-extended Zee-Babu scenario.
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I. INTRODUCTION

The search for new physics beyond the Standard Model
(SM), albeit so far unsuccessful at the Large Hadron
Collider (LHC), is key to the current particle physics
phenomenology program. The recent measurement of the
anomalous muon magnetic moment,

aμ ¼
ðg − 2Þμ

2
; ð1Þ

at Fermilab [1] aligns with the previous results obtained
at the BNL E821 experiment [2], leading to a ∼4σ
discrepancy [3–22] (see also [23]),

Δaμ ¼ aμðexpÞ − aμðSMÞ ¼ ð25.1� 5.9Þ × 10−10: ð2Þ

While this deviation is a long standing and potentially
tantalizing hint for the existence of new interactions beyond
the SM that deserves further scrutiny from all angles (see,
e.g., [24]), it is flanked by broad consistency of collider
measurements with the SM. In particular, this includes an
increasing statistical control in searches for new heavy
beyond Standard Model (BSM) states and an enhanced
precision in BSM tell-tale modifications of, e.g., precision
Higgs data.
On the one hand, one interpretation of this result is a

large scale separation between the SM and BSM inter-
actions, perhaps in the range Λ≳ 10 TeV [25–33]. On the
other hand, such tight constraints on the scale of new
physics, while being bad news for the ongoing collider
program, are very much a statement of model-specific
correlations, which can be consistently modified by
employing effective field theory (EFT) techniques. This
is the purpose of this work: we perform a case study of the
interplay of Higgs precision physics, aμ, and direct LHC
sensitivity for the Zee-Babu model [34–36], extended by
effective interactions. The Zee-Babu model is the simplest
framework containing new exotic states (singly and a
doubly charged scalars) that also address open questions
in neutrino physics. It is known that the Zee-Babu
extension leads to a negative contribution to the anomalous
magnetic moment [37–40]. At face value, this means that
this scenario is under pressure by the anomalous magnetic
moment measurement. However, when supplied with
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additional effective interaction related momentum enhance-
ments that predominantly communicate with the scalar
sector extension, it could, in principle, address this short-
coming and thereby resurrect the model’s many theoreti-
cally appealing implications. In parallel, we demonstrate
that the EFT extension of the Zee-Babu model becomes
particularly transparent when we connect aμ with available
Higgs data constraints and direct search strategies for exotic
states. This motivates the considered Zee-Babu extension
as an interesting candidate theory to study the phenom-
enology across the precision and high energy frontiers in
the future (see also [41]).
We note that our approach extends earlier, purely

SMEFT [42] investigations (see, e.g., [43]) by reintroduc-
ing a model-specific angle. In the SMEFT context, the
attained precision of aμ can push correlated new physics
constraints into the PeV regime [44], rendering the present
and any future collider physics program largely blind to the
dynamics of Δaμ. Addressing cancellations at low scales
(i.e., the muon mass) by means of deformed interactions of
new states that fall into the kinematic coverage of the LHC
allows us to phenomenologically generalize the SMEFT-
based findings and further motivate searches for, e.g.,
doubly charged scalars in the future.1

This work is organized as follows: In Sec. II, we briefly
review the Zee-Babu model before providing a detailed
discussion of its dimension-5 and -6 EFT extensions. In
Sec. III, we turn to the phenomenological implications that
we focus on in this paper, i.e., the anomalous muon
magnetic moment in Sec. III A, expected modifications
of 125 GeV Higgs boson measurements in Sec. III B, and
the direct sensitivity to doubly charged scalar bosons as a
smoking gun of this scenario in Sec. III C. In Sec. IV, we
combined these three searches to highlight their comple-
mentarity and intersection. We conclude in Sec. V.

II. THE MODEL

The Zee-Babu model [34,35] is an extension of the usual
SM Lagrangian by two SUð2ÞL and color singlet scalar
fields with nontrivial hypercharges,

S∶ð1; 1; 1Þ;
R∶ð1; 1; 2Þ: ð3Þ

These give rise to the new renormalizable and effective
interactions determined by the gauge symmetry SUð3ÞC ⊗
SUð2ÞL ⊗ Uð1ÞY . The renormalizable Lagrangian is
given by

Lrenorm¼−
1

4
GA

μνGAμν−
1

4
WI

μνWIμν−
1

4
BμνBμν

þðDμϕÞ†ðDμϕÞþðDμSÞ†ðDμSÞþðDμRÞ†ðDμRÞ
−Vðϕ;S;RÞþ iðL̄γμDμLþ ēγμDμeþ Q̄γμDμQ

þ ūγμDμuþ d̄γμDμdÞþðLYukawaþH:c:Þ; ð4Þ

where

GA
μν ¼ ∂μGA

ν − ∂νGA
μ þ g3fABCGB

μGC
ν ;

WI
μν ¼ ∂μWI

ν − ∂νWI
μ þ gϵIJKWJ

μWK
ν ;

Bμν ¼ ∂μBν − ∂νBμ; ð5Þ
are the field strength tensors corresponding to SUð3ÞC,
SUð2ÞL, and Uð1ÞY , respectively, and here fA; B;Cg ∈
f1; 2;…; 8g, and fI; J; Kg ∈ f1; 2; 3g.
The scalar potential Vðϕ;S;RÞ in Eq. (3) reads

Vðϕ;S;RÞ ¼ μ21ðϕ†ϕÞ þ μ22ðS†SÞ þ μ23ðR†RÞ
þmðS2R† þ ðS†Þ2RÞ þ λ1ðϕ†ϕÞ2
þ λ2ðS†SÞ2 þ λ3ðR†RÞ2
þ λ4ðϕ†ϕÞðS†SÞ þ λ5ðϕ†ϕÞðR†RÞ
þ λ6ðS†SÞðR†RÞ: ð6Þ

In contrast to the SM, the quantum numbers of the Zee-
Babu singlet scalars allow new quartic as well as trilinear
interactions, as can be seen in Eq. (6). We have denoted the
new quartic couplings as λ2, λ3, λ4, λ5, and λ6, whereas m
parametrizes the trilinear scalar interaction.
LYukawa contains two new Yukawa-like interactions

along with the usual SM ones,

LYukawa ¼ −yeL̄eϕ − yuQ̄uϕ̃ − ydQ̄dϕ

− fSðLciτ2LÞS − fRðeceÞR: ð7Þ

Here, ϕ̃i ¼ ϵijϕ
�
j is the charge-conjugated Higgs doublet.

The Yukawa couplings fS and fR parametrize the inter-
actions between SUð2ÞL lepton doublet L, singlet e with
scalars S, and R, respectively.
Bounds on the parameters in Eq. (6) can be derived from

examining the shape of Vðϕ;S;RÞ. For the potential to be
bounded from below, each of λ1, λ2, and λ3 should be
positive. To achieve the overall positivity of the potential,
one can find the following relations, see e.g., [45]:

λ4=2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
> −1; λ5=2

ffiffiffiffiffiffiffiffiffi
λ1λ3

p
> −1;

λ6=2
ffiffiffiffiffiffiffiffiffi
λ2λ3

p
> −1: ð8Þ

Apart from that, there are ∼4π perturbativity bounds for
λi, i ¼ 2;…; 6.
After electroweak symmetry breaking, ϕ acquires a

vacuum expectation value (vev) and gives rise to the

1Naturally, our findings are then specific to the EFT extension
of the considered Zee-Babu scenario. We leave an analysis of all
scalar extensions (or even beyond that) for future work.
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physical Higgs H. S and R emerge as singly and doubly
charged scalars h� and r��, respectively.
We aim to track the generic physics that predominantly

couples to S, R. To this end, we modify SM correlations
not only through the presence of h� and r��, but also
through the interactions that arise from integrating out the
new physics that further deform the S, R interactions with
SM matter. We therefore extend the renormalizable
Lagrangian with a complete, independent, and exhaustive
set of dimension-5 and -6 effective operators,

