
Targeting and Insertion of Membrane
Proteins in Mitochondria
Ross Eaglesfield* and Kostas Tokatlidis

Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow,
University Avenue, Scotland, United Kingdom

Mitochondrial membrane proteins play an essential role in all major mitochondrial functions. The
respiratory complexes of the inner membrane are key for the generation of energy. The carrier
proteins for the influx/efflux of essential metabolites to/from the matrix. Many other inner
membrane proteins play critical roles in the import and processing of nuclear encoded
proteins (∼99% of all mitochondrial proteins). The outer membrane provides another lipidic
barrier to nuclear-encoded protein translocation and is home to many proteins involved in the
import process, maintenance of ionic balance, as well as the assembly of outer membrane
components. While many aspects of the import and assembly pathways of mitochondrial
membrane proteins have been elucidated,many open questions remain, especially surrounding
the assembly of the respiratory complexes where certain highly hydrophobic subunits are
encoded by the mitochondrial DNA and synthesised and inserted into the membrane from the
matrix side. This review will examine the various assembly pathways for inner and outer
mitochondrial membrane proteins while discussing the most recent structural and
biochemical data examining the biogenesis process.
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INTRODUCTION

Mitochondria are critically important formetabolism and awhole range of cellular functions, while they also
play an essential role in programmed cell death. The mitochondrial proteome is made up of around 1,500
different proteins in humans and around 1,000 proteins in simpler eukaryotic organisms like Saccharomyces
cerevisiae (Rath et al., 2021; Song et al., 2021). From these proteins, only 13 are encoded by mitochondrial
DNA (mtDNA) in humans and 8 in S. cerevisiae (7 of which encode subunits of the oxidative
phosphorylation complexes). Therefore, the majority of the mitochondrial proteins (about 99% of
them) are nuclear-encoded, synthesised in the cytosol and then imported into their correct location
within the organelle. The protein import system is very elaborate and depends on multiprotein complexes
called translocons that reside in each one of the mitochondrial sub-compartments (Schmidt et al., 2010;
Pfanner et al., 2019). The main pathway for mitochondrial proteins is the presequence pathway that guides
soluble proteins into the mitochondrial matrix and accounts for almost two thirds of all mitochondrial
protein import. On the other hand, the mitochondrial membrane proteins that reside in the inner or the
outer membranes follow their own dedicated import routes that not only target the proteins to the correct
mitochondrial membrane but also specifically insert them stably within the lipid bilayer (Wiedemann and
Pfanner, 2017).

The mitochondrial β-barrel membrane proteins are found only in the outer membrane (OM), whilst
α-helical membrane proteins (with either a single or multiple transmembrane domains) are present in both
the outer (OM) and inner (IM)mitochondrial membranes (Figure 1). Insertion of all β-barrel proteins into
the OM is thought to occur post-translationally (Lee et al., 2014), whilst insertion of the very few, highly
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hydrophobic IM proteins that are encoded by the mtDNA occurs in
the close vicinity of the mitoribosome (Zorkau et al., 2021). The
mitochondrial membrane protein insertion routes seem to diversify
from others like the bacterial and the endoplasmic reticulum insertion
pathways, which are largely co-translational (Hegde and Keenan,
2021). In the following sections of this review we will first detail the
structural features of the translocon of the OM (the TOM complex),
which is themain entry gate for allmitochondrial proteins, andwewill
then discuss the mechanism and structural basis for the import of
proteins into the OM and IM of mitochondria.

THE TRANSLOCON OF THE OUTER
MEMBRANE COMPLEX: THE MAIN
GATEWAY FOR PROTEINS TO CROSS THE
OUTER MEMBRANE

Nearly all mitochondrial membrane proteins are encoded in
the nuclear genome and are synthesised by cytosolic
ribosomes (Schmidt et al., 2010). The outer membrane

therefore represents a significant barrier for these proteins
which they must cross in order to be correctly assembled into
both the inner and outer mitochondrial membranes. The
entry gate that controls this import process is known as
the TOM complex and is composed of a β-barrel pore
forming protein (Tom40), a number of accessory/
scaffolding proteins (Tom5, Tom6 and Tom7) and two
receptor proteins (Tom20 and Tom70) that recognise
mitochondrial targeting signals within protein sequences
(Bolliger et al., 1995; Dietmeier et al., 1997; Rapaport and
Neupert, 1999; Model et al., 2001; Gabriel et al., 2003;
Mokranjac and Neupert, 2015; Pfanner et al., 2019; Wang
et al., 2021). Additionally, the TOM complex contains a
protein called Tom22, which appears to act as both a
receptor and a scaffolding protein helping to control the
number of pore-forming subunits associated to each fully
assembled TOM complex as well as facilitating protein
import (Lithgow et al., 1994; Bolliger et al., 1995; Moczko
et al., 1997; Yano et al., 2000).