L ¼ Lrenorm þ
XN
j¼1

Cð5Þj

Λ
Oð5Þ

j þ
XM
k¼1

Cð6Þk

Λ2
Oð6Þ

k : ð9Þ

We choose to express the operator sets using the Warsaw
basis methodology [42] (see also [46]). The complete set of
effective operators that couple S and R to the SM fields

have been listed in Appendix A. For the purpose of our
work, we consider only those operators that affect the
anomalous magnetic moment for muons, the loop-induced
neutral Higgs decays, and production and decay of the
charged scalars. The gauge invariant structures for these
operators are given in Table I. Throughout this paper, we
consider real values for the Wilson coefficients (Ck) along-
side a trivial flavor structure of the new interactions.2

III. PHENOMENOLOGY

A. Muon anomalous magnetic moment

We first calculate the anomalous magnetic moment for
muons for the considered scenario, extendingwell-documented
results [37–40] to effective interactions. In Table II, we have
listed the parameters and the operators contributing to aμ.
The phenomenological appeal of aμ is rooted in the fact

that it provides an unambiguous BSM effect for UV-
complete scenarios; when matching the contribution of a
concrete BSM theory to the SMEFT operators that gives
rise to aμ (we refer the muon mass as Mμ),

ΔaSMEFT ¼
ffiffiffi
2

p
vMμ

e
CeA

¼
ffiffiffi
2

p
vMμ

e
ðCeW sin θW − CeB cos θWÞ; ð10Þ

where the Wilson coefficients CeW , CeB of the operators
OeW and OeB in the language of Refs. [42,47,48] are

OeW ¼ WI
μνðL̄σμνeÞτIϕ;

OeB ¼ BμνðL̄σμνeÞϕ; ð11Þ
and (σμν ¼ i½γμ; γν�=2) will remain finite to all orders in
perturbation theory. For the EFT model discussed in the
above section, this remains true to one-loop order for a
range of interactions, but broadly speaking, EFT insertions
related to the SM or BSM particle content will generically
imply a renormalization of the operators related to aμ as
well. This means that aμ becomes a scheme-dependent

TABLE I. Explicit structures of the dimension-5 and -6
operators contributing to muon anomalous magnetic moment,
loop-induced Higgs decay, and production and decay for h� and
r��. The operators in bold have distinct Hermitian conjugates:
A ∈ f1; 2;…; 8g and I ∈ f1; 2; 3g.

Φ5 Ψ2Φ2

Or ðϕ†ϕÞR†S2 OleϕS L̄eϕ̃S

Φ4D2 Φ6

OϕRD ðϕ†ϕÞ½ðDμRÞ†ðDμRÞ� OϕR ðϕ†ϕÞ2ðR†RÞ
OϕSD ðϕ†ϕÞ½ðDμSÞ†ðDμSÞ� OϕS ðϕ†ϕÞ2ðS†SÞ
ORϕD ðR†RÞ½ðDμϕÞ†ðDμϕÞ�
OSϕD ðS†SÞ½ðDμϕÞ†ðDμϕÞ�

Ψ2Φ2D Ψ2Φ3

ORle ðLcγμeÞðϕiDμRÞ OlϕS ðLciτ2LÞðϕ†ϕÞS
OSle ðLcγμeÞðϕ̃iDμSÞ OlϕR ðLciτ2LÞðϕ†Rϕ̃Þ
ORq ðQ̄γμQÞðR†iD

↔

μRÞ OeRϕ ðϕ†ϕÞRðeceÞ
OSq ðQ̄γμQÞðS†iD

↔

μSÞ OuϕR ðQ̄uÞϕ̃ðR†RÞ
ORu ðūγμuÞðR†iD

↔

μRÞ OuϕS ðQ̄uÞϕ̃ðS†SÞ
OSu ðūγμuÞðS†iD

↔

μSÞ

Φ2X2

OBR BμνBμνðR†RÞ OB̃R B̃μνBμνðR†RÞ
OBS BμνBμνðS†SÞ OB̃S B̃μνBμνðS†SÞ
OWR WI

μνWIμνðR†RÞ OW̃R W̃I
μνWIμνðR†RÞ

OWS WI
μνWIμνðS†SÞ OW̃S W̃I

μνWIμνðS†SÞ
OGR GA

μνGAμνðR†RÞ OG̃R G̃A
μνGAμνðR†RÞ

OGS GA
μνGAμνðS†SÞ OG̃S G̃A

μνGAμνðS†SÞ

Ψ2ΦX

OeBS BμνðLcσμνLÞS OeWS WI
μνðLcτIσμνLÞS

TABLE II. The renormalizable couplings and the singly and
doubly charged scalar related operators that contribute to the
muon anomalous magnetic moment.

Charged scalar
type

Renormalizable
couplings

Contributing
operators

h� fS OϕSD, OeWS ,
OeBS , OSle,

OlϕS .

r�� fR OϕRD, OeRϕ,
ORle, OlϕR.

2fR and fS symmetric and antisymmetric couplings in lepton
flavor space which project out these related combinations of
Wilson coefficients in concrete calculations.
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parameter rather than a UV-finite prediction (as in renor-
malizable models), and the precision of the obtained
measurements of aμ then motivates the inclusion of this
observable to the defining input of the field theory
(analogous to the Fermi constant in the electroweak
SM). The precision of aμ can then be used to tension
predictions of observable measurements (we focus on
Higgs and direct production in this work). In the following,
we work in the mass basis of the SM as indicated in
Eq. (10), where we consider OeA ¼ AμνðēσμνeÞv (where
Aμν is the QED field strength).3

Concretely, we evaluate the one-loop three-point vertex
function,

Γμ ¼ −ieūðp0Þ
�
γμF1ðk2Þ þ

i
2Mμ

σμνkνF2ðk2Þ þ…

�
uðpÞ;

ð12Þ

with momentum transfer k ¼ p0 − p. The ellipses denote
additional form factors that appear in chiral gauge theories,
e.g., the anomalous electric dipole moment. In this work,
we limit ourselves to the anomalous magnetic moment,

aμ ¼ F2ð0Þ; ð13Þ

which is directly related to the effective Lagrangian of
Eq. (9). We employ dimensional regularization and choose
MS renormalization for the Wilson coefficients and on-
shell renormalization for the remaining electroweak

contributions, in particular, for the external muon fields
(see [49] for a review); Feynman diagram contributions are
shown in Fig. 1. When using one-loop EFT insertions, the
implicit assumption is that any new degrees of freedom
responsible for these interactions have been integrated out,
and we consider terms up to ∼1=Λ2 (i.e., we truncate the
series expansion at dimension-6 level) in this expansion.
This enables us to renormalize the structure in Eq. (10) to
cancel the divergence associated with the CeA Lorentz
structure (details are presented in Appendix B). At the
considered one-loop, Λ−2 level, these are exclusively given
by the effective operator insertions related to h�; the
dimension-6 singularities of aμ arise from ∼CeBS; CeWS

loop contributions. We use FeynArts [51] to enumerate the
relevant one-loop diagrams and FormCalc [52] for calcu-
lating the amplitudes and extracting the relevant form
factor. PackageX [53] is used for simplifications of
Passarino-Veltman scalar loop integrals [54].
The anomalous magnetic moment in the context of the

Zee-Babu model has been studied extensively in the past
(see, for example, Refs. [37–40]).We reproduce the standard
result,

ad4μ ðZee-BabuÞ¼−
M2

μ

24π2

�ðf†SfSÞμμ
M2

h�
þ4

ðf†RfRÞμμ
M2

r��

�
; ð14Þ

and the famous Schwinger resultΔaμðQEDÞ ¼ α=2π [55] as
a cross check and to align conventions. A summary of the
impact of EFT operators, alongside the sensitivity to renor-
malizable couplings of the scenario introduced in Sec. II is
provided in Table II. The effect of different parameters on aμ
arising from the BSM contributions is shown in Fig. 2.
The contributions from the renormalizable charged

scalar interactions are negative, Eq. (14), which is also
clearly visible from Figs. 2(a)–2(c). To explain the

(a) (b) (c) (d)

(e) (f)

FIG. 1. BSM Feynman diagrams contributing to the muon anomalous magnetic moment μ → μγ via the new propagating r��

and its EFT interactions. The vertices include the renormalizable and the dimension-6 interactions. Similar diagrams arise from the h�
scalar.

3Renormalization of Z − Amixing [49,50] implies the require-
ment of considering the Z boson-associated magnetic moment of
the muon OeZ. In this work, however, we focus on aμ, which
means that the renormalization procedure is confined to CeA
operator structures.
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experimental measurement of the anomalous magnetic
moment, which favors a positive ΔaμðBSMÞ slightly
larger than the SM expectation, this negative contribution
needs to be overcome by additional EFT contributions.

These can be logarithmically enhanced for large mass gaps
Mr�� ;Mh� ≫ Mμ. The aμ contributions for the effective
interactions related to r�� take a particularly compact form
in the limit Mr�� ≫ Mμ,

Λ2 × ad6;r
��

μ ðZee-BabuÞ ¼ fRM2
μv2ðCeRϕÞμμ
6π2M2

r��
þ fRM2

μv2ðClϕRÞμμ
2π2M2

r��

�
log

�
Mr��

Mμ

�
−
1

4

�

þ fRM3
μvðCRleÞμμffiffiffi
2

p
π2M2

r��

�
7

12
− log

�
Mr��

Mμ

��
þ f2RM

2
μv2CϕRD

12π2M2
r��

: ð15Þ

This together with the fully renormalized h� interactions
give rise to the behavior shown Figs. 2(d)–2(f).4 In
Fig. 2(f), it is clearly visible that aμðBSMÞ receives the
dominant contribution from ClϕR. Besides, a sizable value
chosen for CeRϕ or h� interactions parameterized through
CϕSD can also be equally effective in generating a positive

aμðBSMÞ. We have provided the contribution to aμðBSMÞ
arising from h� effective interactions in Appendix C.
The covariant structures of the operators OϕRD and

OϕSD, given in Table I, call for the redefinition of the
charged scalar fields and as a consequence modify existing
renormalizable charged scalar interaction vertices; thus, the
corresponding Wilson coefficients CϕRD and CϕSD natu-
rally provide a significant contribution to the observables.
We investigate the ability of these Wilson coefficients
to produce a reasonable positive aμðBSMÞ in Figs. 2(d)
and 2(e).

(a) (b) (c)

(d) (e) (f)

FIG. 2. Impact of various new physics parameters on aμðBSMÞ. The top row shows the dependence on terms from the renormalizable
part of the Lagrangian Eq. (4), while the bottom row includes effects from different effective operators. In (d), we investigate how large
CϕRD is required to be in order to get a positive result when only the doubly charged state is present, and we also show that CϕRD can be
kept low by introducing the singly charged scalar effective interactions through CϕSD. The effect of different values considered for each
of CϕRD and CϕSD is shown in (e) when both scalars are included to probe how large each of these should be needed to generate a positive
contribution. Panel (f) shows the linear dependence of the anomalous magnetic moment on CϕRD and how it is shifted when introducing
additional operators (we choose C̄i ¼ Civ2=Λ2 for convenience).

4It is worth highlighting that these distributions include the
Yukawa interactions of r�; h�, which means that there are
nonvanishing BSM contributions to aμ in all displayed cases.
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Attributing the observed aμ to either CϕRD or CϕSD
related terms given in Eqs. (15) and (C1), respectively,
requires large values for the Wilson coefficients, and we
discuss the phenomenological implication of such a sce-
nario below. In parallel, when we consider the contributions
related to h�, the observed CϕRD − aμ correlation can be
altered which again leads to experimentally testable impli-
cations (see Sec. IV).
We finally stress that the findings of this section are

specific to the EFT-extended Zee-Babu scenario. As we do
not specify a concrete UV completion, the nature of the
EFT insertions could be tree level- or loop-induced. This
should be contrasted with other scalar extensions of the SM
that contain charged states, e.g., the two Higgs doublet
model which can address the anomalous magnetic moment
of the muon (see, e.g., the recent [56]) beyond the one-loop
approximation [57,58] in a fully renormalizable way.

B. Loop-induced MH = 125 GeV Higgs physics

We now turn to the discussion of the impact of the model
discussed in Sec. II on the loop-induced phenomenology of
the 125 GeV Higgs boson. Assuming the narrow width
approximation (NWA),we consider the signal strengths from
dominant gluon fusion production [59] (see also [60–62]),

μXgg ¼
½σGF × BRðH → XÞ�BSM
½σGF × BRðH → XÞ�SM : ð16Þ

The CMS experiment predicts [63] a sensitivity in the
experimentally clean H → γγ channel of

Δμγγgg
μγγgg

¼ 3.3%; ð17Þ

at a (HL-)LHC luminosity of 3=ab. Sensitivity in the Zγ
channel has been considered in [64] (for a recent analysis, see
[65]) providing a HL-LHC estimate of

ΔμZγgg
μZγgg

¼ 18%: ð18Þ

Mapping these sensitivity intervals onto BSM-modified SM
predictions, we include the effective interactions of Sec. II to
H → gg (which relates to Higgs production via unitarity
[66]) andH → Zγ, aswell asH → γγ. This leads to one-loop
sensitivity to the operators listed inTable III, includingOϕRD

and OϕSD. Similar to our discussion in Sec. III A, the
inclusion of BSMEFT interactions leads to a renormalization
of the SMEFT counterparts as outlined inRef. [67]. Here, we
emphasize on the fact that the SM predictions for Higgs
signal strengths in any other decay channels do not
receive any modification from the charged scalar effective
interactions.

In Fig. 3, we demonstrate the impact of the renormaliz-
able Zee-Babu scenario as well as the charged scalar
effective interactions on the considered Higgs signal
strength measurements. The BSM charged scalar inter-
actions of the Zee-Babu Lagrangian modify both H →
γγ; Zγ branchings, especially in a lower mass range for the
charged scalars, and the effect can be captured through λ4
and λ5, as depicted by the solid lines in Fig. 3. The
inclusion of the effective operator interactions, mentioned
in Table III, can further lead to significant modifications of
the branchings. We compare the effect from the dominantly
contributing Wilson coefficients for h� interactions CWS,
CBS, and r�� related interactions CWR, CBR on signal
strength. We find from Figs. 3(a) and 3(c) that the doubly
charged effective interactions dominate over the singly
charged ones, but the dissimilarity vanishes as the new
physics scale Λ moves away from the considered charged
mass range, as can be seen in Figs. 3(b) and 3(d).

C. Direct LHC sensitivity to doubly charged scalars

The scalars of Sec. II can be produced at colliders via
their hypercharge quantum numbers, implying a predomi-
nant production in pairs via Drell-Yan-like processes,
which is common to many charged scalar extensions of
the SM (see, e.g., [68–70]). The production of two r�� is
more efficient than pair production of h� due to its larger
charge when assuming similar masses. It will also dominate
over r��r� along with r� → h∓h∓ though a virtual r�, see
Ref. [39]. The r�� decay phenomenology that we consider
in more detail in this section is characterized by decays
r�� → h�h� (when kinematically accessible),

Γðr��→ h�h�Þ

¼ β

128πMr��

�
2
Cr
Λ
v2þm

�
CϕRD

Λ2
v2þ2

CϕSD
Λ2

v2−4

��
2

;

ð19Þ

TABLE III. The parameters and the singly and doubly charged
scalar related operators which contribute to the corrections in
prominent loop-induced H-decay modes.

Decay mode Renormalisable couplings Contributing operators

H → γγ λ4, λ5 OϕRD, OϕR, OϕS ,
OϕSD, OBR, OB̃R,
OWR, OW̃R, OBS ,
OB̃S , OWS , OW̃S .