The proteinaceous components of the TOM complex
described above were identified and assigned many years ago

FIGURE 1 | General assembly pathways for mitochondrial membrane proteins. Presequence containing proteins are recognised by the translocon of the outer
membrane (TOM) complex and translocated across the outer membrane before being assembled via the translocon of the inner membrane (TIM23) complex. TIM23
requires a potential gradient across the inner membrane and can either laterally diffuse stop-transfer hydrophobic α-helices directly into the inner membrane or
translocate proteins all the way to the matrix via the PAMmotor, which can be subsequently inserted into the inner membrane by the Oxa1 insertase. Mitochondrial
carrier proteins are maintained in an import competent state by cytosolic chaperones before being translocated across the outer membrane by the TOM complex. Once
in the IMS carrier precursors are chaperoned by the small TIMs to the TIM22 complex where insertion into the inner membrane occurs. Beta-barrel proteins of the outer
membrane are first translocated into the IMS via the TOM complex. The small TIM chaperones then transfer β-barrel precursors from the TOM to the sorting and
assembly machinery (SAM) complex where insertion and assembly of the β-barrels takes place. Alpha-helical outer membrane proteins are most often inserted into the
membrane directly from the cytosol via the mitochondrial import machinery (MIM) complex.
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(Kiebler et al., 1990), however it is only with recent advances in
techniques such as cryo-EM that the assembly pathway of the
TOM complex has become clearer. The assembly of the TOM
complex is separated into three distinct stages known as assembly
I, assembly II and TOM core assembly (Wang et al., 2021)
(Figure 2A). Assembly I involves the integration of the
Tom40 β-barrel protein into the outer membrane from the
intermembrane space (IMS) side of the outer membrane via
the sorting and assembly machinery (SAM) complex (this process
will be discussed in detail later) (Wiedemann et al., 2003). This
initial assembly stage requires a fully assembled and functional
TOM complex for the initial translocation of Tom40 precursors
across the outer membrane. Tom5 and Tom6 are subsequently
inserted and assembled with Tom40 while it is still associated
with the SAM complex (Dietmeier et al., 1997; Model et al., 2001;
Becker et al., 2010; Thornton et al., 2010). The subsequent
addition of Tom7 leads to dissociation of the growing TOM
complex from SAM and constitutes assembly II (Yamano et al.,
2010; Becker et al., 2011b; Wang et al., 2021). The addition of
Tom22 to the complex leads to the assembly of the TOM core
complex containing multiple fully assembled TOM complexes
with Tom22 acting as a scaffold holding them together (Araiso

et al., 2019; Tucker and Park, 2019; Wang et al., 2020b; Wang
et al., 2021).

While the cryo-EM structures of the TOM core complex are an
invaluable source of molecular detail and give us many clues as to
the function of TOM as a protein import gate, they invariably
show a dimer containing two Tom40 pores and two copies of
Tom22 (Araiso et al., 2019; Tucker and Park, 2019). The
multimeric state of the TOM complex in intact mitochondria
seems to differ from these cryo-EM snapshots. Crosslinking
studies have shown that the TOM complex is likely to exist
predominantly as a trimer containing three β-barrel Tom40
subunits held together by three Tom22 subunits (Shiota et al.,
2011). A minor dimeric form of the TOM complex was observed
using cysteine-cysteine crosslinking and was found to contain two
Tom40 β-barrels but no Tom22 (Shiota et al., 2015) (Figure 2B).
It should be noted that both the trimeric and dimeric forms of the
TOM complex contained the other accessory TOM components
Tom5, Tom6 and Tom7. Interestingly, the trimeric form seems to
be indispensable for import of pre-proteins into the mitochondria
due to the presence of Tom20 and Tom22, both of which are
required for presequence recognition and transport (Model et al.,
2001). The dimeric form of Tom40 lacking Tom22 acts as an

FIGURE 2 | Assembly of the TOM complex. (A) The TOM complex is assembled sequentially in the outer membrane. First, a Tom40 precursor from the IMS is
assembled into the outer membrane by the SAM complex (Assembly I). Subsequently, the small TOMs Tom5 and Tom6 are assembled with Tom40while still associated
with Sam50. The addition of Tom7 leads to dissociation of the TOM-SAM complex (Assembly II) allowing the final assembly of the TOM core complex via the introduction
of Tom22. (B) Cryo-EM experiments identify a dimeric form of TOM containing Tom22. In vivo crosslinking data suggest that TOM actually exists as a trimer
containing Tom22 and a dimer lacking Tom22 but containing Tom5, 6 and 7. The trimer makes up the majority of the population and is the predominant form for
presequence import. The dimeric form lacking Tom22 facilitates the import of soluble IMS proteins. Models generated using PDB ID 6JNF.

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 8032053

Eaglesfield and Tokatlidis Mitochondrial Membrane Protein Biogenesis

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


assembly intermediate allowing the dynamic exchange of new
TOM subunits with the trimeric complex containing older
subunits (Shiota et al., 2015; Araiso et al., 2021). Alongside
this role, dimeric Tom40 can import several soluble MIA40
substrates into the IMS of mitochondria, specifically Tim9 and
Cox17 (Gornicka et al., 2014; Sakaue et al., 2019). Larger TOM
assemblies have also been observed via crosslinking analyses
(Tucker and Park, 2019), although the physiological relevance
of these larger oligomeric complexes remains to be discovered.