H → Zγ λ4, λ5 OϕRD, ORϕD, OϕR,
OϕS , OϕSD, OSϕD,
OBR, OB̃R, OWR,
OW̃R, OBS , OB̃S ,

OWS , OW̃S .
H → gg λ4, λ5 OGR, OG̃R,

OGS , OG̃S .
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where β is the h� velocity in the r�� rest frame, as well as
same sign lepton decays, e.g.,

Γðr�� → μ�μ�Þ

¼ Mr��

128π

��
4fR;μμ − ½2CeRϕ þ fR;μμCϕRD�

v2

Λ2

�
2

þ 4
C2
lϕR

Λ4
v2
�
; ð20Þ

in the limit meþ ≪ Mr�� .5

In the Zee-Babu model, pair production of the doubly
charged scalar through Drell-Yan pp → Z=A → rþþr−− is
only affected by the values of SM couplings, and any
change in production rate arises through BSMEFT oper-
ators. Focusing on the overlap of contributing operators

between Drell-Yan, Higgs decays, and anomalous muon
magnetic moment, we note that only OϕRD contributes in
the r�� pair production through a rescaling of the r field.
Considering the possible subsequent decays with leptonic
final states, we anticipate that the experimental sensitivity
of channels with decays to h� will be significantly
impacted by the presence of neutrinos that appear as
missing energy. Additionally, any final state involving
tau leptons will yield a decreased sensitivity due to the
difficulty in tagging them in detectors compared to muons
and electrons. In contrast, the four lepton channel
rþþr−− → lþlþl−l− will provide a clear signature with
a suppressed SM background when the fact that r�� is the
only particle in the model decaying to same-charge leptons
is exploited in the analysis.
We model the new physics interactions using FeynRules

[71,72] and exporting them in the UFO [73] format that can
be imported in MadGraph [74]. Events for the Zee-Babu and
BSMEFT are generated with MadEvent [74–76] including

(a) (b)

(c) (d)

FIG. 3. Impact of the BSM parameters and representative effective operators on signal strength as a function of the charged scalar
masses. The solid lines denote the effect of the Zee-Babu parameters λ4 and λ5, whereas the dotted and the dotted-dashed lines show the
impact of the h� related CWS , CBS , and r�� related CWR, CBR, respectively. We consider Mr�� ¼ 1.2 TeV for (a) and (b) and
Mh� ¼ 0.5 TeV for (c) and (d). We also show that for Λ ¼ 2 TeV, the r�� interactions dominate over h� interactions in (a) and (c), and
in (b) and (d) the deviation vanishes for Λ ¼ 5 TeV. We set λ4 ¼ λ5 ¼ 1 for all four plots.

5This extends the results of, e.g., Ref. [45] to EFT interactions.
These results can be straightforwardly linearized in ∼1=Λ2.
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only the interference effects of OϕRD. We include all SM
processes contributing to pp → lþl−lþl− as background
with a generation-level cut vetoing events in the MZ �
3.5ΓZ interval, whereMZ and ΓZ are the invariant mass and
decay width of the (virtual) Z boson, respectively. Total
decay widths for the charged scalars are calculated with
MadWidth [77] and cross checked against our analytical
results. The events are generated with a fixed branching
ratio BRðr�� → l�l�Þ, and we subsequently rescale the
rates under the assumption of the NWA.
Our analysis is based on the ATLAS search for doubly

charged scalars in Ref. [78] with relaxed cuts and is
performed at a parton level to obtain a qualitative,
proof-of-principle comparison. Selection of our analysis
requires that all light leptons are in the central part of the
detector (jηðlÞj < 2.5) with a transverse momentum of
pTðlÞ > 30 GeV. Only leptons with no jet activity within
the cone radius ΔRðj;lÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δη2 þ Δϕ

p
< 0.4 are consid-

ered, and we require exactly four leptons with one positively
charged pair andone negatively charged; otherwise, the event
is vetoed (we do not include charge mistagging or other
experimental systematic uncertainties). A cut is imposed on
the invariant mass of each pair such that ml�l� > 200 GeV
always. Since the same-charged leptons must be a result of
r�� decays, we check the consistency of the two masses by
calculating

M̄ ¼ mlþlþ þml−l−

2
; ð21Þ

and

ΔM ¼ jmlþlþ −ml−l− j: ð22Þ

The two invariant masses are considered consistent if
ΔM=M̄ < 0.25 is satisfied, thus imposing the resonant
signal character. Finally, the event is vetoed if a same-flavor,
oppositely charged pair exists with invariant mass in the
intervalmlþl− ∈ ½81.2; 101.2� GeV in order to suppress any
background resulting from decays of Z bosons.
We evaluate the sensitivity of LHC using events measure

from the M̄ differential distribution. Including the new
physics contributions, the distribution is given by

dσ
dM̄

¼ dσSM
dM̄

þ dσBZ
dM̄

þ CϕRD

Λ2

dσϕRD

dM̄
; ð23Þ

where σSM denotes the Standard Model contribution and
σBZ ¼ σBZðfR;Mr�� ;Mh�Þ the pure Zee-Babu, which
depends on the fR coupling and the masses of r�� and
h�. The dimension-6 interference contribution fromOϕRD is
denoted as σϕRD and also depends on the same parameters as
σBZ. The new physics contributions are rescaled with a
K-factor value of 1.3 (see, e.g., [79]) to include higher order
corrections. We note that the dependence on fR and M�

h

enters through the branching ratio BRðr�� → l�l�Þ, and
the ratio’s dependence on CϕRD cancels out when no other
BSMEFT operator is included. This allows us to obtain
contributions for different values of fR by rescaling assum-
ing the NWA and to generate events for interference effects
caused by OϕRD independent of CϕRD.
The M̄ distribution obtained from SM processes is fitted

away from the signal region to obtain an experimentally
driven estimate for the background for large values of M̄.
The M̄ distribution for particular values of new physics
parameters is shown in Fig. 4. We evaluate the signal and
background number of events in the region M̄ > 200 GeV
at an integrated luminosity of 3=ab as S and B, respectively,
and calculate the significance S=

ffiffiffiffi
B

p
(S=

ffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p
) under the

SM (new physics) hypothesis. We comment on the search’s
sensitivity in the next section.

IV. BSMEFT INTERPLAY

We are now ready to consider the phenomenological
interplay of the observables discussed in the previous
Sec. III.6 In Fig. 5, the Venn diagram shows the common
operators contributing to all three processes discussed in
Sec. III. A number of these operators contribute in a
fermion mass-suppressed way. The dominant overlap of
Higgs data, aμ, and Drell-Yan production is therefore a
single operator∼CϕRD, which only affects the total width of
the exotic scalar search. It is worthwhile to stress that when

FIG. 4. M̄ distributions for the SM and new physics contribu-
tions. The dashed line shows the fit of the background and for the
signal fR ¼ 0.1, and a representative C̄ϕRD ¼ 0.3 was used with
the remaining BSMEFT WCs set to zero. The mass of the singly
charged scalar is set to 480 (500) GeV for the scenario with
Mr�� ¼ 1 TeV (Mr�� ¼ 1.2 TeV).