OUTER MEMBRANE PROTEIN
BIOGENESIS

Aside from the vital role of the TOM complex in protein import,
the outer membrane of mitochondria is also essential for
maintaining the ionic balance of the organelle through the
essential metabolite channel Porin/VDAC (Young et al., 2007),
while also providing sites of contact between the endoplasmic
reticulum (ER) and the mitochondria through mitochondrial
distribution and morphology protein 10 (Mdm10)
(Kühlbrandt, 2015; Ellenrieder et al., 2016). Given the vital
nature of these functions the biogenesis of outer membrane
proteins is a tightly regulated process requiring further
essential components of the outer membrane. Membrane
proteins of the outer mitochondrial membrane can be split
into two distinct classes, the α-helical and β-barrel proteins.

Alpha-helical proteins are inserted directly into the outer
membrane from the cytosol via the mitochondrial import
machinery (MIM) complex in most cases (Doan et al., 2020).
MIM is an oligomeric complex composed of two membrane
spanning alpha-helical proteins, Mim1 and Mim2, with Mim1
being the major constituent of the complex (Becker et al., 2008;
Hulett et al., 2008; Popov-Čeleketić et al., 2008; Dimmer et al.,
2012). Mim1 is able to form pores in planar lipid membranes,
while co-reconstitution with Mim2 does not substantially affect
pore formation but may allow the recognition of positively
charged residues in precursor proteins (Krüger et al., 2017).
Mim1 (also known as Tom13), was originally characterised as
a TOM complex assembly factor (Waizenegger et al., 2005;
Lueder and Lithgow, 2009; Becker et al., 2011a). Given that
the TOM complex contains a number of single-pass
transmembrane alpha-helical proteins (Tom5, Tom6, Tom20
and Tom70) this is not surprising. Since these initial studies
on TOM complex assembly, MIM has been identified as a key
regulator for the assembly of outer membrane proteins Ugo1 and
Fzo1, multi-spanning proteins involved in mitochondrial fusion
(Becker et al., 2011a; Papić et al., 2011; Dimmer et al., 2012); as
well as the multi-spanning protein Ubx2 (Mårtensson et al.,
2019). Ubx2 is a dually localised protein resident in both the
ER membrane, where it functions in the ER-associated
degradation (ERAD) pathway, and the outer mitochondrial
membrane where it performs a similar quality control function
by removing stalled precursors from the TOM complex
(Mårtensson et al., 2019).

Two interesting examples have also been found for MIM
inserting proteins from the IMS as well as the cytosol (Song

et al., 2014; Wenz et al., 2014). Outer membrane proteins
Mcp3 and OM45 have both been identified as substrates of
the MIM assembly pathway. What is interesting however is
that initially these proteins are imported into the IMS via the
presequence pathway involving the TOM complex. Prior to
their insertion at the outer membrane by MIM they have also
been found to interact with the TIM23 complex (Song et al.,
2014; Wenz et al., 2014). This novel import route is
interesting given the unknown functions of both of these
proteins. A recent study has identified that the MIM complex
exists in three distinct sub-populations (Figure 3A). As a lone
insertase MIM acts on single spanning and tail anchored
outer membrane proteins. MIM is also found in complex with
the TOM and the SAM where it functions in multi-spanning
outer membrane protein assembly and TOM assembly
respectively (Doan et al., 2020). A protein complex
performing the function of MIM has yet to be identified in
mammalian cells, however a recent study was able to identify
a functional equivalent to the MIM complex in trypanosomes
(Vitali et al., 2018).

The proteins mentioned above represent a limited subset of
outer membrane α-helical proteins and the insertion mechanism
for many tail-anchored proteins remains to be properly
elucidated. It has been suggested that some tail-anchored
proteins are actually able to insert into the outer membrane
without the assistance of any known insertase (Setoguchi et al.,
2006; Kemper et al., 2008). This suggests that a spontaneous,
thermodynamically driven mechanism may facilitate the
insertion of these proteins, or there may be an as yet
undiscovered pathway similar to the Get pathway of the ER
(Asseck et al., 2021). It has also been postulated that the lipid
composition of the outer membrane, specifically the presence of
ergosterols, acts as a targeting factor for tail-anchored proteins
(Krumpe et al., 2012).

The second class of outer membrane proteins are the β-barrel
proteins, which form pores in the outer membrane for the
transport of proteins and ions (Paschen et al., 2005). β-barrel
precursors synthesised in the cytosol must first translocate across
the outer membrane before being assembled from within the IMS
by the SAM complex (Figure 3B) (Pfanner et al., 2004). Emerging
precursors are stabilised in an unfolded state by the chaperones
Hsp70 and Hsp40 proteins which recognise β-hairpins present in
the precursors (Jores et al., 2018). Unfolded precursors are then
trafficked to the mitochondrial outer membrane where they come
into contact with the TOM complex via specific interactions
between their β-hairpin structures and the receptor protein
Tom20 (Jores et al., 2016). Unfolded proteins then pass
through the outer membrane via the Tom40 channel, which is
itself a β -barrel outer membrane protein required for its own
import (Rapaport and Neupert, 1999).

As precursors emerge from Tom40 on the IMS side of the
outer membrane they are able to interact with the small TIM
proteins, IMS resident chaperones that protect the highly
hydrophobic portions of membrane proteins from aggregation
prior to correct assembly (Vial et al., 2002; Hoppins and Nargang,
2004; Wiedemann et al., 2004; Milenkovic et al., 2009; Weinhäupl
et al., 2018).
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Beta-barrel precursors can then be assembled into the outer
membrane by the SAM complex, an outer membrane protein
complex consisting of a 16-stranded β-barrel protein Sam50 and
two peripherally associated subunits Sam35 and Sam37 facing the
cytosol (Kozjak et al., 2003; Milenkovic et al., 2004; Habib et al.,
2005). Sam50 bears striking similarity to the bacterial outer
membrane assembly protein BamA and indeed the assembly
mechanism is also well conserved given that bacterial outer
membrane proteins can be successfully imported and
assembled into the mitochondrial outer membrane (Walther
et al., 2009; Kozjak-Pavlovic et al., 2011; Ulrich et al., 2014).

Both Sam50 and Sam35 are essential proteins and have been
found to interact with precursors through a motif known as the
β-signal (Jores et al., 2016; Höhr et al., 2018). This motif (Polar-X-
Gly-X-X-Hydrophobic-X-Hydrophobic) is present in the most
C-terminal β-strand of precursor proteins and is required for
membrane insertion. Sam50, being a β-barrel protein, also
contains a β-signal in strand 16 (Imai et al., 2011). Recent
crosslinking evidence suggests that an incoming β-signal is
able to displace the endogenous Sam50 signal at a lateral
opening in the Sam50 pore (Höhr et al., 2018). A β-barrel
precursor associated with Sam50 through this β-signal
interaction may then be able to grow and insert subsequent
β-strands leading to a large assembly still associated with

Sam50 in a similar manner as the recently proposed model for
BAM insertion of β-barrel proteins in bacteria (Doyle and
Bernstein, 2019). The role of Sam35 is yet to be fully
elucidated, however some evidence indicates that Sam35 is
required for protein insertion by Sam50 and interacts with the
β-signal of precursors (Kutik et al., 2008). Sam35 is thought to be
peripherally associated with the SAM complex facing the cytosol
which is counterintuitive to a mechanistic understanding given
that β-barrel proteins are inserted from the IMS side of the outer
membrane. There is some evidence that Sam35 is actually
embedded within the outer membrane through close
interactions with Sam50 (Kutik et al., 2008), possibly within
the pore of Sam50, although recent structural data do not
support this hypothesis (Takeda et al., 2021; Wang et al., 2021).

The non-essential subunit Sam37 aids in the assembly of a
SAM-TOM supercomplex through interactions with Sam35 and
the cytosolic domain of Tom22 (Qiu et al., 2013; Wenz et al.,
2015). These interactions, along with interactions with the small
TIMs of the IMS, are thought to aid in precursor transfer from the
TOM to the SAM during outer membrane protein biogenesis.

More recently, the outer membrane β-barrel mitochondrial
distribution and morphology protein 10 (Mdm10) was identified
as a transient component of the SAM complex important for the
efficient assembly of the TOM complex (Meisinger et al., 2004,

FIGURE 3 | Mechanisms of outer membrane protein biogenesis. (A) The MIM complex exists in three distinct conformations: 1). In complex with TOM for the
assembly of certain multi- and single-spanning α-helical membrane proteins which interact via the receptor Tom70.2). As a lone insertase for the assembly of certain
single-spanning and tail anchored α-helical proteins. 3). In complex with SAMwhere MIM functions during assembly of TOM by inserting small TOM components into the
growing structure. (B) The SAM complex inserts β-barrel outer membrane proteins via the IMS. Precursors pass through the TOM which is bound to SAM via
Sam37 and the small TIMs in the IMS. TOM is then displaced as a growing β-barrel protein emerges from SAM. A switching mechanism is then required whereby a
mature β-barrel protein (e.g., Mdm10) displaces the newly formed β-barrel allowing it to be released from the SAM complex.
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2006). Mdm10 is dually localised to both the SAM complex and
the ER mitochondria encounter structure (ERMES) which
physically connects the mitochondrial outer membrane with
the ER membrane and is thought to aid in lipid transfer
between the two membranes (Kornmann et al., 2009; Flinner
et al., 2013; Bohnert et al., 2015). Mdm10 acts as a membrane
anchor for the rest of the ERMES complex subunits (Mdm34 and
Mdm12) which connect to the ER through interactions with the
ER protein Mmm1 (Kornmann and Walter, 2010).