6As indicated by the renormalization procedure, the measure-
ments considered in this work would be part of the input data in a
comprehensive global fit. In this work, we limit ourselves to the
phenomenological interplay of the three measurement method-
ologies assuming vanishing SMEFT contributions.
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we do not consider effective interactions related to h�, the
anomalous magnetic moment is predictive at OðΛ−2Þ; i.e.,
the r�� contribution to Δa is finite even when EFT
insertions are considered [see Eq. (15)]. The interplay of
Higgs data, direct sensitivity in LHC searches, and anoma-
lous magnetic moment is therefore relatively transparent in
the scenario of Sec. II.
In Fig. 6, we show the interplay of the direct search

outlined in Sec. III C with the anomalous magnetic moment
for a particular mass choice of the exotic charged scalars
(including open decays r�� → h�h�). The blue contour
refers to the Fermilab aμ measurement, while the red
contour shows the SM expectation as provided in Ref. [23],

aμðSMÞ ¼ ð116591810� 43Þ × 10−11; ð24Þ

when the uncertainty is used as a limit for new physics. The
size of the Fermilab/BNL excess can be compensated by
contributions that can be attributed to new BSM physics,
overcoming the limitations of the renormalizable Zee-Babu
model; however, at strong coupling, CϕRD TeV2=Λ2 ≃ 66.
This is due to the fact that the EFT contribution, while not
being logarithmically enhanced, has to overcome the
renormalizable contribution of the charged scalars. As
already alluded to in Sec. III A, this can be mitigated by
considering charged scalar contributions. Our r��-related

findings are qualitatively similar to results reported in other
model-specific aμ analyses [25–33]; BSM states are forced
to be light and/or strongly coupled to address the aμ
anomaly. Including signal extrapolations at the LHC as
shown in Fig. 6(a) shows that any evidence for new doubly
charged states at the LHCwould stand in stark contrast with
the aμ measurement when interpreted from an extended
Zee-Babu perspective.
Including Higgs physics (which is dominated by μγγgg)

leads to further tension. Even when direct renormalizable
trilinear H − rþþ − r−− couplings are dialed small λ5 ≃ 0
[note that Eq. (8) includes this limit], OϕRD (see Table I)
introduces the r�� loop contributions to the Higgs signal
strength μγγgg, which at this point in the LHC program is
already constrained at the 10% level. Scanning the Higgs
signal strength modifications, including the h� interactions
and their dimension-6 EFT modifications, we are not able
to reconcile SM consistency of the H → γγ branching with
the aμ anomaly when the latter is attributed to choices in the
fR − CϕRD plane.
Opening up the EFT and renormalizable coupling space,

cancellations between the charged states and their EFT
interactions can appear. This typically requires the full
renormalization of aμ as described above. For

CϕSD ¼ −4CϕRD; Mr�� ≃Ms� ; ð25Þ

FIG. 5. Diagram depicting BSMEFT operators that contribute to three measurements considered in the calculation.
Or;OϕR;OϕS ;OGR;OG̃R;OGS ;OG̃S are the common operators contributing to both Higgs decay and processes relevant for direct
detection for production and decay for charged scalars. ORle;OSle;OlϕS;OlϕR;OeRϕ contribute to anomalous muon magnetic moment
as well as charged scalar production and decay processes. OϕRD;OϕSD contribute to all three processes. A range of the operators are
mass suppressed thus leading to a small overlap in the limit of vanishing quark/lepton masses (e.g., when considering the parton model
of LHC collisions).
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the charged Higgs contributions cancel. The aμ excess
could then be reproduced from a mismatch of the Yukawa
couplings, see Fig. 6(b). We find that fR ∼ 5 and fS ∼ 1
can accommodate the Fermilab excess for strong coupling
C̄ϕRD ∼ 3, which implies a r�� partial width into a single
lepton combination of around 60 GeV. Such a state can fall
into the LHC kinematic coverage, see Fig. 6(a) and
Ref. [78]. The further exploration of the high mass doubly
charged scalar production is therefore highly motivated in
the light of a SM-like Higgs and the consolidated aμ
anomaly.

V. CONCLUSIONS

The recent Fermilab consolidation of aμ raises the
question of how new physics can be accommodated as
the exotics and Higgs precision program is evolving at the
LHC. The direct sensitivity at the LHC with its so far null
results in BSM searches moves new physics scales into
regions where it becomes challenging to accommodate a
significant anomalous magnetic moment of the muon when
we take the BNL/Fermilab results as indication for BSM
interactions. In this work, we have approached the interplay
of these experimental arenas by means of EFT. A signifi-
cant muon magnetic moment typically requires the pres-
ence of relatively light degrees of freedom (for a review of
different scenarios see the recent Ref. [26]). In this work,
we focus on light charged degrees of freedom, which we
supplement with complete dimension-5 and -6 EFT

analyses to account for new dynamics that modify corre-
lations away from patterns of renormalizable interactions.
The Zee-Babu scenario as a particularly motivated BSM
candidate theory gives then rise to a range of BSMEFT
interactions that enable us to discuss aμ precision results in
tension with expected developments at the LHC.
Obviously, the rather large number of relevant Wilson

coefficients exceeds the number of measurements that
result from Higgs physics, aμ, and direct sensitivity via
r�� pair production, yet the overlapping set of operators
that simultaneously affects all measurements and searches
is relatively small and shows a significant tension when the
SM expectation for Higgs physics is considered.
Agreement of aμ requires a significant deformation of
charged scalar interactions, which in turn highly modify
Higgs physics beyond experimentally allowed constraints.
While this is particularly pronounced when we limit
ourselves to the r�� state, we find that the additional
freedom provided by the EFT extension of the h� inter-
actions can be exploited to achieve cancellations that render
Higgs data compatible with the SM observation while
obtaining a sizeable aμ, again at relatively large couplings.
On the one hand, this provides an important constraint for
potential UV completions that the considered scenarios
seeks to inform. On the other hand, the associated param-
eter ranges can be explored by future searches for doubly
charged scalar states as done in, e.g., [65]. These very
limiting conclusions only hold when we interpret the three
different channels by focusing on the single overlapping

(a) (b)

FIG. 6. Regions in the fR-C̄ϕRD plane, where C̄i ¼ Civ2=Λ2. Blue shows the parameter region where aμ is in agreement with the
Fermilab experimental measurement given in Eq. (2), while for points in the red region aμ lies in the SM expectation range of Eq. (24).
Both contours depend on fS which has been set to zero, although we note that any value smaller than unity does not significantly affect
the results. In the left panel, we setMr�� ¼ 1 TeV andMh� ¼ 0.48 TeV and also show the S=

ffiffiffiffi
B

p ¼ 3 (S=
ffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p ¼ 3) contour for the
direct detection analysis with yellow (green) using a value of m ¼ 246 GeV. Note that strong EFT coupling (BSMEFT > BSM) is
jC̄ϕRDj≳ 0.8. In the right panel, we restrict C̄ϕSD ≈ −4C̄ϕRD and set Mr�� ¼ Mh� ¼ 1 TeV. Additionally, we show the contours that
yield agreement with the Fermilab measurement when fS ¼ 2 with green and overlay the results for the Higgs decay sensitivity from
Eq. (17) for the choice of Eq. (25).
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operator. As can be seen from Fig. 5, such a tension can be
relieved by considering operators that do not contribute to
all channels simultaneously. In such a case, additional
channels need to be exploited to clarify a size of the muon
anomalous coupling. Additional constraints can, in prin-
ciple, be resolved in more challenging pp → 2l=4lþ ET
searches, the impact of which we leave for future work.
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APPENDIX A: BSM EFFECTIVE OPERATORS

Throughout the paper, we assume that the charged
scalars S and R are light enough to be considered as
infrared degrees of freedom. Thus, after integrating out the
new physics at Λ, we are left with effective operators that
lead to the modifications of SM interactions (i.e., the
SMEFT operators) or can alter the existent BSM inter-
actions at the renormalizable level and are hereby identified
as BSMEFT operators.
The general way to capture the effect of all possible such

modifications is to construct a complete and exhaustive set
of BSMEFT operators at each mass dimension following a
bottom-up approach. A number of models where SM is
extended by new degrees of freedom have been discussed
in Ref. [80].
We generated Warsaw-like operator bases of dimension-

5 and -6 operators for the case of the Zee-Babu model with
GrIP [81]; the explicit structures of these operators have
been tabulated in Tables IV, V, and VI. Notably, we obtain a
new class of dimension-5 operators Φ5, which unlike for
the SMEFT case, arise due to possible gauge invariant

TABLE IV. Explicit structures of the dimension-5 effective
operators for the Zee-Babu model. The operators written in bold
have distinct Hermitian conjugates.

Φ5

Or ðϕ†ϕÞR†S2 Osr ðS†SÞR†S2

Ors ðR†RÞR†S2

Ψ2Φ2

ÕdqϕS ðQ̄dÞðϕ̃SÞ ÕuqϕS ðQ̄uÞðϕSÞ
ÕleϕS ðL̄eÞðϕ̃SÞ ÕeS ðeceÞS2

TABLE V. Explicit structures of the dimension-6 effective
operators for the Zee-Babu model. The operators written in bold
have distinct Hermitian conjugates.

Φ6 Φ4D2

OS ðS†SÞ3 OS□ ðS†SÞ□ðS†SÞ
OSϕ ðϕ†ϕÞðS†SÞ2 OSϕD ðS†SÞ½ðDμϕÞ†ðDμϕÞ�
OϕS ðϕ†ϕÞ2ðS†SÞ OϕSD ðϕ†ϕÞ½ðDμSÞ†ðDμSÞ�
OR ðR†RÞ3 OR□ ðR†RÞ□ðR†RÞ
ORϕ ðϕ†ϕÞðR†RÞ2 ORϕD ðR†RÞ½ðDμϕÞ†ðDμϕÞ�
OϕR ðϕ†ϕÞ2ðR†RÞ OϕRD ðϕ†ϕÞ½ðDμRÞ†ðDμRÞ�
OϕRS ðϕ†ϕÞðR†RÞðS†SÞ OSRD ðS†SÞ½ðDμRÞ†ðDμRÞ�
OSR ðS†SÞ2ðR†RÞ ORSD ðR†RÞ½ðDμSÞ†ðDμSÞ�
ORS ðS†SÞðR†RÞ2 OϕSRD ðS†RÞ½ðDμϕ̃†ÞðDμϕ̃Þ�
OS2R ðSR†SÞ2

Φ2X2 Ψ2Φ2D

OBS BμνBμνðS†SÞ OSq ðQ̄γμQÞðS†iD
↔

μSÞ
OBR BμνBμνðR†RÞ ORq ðQ̄γμQÞðR†iD

↔

μRÞ
OB̃S B̃μνBμνðS†SÞ OSl ðL̄γμLÞðS†iD

↔

μSÞ
OB̃R B̃μνBμνðR†RÞ ORl ðL̄γμLÞðR†iD

↔

μRÞ
OGS GA

μνGAμνðS†SÞ OSu ðūγμuÞðS†iD
↔

μSÞ
OGR GA

μνGAμνðR†RÞ ORu ðūγμuÞðR†iD
↔

μRÞ
OG̃S G̃A

μνGAμνðS†SÞ OSd ðd̄γμdÞðS†iD
↔

μSÞ
OG̃R G̃A

μνGAμνðR†RÞ ORd ðd̄γμdÞðR†iD
↔

μRÞ
OWS WI

μνWIμνðS†SÞ OSe ðēγμeÞðS†iD
↔

μSÞ
OWR WI

μνWIμνðR†RÞ ORe ðēγμeÞðR†iD
↔

μRÞ
OW̃S W̃I

μνWIμνðS†SÞ OSle ðLcγμeÞðϕ̃iDμSÞ
OW̃R W̃I

μνWIμνðR†RÞ ORle ðLcγμeÞðϕiDμRÞ

TABLE VI. Explicit structures of the dimension-6 effective
operators for the Zee-Babu model. The operators written in bold
have distinct Hermitian conjugates.

Ψ2Φ3

OeϕS ðL̄eÞϕðS†SÞ OlϕS ðLciτ2LÞSðϕ†ϕÞ
OuϕS ðQ̄uÞϕ̃ðS†SÞ OlS ðLciτ2LÞSðS†SÞ
OdϕS ðQ̄dÞϕðS†SÞ OeRϕ ðeceÞRðϕ†ϕÞ
OeϕR ðL̄eÞϕðR†RÞ OlϕR ðLciτ2LÞðϕ†Rϕ̃Þ
OuϕR ðQ̄uÞϕ̃ðR†RÞ OeR ðeceÞRðR†RÞ
OdϕR ðQ̄dÞϕðR†RÞ OeSR ðeceÞRðS†SÞ
OdϕRS ðQ̄dÞϕ̃ðS†RÞ OuϕRS ðQ̄uÞϕðR†SÞ

Ψ2ΦX

OeBS BμνðLcσμνLÞS OeWS WI
μνðLcτIσμνLÞS

OeBR BμνðecσμνeÞR
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structures allowed by hypercharge quantum numbers of the
charged scalars.

APPENDIX B: RENORMALIZATION

In the following section, we provide the expressions for
the renormalization constants (RC) which we include in the
counterterms considered to remove the divergences for the
calculation ofmuon anomalousmagneticmoment andHiggs
decay to diphoton, as discussed in Secs. III A and III B,
respectively. For both scenarios, we choose on-shell renorm-
alization for propagating fields and parameters and MS
renormalization for the Wilson coefficients. The notations
used here to express the one-point and the two-point integrals
are given along the lines of Ref. [67],

A0ðm2Þ ¼ m2ΔþOð1Þ;
B0 ¼ ΔþOð1Þ;

B1 ¼ −
Δ
2
þOð1Þ;

B00ðp2; m2
1; m

2
2Þ ¼

�
m2

1 þm2
2

4
−
p2

12

�
ΔþOð1Þ;

where Δ denotes the UV-divergent parts associated with the
loop integrals which we remove via the renormalization of
theWilson coefficients (see, e.g., [49,50]). The functionsdBi
represent the derivative of the scalar functionsBiwith respect
to the externalmomentum.Throughout ourwork,we express
theRCs up to the order ofΛ−2 and consistently neglect higher
order corrections.

1. aμ computation

We evaluate aμ from a one-loop μ → μγ vertex function, which requires one to consider both δZAA and δZZA wave
function RCs due to the Z − γ mixing. Their explicit expressions computed from on-shell conditions are given as