The Mdm10 interaction with the SAM complex is mediated
through Sam37 but also interestingly through Tom7, one of the
small α-helical components of the TOM complex. Tom7 has an
inhibitory effect on TOM complex assembly due to this dual
interaction with both the TOM complex and Mdm10. Tom7 is
able to interact with free Mdm10 which in turn favours Mdm10-
ERMES assembly (Meisinger et al., 2006; Yamano et al., 2010).
This has the effect of limiting the amount of Mdm10 which is able
to bind to the SAM complex thus inhibiting TOM complex
assembly. Cryo-EM experiments have recently generated high
resolution structures of the SAM complex from M. thermophila
and S. cerevisiae in complex with various substrates providing
more evidence to support the mechanisms of outer membrane
protein insertion discussed above (Diederichs et al., 2020; Takeda
et al., 2021; Wang et al., 2021). The structural data clearly show a
lateral opening in Sam50 between the β-signal in strand 16 and
strand 1. Interestingly two of these studies were able to identify
the SAM complex in association with Mdm10 (Takeda et al.,
2021) and Tom40 (Wang et al., 2021). These structures have led
to the β-barrel switching hypothesis which suggests that in order
for a fully assembled β-barrel to be released by SAM into the outer
membrane a dynamic switching event must take place with
another β-barrel protein for this release to take place. It seems
that for Tom40 this dynamic switching event is mediated by
Mdm10 (Takeda et al., 2021; Wang et al., 2021), however for
Porin this event seems to be mediated by a second monomer of
Sam50 (Takeda et al., 2021). This SAM dimer complex will then
dissociate to allow the start of the assembly process again. Further
structural data are required to confirm this hypothesis however,
as only fully assembled β-barrels have been visualised to date an
assembly intermediate is missing. Such an intermediate has been
observed in the bacterial BAM complex however which confirms
the growth and release from the lateral opening (Tomasek et al.,
2020). More work is also needed to understand SAM-mediated
outer membrane assembly in humans given that yeast TOM
cannot be assembled by human SAM (Wang et al., 2021).

PROTEIN ASSEMBLY BY THE
TRANSLOCON OF THE INNER MEMBRANE

After passing through the TOM at the outer membrane,
proteins containing a presequence that are destined for
assembly at the inner membrane are transferred to the
translocon of the inner membrane (TIM23) complex
(Figure 4). TIM23 is a dynamic complex which adopts
different conformations for the transport of proteins into
the matrix and for partitioning certain membrane proteins

into the inner membrane directly (Wiedemann and Pfanner,
2017).

Presequence containing precursors passing through the TOM
complex will first interact with the receptor protein Tim50 which
has a large receptor domain exposed to the IMS (Meinecke et al.,
2006; Waegemann et al., 2015). In the absence of a bound
precursor, Tim50 also acts as a plug for the Tim23 channel in
order to maintain the permeability barrier of the inner membrane
which is so crucial for the generation and maintenance of the
proton gradient (Meinecke et al., 2006). Tim50 acts in concert
with both the regulatory subunit Tim21 and the main channel
forming polytopic membrane protein Tim23 to transfer
precursors across the inner membrane and partition certain
hydrophobic proteins into the inner membrane. Another
membrane embedded subunit Tim17, which is a paralog of
Tim23, is involved in maintenance of complex stability
(Demishtein-Zohary et al., 2015).

Distinct conformations of the TIM23 complex have been
identified that aid either the translocation of large hydrophilic
domains across the inner membrane to the matrix, or the lateral
diffusion of transmembrane α-helices into the lipid bilayer
(Schendzielorz et al., 2018; Edwards et al., 2021). Key to these
differing conformations are the TIM23 accessory proteins Pam18
and Mgr2. When Pam18 is bound to TIM23 (designated
TIM23MOTOR), as is the case during precursor translocation,
the lateral release of membrane proteins is inhibited. When
TIM23 is associated with the subunits Tim21 and Mgr2
(designated TIM23SORT) hydrophobic protein sequences can
be partitioned into the inner membrane in a process known as
stop transfer (Chacinska et al., 2005, 2010; van der Laan et al.,
2007; Bohnert et al., 2010; Schendzielorz et al., 2018). Mgr2 seems
to act as a gatekeeper for protein lateral release due to its close
association with the predicted lateral gate of Tim23 and its quality
control-type effect on the lateral release process (Ieva et al., 2014;
Matta et al., 2020). Following translocation or lateral release into
the inner membrane, the presequence, which will have invariably
been translocated into the matrix, is cleaved by the matrix
processing peptidase (MPP). Interestingly, the TIM23 complex
of yeast has been shown to interact with respiratory chain
complexes in both the TIM23SORT and TIM23MOTOR

conformations, indicating that a physical interaction keeping
the translocase close to the site of proton motive force
generation may be essential to the function of TIM23 in both
the translocation and release of IM proteins and the translocation
of soluble matrix proteins (van der Laan et al., 2006; Wiedemann
et al., 2007).

In humans the TIM23 subunit TIM21 plays a distinct and
important role in respiratory chain biogenesis. TIM21 was
discovered as a component of an early cytochrome C oxidase
assembly intermediate known as mitochondrial translation
regulation assembly intermediate of cytochrome c oxidase
(MITRAC) complex (Mick et al., 2012; Wang et al., 2020a).
Knockdown of TIM21 also lead to complex IV assembly
defects, while overexpression of TIM21 relieved ATP synthase
assembly defects in yeast and improved the viability of human cell
lines generated from patients with ATP synthase defects (Aiyar
et al., 2014).
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In order for TIM23 to transfer large protein domains into
the matrix two things are essential: the mitochondrial
membrane potential (Δψ) and the ATP-driven import
motor PAM (Li et al., 2004; Van Der Laan et al., 2013).
The major component of the import motor is the ATP-driven
chaperone mitochondrial heat shock protein 70 (mtHsp70)
which is connected to Tim23 via the peripheral subunit
Tim44 which also aids in precursor transfer from Tim23 to
mtHsp70 (Hutu et al., 2008; Banerjee et al., 2015). The co-
chaperones Pam18 and Pam16 enable ATP hydrolysis by
mtHsp70 while the nucleotide exchange factor Mge1
promotes the exchange of ADP for ATP and thus the
recycling of the motor (Miao et al., 1997; Sakuragi et al.,
1999; Wiedemann and Pfanner, 2017). The exact mechanistic
details of how the motor operates and imports proteins into
the matrix remains to be elucidated. Interestingly, a direct
physical link has been found between Pam16 and Pam18 and
the respiratory complex III-IV supercomplex (Wiedemann
et al., 2007). This interaction is thought to facilitate the
assembly of the PAM motor and may provide a key
energetic environment to enhance protein translocation to
the matrix.

The two distinct Tim23 pathways discussed above are most
often used independently, however there is an example of a
protein that utilises both mechanisms for its assembly in the
inner membrane. Mdl1, a six transmembrane segment member of
the ABC transporter superfamily, utilises both lateral diffusion
and motor-driven translocation prior to its final assembly at the
inner membrane (Bohnert et al., 2010). This study identified that
of the six transmembrane helices of Mdl1, the first and last two
diffuse directly into the inner membrane from TIM23SORT while
the two helices located in the middle of the protein sequence are
fully translocated into the matrix by TIM23MOTOR before being
assembled into the inner membrane by the oxidase assembly
protein 1 (Oxa1, whose function will be described later). Since
this initial discovery further examples of proteins utilising a
combination of stop-transfer and conservative (PAM-driven)
mechanisms for assembly have been identified, for example
Sdh4 (Park et al., 2013) and the Tim18-Sdh3 module of the
TIM22 translocon (Stiller et al., 2016).

A high-resolution structure of the TIM23 complex is yet to be
reported although given the speed of advancement of cryo-EM
techniques a molecular structure will likely be available in the
near future.

FIGURE 4 |Assembly of inner membrane proteins by TIM23. (A) Presequence containingmembrane proteins are recognised at the outer membrane by the Tom20
receptor and translocated across the outer membrane via Tom22 and Tom40. Once in the IMS presequences are recognised by the TIM23 subunit Tim50 and moved
into the Tim23 channel. TIM23 can either laterally release stop-transfer segments into the membrane via the lateral gatekeeper Mgr2 associated with Tim21 (B), or can
translocate entire domains into thematrix via the PAMmotor (C). Motor function requires an inner membrane potential and ATP hydrolysis by mtHsp70. Once in the
matrix the presequence will be cleaved by matrix processing peptidase (MPP). Certain multi-spanning proteins utilise both lateral diffusion directly from Tim23 and
translocation for subsequent insertion via the Oxa1 insertase.
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MITOCHONDRIAL CARRIER PROTEINS
AND THE TIM22 COMPLEX

The mitochondrial carrier proteins are a superfamily of 6
transmembrane α-helical proteins localised to the inner
membrane of mitochondria (Figure 5A) and are essential for
the transport of essential metabolites into and out of the
mitochondrial matrix (Horten et al., 2020). The carrier
proteins are synthesised without N-terminal presequences, and
instead have internal targeting signals which can be recognised by
the Tom70 receptor at the cytosolic face of the outer membrane
(Sirrenberg et al., 1998; Diekert et al., 1999; Wiedemann et al.,
2001; Kreimendahl et al., 2020). However, recent evidence
suggests that Tom70 acts more like a recruitment factor for
cytosolic chaperones such as Hsp70 and Hsp90 which are able

to maintain the highly hydrophobic carrier proteins in an import-
competent state and avoid unwanted aggregation (Backes et al.,
2021).

Following translocation across the outer membrane through
the Tom40 pore, carrier precursors interact with the small TIM
chaperones in the IMS. Specifically, they bind the Tim9-Tim10
(Tim9 and Tim10a in humans) complex first at the IMS side of
TOM (Luciano et al., 2001; Truscott et al., 2002; Vial et al., 2002)
which forms a ring or doughnut-like structure that shields the
hydrophobic domains of carrier substrates from the aqueous
medium of the IMS (Weinhäupl et al., 2018). From here
carrier precursors are handed to a second small TIM complex
associated with the TIM22 translocon containing Tim9-Tim10-
Tim12 in yeast and Tim9-Tim10a-Tim10b in humans
(Sirrenberg et al., 1998; Lionaki et al., 2008; Qi et al., 2021).

FIGURE 5 | The carrier pathway for insertion at the inner membrane by TIM22. (A) Carrier precursors are recognised by cytosolic chaperones which move the
precursor to the mitochondrial outer membrane via interactions with the receptor Tom70. Precursors are then translocated via the TOM to the IMSwhere they are met by
the Tim9-Tim10 complex which maintains the hydrophobic precursor in an insertion-competent state. The precursor is then handed to the TIM22 complex via the
membrane bound Tim9-Tim10-Tim12 complex which is bound to Tim22 via Tim54. Tim22 then inserts α-helical modules into the inner membrane in a membrane
potential dependent manner. The Tim18/Sdh3 module associated with Tim22 is required to maintain complex stability. (B) Yeast Tim22 appears to contain a lateral gate
exposing the hydrophilic core of the channel to the surrounding lipid suggesting a method of lateral diffusion directly from the channel. Lateral gate highlighted by red
dashed areas. Models generated using PDB ID 6LO8.
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Interestingly, the outer membrane metabolite channel porin was
recently identified to have a role in carrier protein biogenesis and
bound directly to carrier protein precursors as well as directly
recruiting TIM22 (Ellenrieder et al., 2019). The exact mechanism
by which porin aids carrier insertion remains unknown but may
involve physically linking the inner and outer membranes
through these protein-protein interactions given that a direct
TOM-TIM22 supercomplex does not appear to exist (Edwards
and Tokatlidis, 2019; Ellenrieder et al., 2019; Horten et al., 2020).