δZAA ¼
�

g2Yg
2
W

24ðg2Y þ g2WÞπ2
þ 5g2Yg

2
WB0ðM2

WÞ
16ðg2Y þ g2WÞπ2

þ g2Yg
2
WB1ðM2

WÞ
8ðg2Y þ g2WÞπ2

þ g2Yg
2
WM

2
WdB0ðM2

WÞ
8ðg2Y þ g2WÞπ2

−
g2Yg

4
Wv

2dB0ðM2
WÞ

32ðg2Y þ g2WÞπ2

þ g2Yg
2
WdB00ðM2

r��Þ
ðg2Y þ g2WÞπ2

þ g2Yg
2
WðdB00ðM2

h�Þ þ 3dB00ðM2
WÞÞ

4ðg2Y þ g2WÞπ2
þ

X
l¼e;μ;τ

g2Yg
2
WB1ðM2

l Þ
4ðg2Y þ g2WÞπ2

þ
X

qu¼u;c;t

g2Yg
2
WB1ðM2

quÞ
3ðg2Y þ g2WÞπ2

þ
X

qd¼d;s;b

g2Yg
2
WB1ðM2

qdÞ
12ðg2Y þ g2WÞπ2

−
X

l¼e;μ;τ

2g2Yg
2
WdB00ðM2

l Þ
2ðg2Y þ g2WÞπ2

−
X

qu¼u;c;t

2g2Yg
2
WdB00ðM2

quÞ
3ðg2Y þ g2WÞπ2

−
X

qd¼d;s;b

g2Yg
2
WdB00ðM2

qdÞ
6ðg2Y þ g2WÞπ2

�
; ðB1Þ

and

δZAZ ¼
�

gYg3W
12ðg2Y þ g2WÞπ2

þ g3YgWð4A0ðM2
r��Þ þ A0ðM2

h�ÞÞ
4ðg2Y þ g2WÞM2

Zπ
2

−
X

l¼e;μ;τ

gYgWð3g2YA0ðM2
l Þ þ g2WA0ðM2

l ÞÞ
8ðg2Y þ g2WÞM2

Zπ
2

þ
X

qd¼d;s;b

gYgWð3g2WA0ðM2
qdÞ − g2YA0ðM2

qdÞÞ
24ðg2Y þ g2WÞM2

Zπ
2

þ
X

qu¼u;c;t

gYgWð3g2WA0ðM2
quÞ − 5g2YA0ðM2

quÞÞ
12ðg2Y þ g2WÞM2

Zπ
2

þ gYgW
16ðg2Y þ g2WÞM2

Zπ
2
B00ðM2

Z;M
2
WÞð10g2WM2

Z þ 4g2WM
2
W þ g2Yg

2
Wv

2 − 4g2Y þ 10g2WÞ

þ gYgWðg2YA0ðM2
WÞ − 5g2WA0ðM2

WÞÞ
8ðg2Y þ g2WÞM2

Zπ
2

þ g3YgWðB00ðM2
Z;M

2
h�Þ − 4B00ðM2

Z;M
2
r��ÞÞ

2ðg2Y þ g2WÞM2
Zπ

2

þ
X

l¼e;μ;τ

gYgWð3g2Y − g2WÞB00ðM2
Z;M

2
l Þ

4ðg2Y þ g2WÞM2
Zπ

2
þ

X
qd¼d;s;b

gYgWðg2Y − 3g2WÞB00ðM2
Z;M

2
qdÞ

12ðg2Y þ g2WÞM2
Zπ

2

þ
X

qu¼u;c;t

gYgWð5g2Y − 3g2WÞB00ðM2
Z;M

2
quÞ

6ðg2Y þ g2WÞM2
Zπ

2
þ

X
f¼l;qu;qd

gYgWðg2W − 3g2YÞB1ðM2
Z;M

2
fÞ

8ðg2Y þ g2WÞM2
Zπ

2
þ gYg3WB1ðM2

Z;M
2
WÞ

4ðg2Y þ g2WÞπ2
�

þ gYgW
2ðg2Y þ g2WÞπ2

��
CBR − CWR

Λ2

�
A0ðM2

r��Þ þ
�
CBS − CWS

Λ2

�
A0ðM2

h�Þ
�
; ðB2Þ

respectively.
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Similarly, we include the wave function renormalization for the left and right chiral components of external muon fields,

δZfL ¼
�ðg4Y þ 4g2Yg

2
W þ 3g4WÞ

64ðg2Y þ g2WÞπ2
−
f2RM

2
μðdB0ðM2

μ; ;M2
r��Þ − dB1ðM2

μ; ;M2
r��ÞÞ

4π2
−
f2SðB0ðM2

μ;M2
h�Þ − B1ðM2

μ;M2
h�ÞÞ

8π2

−
f2SM

2
μðdB0ðM2

μ;M2
h�Þ − dB1ðM2

μ;M2
h�ÞÞ

8π2
−

g2Yg
2
W

8ðg2Y þ g2WÞπ2
ðB0ðM2

μ;M2
μÞ − B1ðM2

μ;M2
μÞ þ 2M2

μðdB0ðM2
μ;M2

μÞ

− dB1ðM2
μ;M2

μÞÞÞ −
g2Wðg2Y þ g2WÞðB0ðM2

μ;M2
WÞ þ B1ðM2

μ;M2
WÞÞ

16ðg2Y þ g2WÞπ2
−
ðg2Y − g2WÞ2ðB0ðM2

μ;M2
ZÞ þ B0ðM2

μ;M2
WÞÞ

32ðg2Y þ g2WÞπ2

−
M2

μðB0ðM2
μ;M2

HÞ − B1ðM2
μ;M2

HÞÞ
16π2v2

−
M2

μðB0ðM2
μ;M2

ZÞ − B1ðM2
μ;M2

ZÞÞ
16π2v2

−
M4

μ

8π2v2
ðdB0ðM2

μ;M2
WÞ

þ dB1ðM2
μ;M2

WÞ − 2dB0ðM2
μ;M2

HÞ þ dB1ðM2
μ;M2

HÞ − dB1ðM2
μ;M2

ZÞÞ
�
þ v2ð2f2RCϕRD þ f2SCϕSD þ fSClϕSÞ

16π2Λ2

× ½ðB0ðM2
μ;M2

r��Þ þ B1ðM2
μ;M2

r��ÞÞ þM2
μðdB0ðM2

μ;M2
r��Þ þ dB1ðM2

μ;M2
r��ÞÞ�

þM2
μv2fRCeRϕ

4π2Λ2
½ðdB0ðM2

μ;M2
r��Þ þ dB1ðM2

μ;M2
r��ÞÞ� þ

fRM2
μv2ClϕR

4π2Λ2
dB0ðM2

μ;M2
r��Þ

þ fRMμvCRle

4
ffiffiffi
2

p
π2Λ2

½B0ðM2
μ;M2

r��Þ þ B1ðM2
μ;M2

r��Þ þ 2M2
μdB0ðM2

μ;M2
r��Þ�

þ fSMμvCSle
4

ffiffiffi
2

p
π2Λ2

½B0ðM2
μ;M2

r��Þ þ B1ðM2
μ;M2

r��Þ þ 2M2
μðdB0ðM2

μ;M2
r��Þ þ dB1ðM2

μ;M2
r��ÞÞ�; ðB3Þ

and

δZfR ¼
�

g2Y
16π2

−
g4YðB0ðM2

Z;M
2
μÞ þ B1ðM2

Z;M
2
μÞÞ

8ðg2Y þ g2WÞπ2
−

f2R
4π2

ðB0ðM2
r�� ;M2

μÞ þ B1ðM2
r�� ;M2

μÞ

þM2
μðdB0ðM2

r�� ;M2
μÞ; dB1ðM2

r�� ;M2
μÞÞÞ −

f2SM
2
μ

8π2
ðdB0ðM2

h� ;M
2
μÞ þ dB1ðM2

h� ;M
2
μÞÞ

−
g2Yg

2
W

8ðg2Y þ g2WÞπ2
ðB0ðM2

μ;M2
μÞ þ B1ðM2

μ;M2
μÞ − 2ðdB0ðM2

μ;M2
μÞ þ dB1ðM2

μ;M2
μÞÞÞ

−
M2

μ

16π2v2
ð2B0ðM2

W;M
2
μÞ þ B0ðM2

h� ;M
2
μÞ þ 2B1ðM2

W;M
2
μÞ þ B0ðM2

Z;M
2
μÞ − B1ðM2

Z;M
2
μÞÞ

−
M2

μ

32ðg2Y þ g2WÞπ2
ð8g2Yg2WdB0ðM2

μ;M2
μÞ þ ð3g4Y − 3g2Yg

2
W − g4YÞdB0ðM2

Z;M
2
μÞ − g2Yg

2
WdB1ðM2

μ;M2
μÞ

− ð5g4Y − 2g2Yg
2
W þ g4WÞdB1ðM2

Z;M
2
μÞÞ −

M4
μ

8π2v2
ðdB0ðM2

W;M
2
μÞ þ 2dB0ðM2

h� ;M
2
μÞ þ dB1ðM2

h� ;M
2
μÞ

þ dB1ðM2
W;M

2
μÞ þ dB1ðM2

Z;M
2
μÞÞ

�
þ CϕRDf2Rv

2

8π2Λ2
½B0ðM2

h� ;M
2
μÞ þ B1ðM2

h� ;M
2
μÞ

þM2
μðdB0ðM2

h� ;M
2
μÞdB1ðM2

h� ;M
2
μÞÞ� þ

CϕSDf2SM
2
μv2

16π2Λ2
½dB0ðM2

h� ;M
2
μÞ þ dB1ðM2

h� ;M
2
μÞ�

þ CeRϕfRv2

4π2Λ2
½B0ðM2

r�� ;M2
μÞ þ B1ðM2

r�� ;M2
μÞ þM2

μðdB0ðM2
r�� ;M2

μÞ þ dB1ðM2
r�� ;M2

μÞÞ�

þ ClϕRfRM2
μv2dB0ðM2

r�� ;M2
μÞ

4π2Λ2
þ ClϕSfSM2

μv2

16π2Λ2
½dB0ðM2

h� ;M
2
μÞ þ dB1ðM2

h� ;M
2
μÞ�

þ fRMμvCRle

4
ffiffiffi
2

p
π2Λ2

½B0ðM2
μ;M2

r��Þ þ B1ðM2
μ;M2

r��Þ þ 2M2
μdB0ðM2

μ;M2
r��Þ�

þ fSMμvCSle
4

ffiffiffi
2

p
π2Λ2

½B0ðM2
μ;M2

r��Þ þ B1ðM2
μ;M2

r��Þ þ 2M2
μðdB0ðM2

μ;M2
r��Þ þ dB1ðM2

μ;M2
r��ÞÞ�: ðB4Þ
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The vev-renormalization term is computed from the tadpole RC δT as δv ¼ −δT=M2
H (see, e.g., [50]),