Following outer membrane translocation and passage through
the IMS chaperoned by the small TIMs, carrier precursors arrive
at the TIM22 complex for their final insertion and assembly in the
inner membrane. The TIM22 complex is composed of the main
translocon protein Tim22 (Sirrenberg et al., 1996; Bauer et al.,
1999) and a number of accessory proteins that are starkly
different in yeast and humans. In yeast, the accessory proteins
are Tim54, Sdh3 (which is also part of complex II), and Tim18.
Tim54 contains a large IMS exposed domain which acts as a
recruitment site for the Tim9-Tim10-Tim12 complex (Rehling
et al., 2003, 2004). Tim18 and Sdh3 form a membrane integral
module which is involved in the assembly of the TIM22 complex
and is dependent on Oxa1 (Kerscher et al., 2000; Koehler et al.,
2000; Gebert et al., 2011). In humans the accessory proteins are
Tim29 and acylglycerol kinase (AGK) (Qi et al., 2021). Tim29
performs a similar function to yeast Tim54. It contains an IMS
facing domain and is involved in interactions with the small TIMs
and TIM22 complex assembly (Kang et al., 2016). AGK was only
identified as a TIM22 complex subunit recently. Its role in carrier
protein assembly is independent of its equally crucial role as a
lipid kinase, however how it aids carrier protein biogenesis is not
yet known (Kang et al., 2017; Vukotic et al., 2017).

The core component of the TIM22 complex in both yeast and
humans is the translocase protein Tim22. The mitochondrial
membrane potential is essential for precursor transfer from the
small TIMs to Tim22 where carriers are laterally released as
consecutive α-helical hairpin pairs into the inner membrane and
adopt their functional fold (Wiedemann et al., 2001; Rehling
et al., 2003). The mechanism of assembly and lateral release by
Tim22 remains unknown, however recent structural analysis of
both the human and yeast TIM22 complexes seems to indicate a
cavity within Tim22 exposed to the lipid bilayer (Figure 5B) (Qi
et al., 2021; Zhang et al., 2021). However, further structural data
with bound precursors undergoing insertion are required to fully
elucidate the carrier insertion mechanism.

As mentioned above, carrier proteins contain three modules
each containing hairpin α-helical structures which are required
for assembly by TIM22 (Wiedemann et al., 2001). Recently, a
number of unconventional TIM22 substrates have been identified
containing odd numbers of transmembrane helices in both yeast
(Gomkale et al., 2020; Rampelt et al., 2020) and human (Acoba
et al., 2021; Jackson et al., 2021) mitochondria. In yeast, the
mitochondrial pyruvate carrier (MPC) proteins Mpc2 and Mpc3,
both of which are predicted to have odd numbers of
transmembrane α-helices (Bender et al., 2015), show a
dependence on TIM22 for their assembly (Gomkale et al.,
2020; Rampelt et al., 2020). TIM22 is also required for the
assembly of MPC proteins in human cells (Gomkale et al.,

2020). Furthermore, human cells also require TIM22 for the
correct assembly of a number of sideroflexin (SFXN) proteins.
These proteins are predicted to contain odd numbers of
transmembrane α-helices and are essential as amino acid
transporters in mitochondria that in turn affect mitochondrial
one-carbon metabolism and respiratory complex III integrity
(Kory et al., 2018; Acoba et al., 2021; Jackson et al., 2021).
Taken together these recent studies suggest that the substrate
spectrum of the TIM22 complex is much wider than previously
thought, and biogenesis by TIM22 does not necessarily require
modules of α-helical hairpin structures as originally thought.