δv ¼ −
1

M2
H

�
g2WM

2
Wv

16π2
þ ðg2Y þ g2WÞM2

Zv
32π2

þ
X

l¼e;μ;τ

M2
l A0ðM2

l Þ
4π2v

þ
X

qu¼u;c;t

3M2
quA0ðM2

quÞ
4π2v

þ
X

qd¼d;s;b

3M2
qdA0ðM2

qdÞ
4π2v

−
3λ1vA0ðM2

HÞ
16π2

−
vðλ5A0ðM2

r��Þ þ λ4A0ðM2
h�ÞÞ

16π2
−
3g2WvA0ðM2

WÞ
32π2

−
λ1vð2A0ðM2

WÞ þ A0ðM2
ZÞÞ

16π2

−
3ðg2Y þ g2WÞvA0ðM2

ZÞ
64π2

þ CϕRD

Λ2

�
Mr��v
16π2

þ λ5v3

32π2

�
A0ðM2

r��Þ þ
CϕSD
Λ2

�
Mh�v
16π2

þ λ4v3

32π2

�
A0ðM2

h�Þ

þ CϕR
Λ2

v3A0ðM2
r��Þ

16π2
þ CϕS

Λ2

v3A0ðM2
h�Þ

16π2

�
: ðB5Þ

The divergences associated with the Wilson coefficients are removed through MS renormalization of CeA,

δCeA¼
�
f2S
32π2

þ f2R
16π2

þ g2W
64π2

þ 5g4Y
128ðg2Y þg2WÞπ2

þ 65g2Yg
2
W

192ðg2Y þg2WÞπ2
þ g4W
128ðg2Y þg2WÞπ2

−
3λ1
16π2

−
λ1M2

W

8M2
Hπ

2

−
λ1M2

Z

16M2
Hπ

2
−
ðλ5M2

r�� þλ4M2
h�Þ

16M2
Hπ

2
−
3g2WM

2
W

32M2
Hπ

2
−
3ðg2Y þg2WÞM2

Z

64M2
Hπ

2
−

X
l¼e;μ;τ

M4
l

4M2
Hπ

2v2
−

X
qu¼u;c;t

M4
qu

4M2
Hπ

2v2

−
X

qd¼d;s;b

M4
qd

4M2
Hπ

2v2

�
CeA
Λ2

þ
�

gYg3WM
2
W

8ðg2Y þg2WÞM2
Zπ

2
þ g3Yg

3
Wv

2

32ðg2Y þg2WÞM2
Zπ

2

�
CeZ
Λ2

þ fSMμ

32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2Y þg2W

p
π2v

�
gY

CeWS

Λ2
þ2gW

CeBS
Λ2

�
:

ðB6Þ

2. Higgs decay

In this section, we have listed the renormalization constants (RC) computed for the case of 125 GeV Higgs decay to
diphoton mentioned in Sec. III B. Here, we only mention the part of the RCs which arise due to the divergence coming
through the coupling of r�� to other fields. The parts of the RCs containing the singly charged field h� have been
documented in the Appendix of Ref. [67]. The on-shell wave function RCs for the external fields are given as

δZAA;r�� ¼ g2Yg
2
WdB00ðM2

r��Þ
π2ðg2Y þ g2WÞ

−
A0ðM2

r��ÞðCBRg2W þ CWRg2YÞ
4π2ðg2Y þ g2WÞΛ2

; ðB7Þ

δZZA;r�� ¼ gYgWðg2YB00ðM2
r��Þ − g2YA0ðM2

r��ÞÞ
π2M2

Zðg2Y þ g2WÞΛ2
; ðB8Þ

and

δZH;r�� ¼ 1

64π2Λ2
ð4CϕRDλ

2
5v

4dB0ðM2
H;M

2
r��Þ þ 8CϕRλ5v4dB0ðM2

H;M
2
r��Þ þ 8v2CϕRDλ5B1ðM2

H;M
2
r��Þ

þ 8CϕRDλ5M2
r��v2dB0ðM2

H;M
2
r��Þ þ 8CϕRDλ5M2

Hv
2dB1ðM2

H;M
2
r��Þ þ 4CRϕDA0ðM2

r��ÞÞ: ðB9Þ

The tadpole counterterm is also computed in a similar fashion as given in Sec. B 1,

δvr�� ¼ −
A0ðM2

r��Þ
64π2M2

HΛ2
ð4v3CϕR þ 2λ5v2CϕRD þ 4M2

r��CϕRD − 4vλ5Λ2Þ: ðB10Þ
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The RCs associated with the Wilson coefficients are
given by

δCAϕ;r�� ¼ λ5ðg2YCWR þ g2WCBRÞ
16ðg2Y þ g2WÞπ2Λ2

; ðB11Þ

and

δCÃϕ;r�� ¼ λ5ðg2YCW̃R þ g2WCB̃RÞ
16ðg2Y þ g2WÞπ2Λ2

: ðB12Þ

APPENDIX C: SINGLY CHARGED SCALAR
CONTRIBUTION TO aμ

As discussed in Sec. III A, the EFT scenario considered
here plays an important role in explaining the observed
measurement for aμ, considering the effect of new propa-
gating singly and doubly charged scalar fields. The
effective dimension-6 contribution to aμ from r�� is given
in Eq. (15). The contribution to aμ from h� can be obtained
after renormalizing the SMEFT structure shown in
Eq. (10). For vanishing SMEFT Wilson coefficients, we
can find the following form for aμ contribution from
dimension-6 effective h� interactions:

Λ2 × ad6;h
�

μ ðZee-BabuÞ ¼ fSM3
μvðCSleÞeμ

24
ffiffiffi
2

p
π2M2

h�
þ fSM2

μv2ðClϕSÞeμ
48π2M2

h�
þ f2SM

2
μv2CϕSD

48π2M2
h�

þ fSM2
μ

8gYπ2
ððCeBSÞeμ þ ðCeBSÞμeÞ

�
1þ 2

3

�
M2

μ

M2
h�

�
þ 2 log

�
M2

μ

M2
h�

��

−
fSM2

μ

8gWπ2
ððCeWSÞeμ − ðCeWSÞμeÞ

�
1þ 2

3

�
M2

μ

M2
h�

�
þ 2 log

�
M2

μ

M2
h�

��
: ðC1Þ

Due to the antisymmetric structure of fS, μ→ μγ can pro-
ceed to happen via fμ�; νe; h∓g or fμ�; νe; h∓; γg vertices,
as shown in Fig. 7. As a result, these receive modifications
from specific off-diagonal elements of contributing effective

operators in flavor space and the corresponding Wilson
coefficients appear to contribute to aμ, as can be seen in
Eq. (C1). The covariant structures of the operators ðOiÞ for
the Wilson coefficients ðCiÞ are given in Table I.

(a) (b)

(d) (e)

(c)

FIG. 7. BSM Feynman diagrams contributing to the muon anomalous magnetic moment μ → μγ via h� and its EFT interactions. The
vertices include the renormalizable and the dimension-6 interactions.
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