OXA1 AND RESPIRATORY CHAIN
ASSEMBLY

Mitochondria maintain fully functional transcription and
translation machineries, however many of the proteins making
up these systems are encoded by nuclear DNA. The
mitochondrial DNA (mtDNA) of eukaryotes codes for a small
subset of highly hydrophobic membrane proteins that are
subunits of the complexes of the oxidative phosphorylation
(OXPHOS) respiratory electron transport chain (Taanman,
1999). Yeast mitochondrial genomes encode for 30–40 genes
that include ribosomal RNAs, tRNAs and subunits of the
OXPHOS machinery; specifically three subunits of ATP
synthase (atp6, atp8 and atp9), three subunits of complex IV
(cox1, cox2 and cox3) and a single subunit of Complex III (cytb)
(Freel et al., 2015). Human mitochondria encode a total of 37
genes including, like yeast, ribosomal RNAs, tRNAs and
OXPHOS subunits. Human mtDNA encodes 13 protein
subunits of the OXPHOS machinery, two subunits of ATP
synthase (atp6 and atp8), three subunits of complex IV (cox1,
cox2 and cox3), one subunit of complex III (cytb) and 7 subunits
of complex I which is not present in yeast (nd1, nd2, nd3, nd4L,
nd4, nd5 and nd6) (Figure 6A) (Chocron et al., 2019). The inner
mitochondrial membrane protein Oxa1 is essential for the correct
insertion and assembly of many of these proteins and is therefore
required for oxidative phosphorylation and cell viability
(Figure 6B) (Thompson et al., 2018). Oxa1 was first identified
in yeast and shares structural and functional homology with the
bacterial insertase YidC (Bonnefoy et al., 1994; Altamura et al.,
1996; Scotti et al., 2000). Like YidC, Oxa1 has a membrane
spanning core of five α-helices that is absolutely essential for
its insertase function (Kuhn et al., 2003; Hennon et al., 2015). The
major difference betweenOxa1 and YidC is the presence of a large
C-terminal hydrophilic domain in Oxa1 located in the
mitochondrial matrix. Removal of this C-terminal domain
resulted in a loss of cell viability due to incomplete assembly
of respiratory complexes, with the most drastic defects being
present in complex IV (Szyrach et al., 2003). Furthermore, the
C-terminal domain of Oxa1 was found to act as a binding site for
the mitochondrial ribosome (Szyrach et al., 2003) suggesting that
localising the translation of certain hydrophobic proteins to the
membrane in close proximity to Oxa1 is key to their correct
insertion and assembly. The membrane proximity of translation
was also recently shown to be crucial for the thermodynamically
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driven assembly of a bacterial α-helical membrane protein in an
entirely in vitro artificial system (Eaglesfield et al., 2021). The
yeast protein Mba1 was also initially identified as a component of
the respiratory chain assembly pathway acting independently of
Oxa1 for the insertion of Cox2, cytochrome b and Cox1 (Preuss
et al., 2001). Subsequent study ofMba1 identified it as a secondary
mitoribosome receptor whose function seems to be both the
anchoring of translation to the membrane through interactions
with the mitoribosome and facilitating a tight interaction between
Oxa1 and the mitoribosome (Ott et al., 2006; Keil et al., 2012).
Knockdown of Oxa1 in humans results in a similar phenotype to
yeast knockdowns, with the assembly of the respiratory chain
being affected, specifically complexes I, IV and V (Stiburek et al.,
2007; Thompson et al., 2018). Mba1 in humans is not freely
associated with the membrane and Oxa1 as it is in yeast. It is
instead a proteinaceous component of the human mitoribosome
known as mL45 which still functions in attachment of the
ribosome to Oxa1 when the mitoribosome is actively
translating (Kummer et al., 2018; Itoh et al., 2021). Human
Oxa1 also contains a long C-terminal hydrophilic domain

which as a contact site for the mitoribosome (Itoh et al.,
2021). Recent microscopic evidence has shown that the
majority of translation in human mitochondria occurs at the
cristae membrane close to the site of OXPHOS assembly by Oxa1
(Zorkau et al., 2021) and not at the nucleoid or RNA granules
where mRNA is processed (Rey et al., 2020). Interestingly, the
submitochondrial distribution of Oxa1 in yeast is altered
depending on the energy demands of the cell. Under
respiratory conditions Oxa1 is located mainly in the cristae
due to the requirement for assembly of the OXPHOS
machinery, however under fermentative conditions where
OXPHOS is not generally required, Oxa1 is redistributed to
the boundary membrane (Stoldt et al., 2012). An explanation
for this may be that Oxa1 is also required for the assembly of
Tim22 in the inner membrane and thus has a knock-on effect on
the assembly of many carrier proteins which are still required
under fermentative conditions (Hildenbeutel et al., 2012; Stiller
et al., 2016).

While the function of Oxa1 as a membrane protein insertase is
clear, a direct mechanistic understanding of its function remains

FIGURE 6 | Inner membrane protein assembly by Oxa1. (A) Hydrophobic proteins of the human respiratory complexes that are synthesised on mitoribosomes are
highlighted in red. (B)Oxa1 is able to insert proteins from two origins. Some proteins that are synthesised in the cytosol, passed through TOM and partially assembled by
TIM23 require Oxa1 for the assembly of some of their transmembrane α-helices. Oxa1 also acts as the main, and only, insertase for mitochondrially encoded membrane
proteins. The mitoribosome is physically associated with Oxa1 viaMba1 in yeast (mL45 in humans) whereby respiratory subunits are inserted and assembled into
the inner membrane co-translationally.
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elusive. It does appear to form voltage-gated ion channels when
reconstituted in lipid membranes however the in vivo oligomeric
structure as well as the mechanism allowing membrane protein
lateral diffusion remain unclear (Krüger et al., 2012). No high-
resolution structure for Oxa1 exists and would be a prerequisite to
further our understanding of the role of Oxa1 in membrane
protein biogenesis.

OUTLOOK

The field of mitochondrial membrane protein biogenesis has
burgeoned in recent years. Advances in technologies such as cryo-
EM have led to important discoveries enhancing our mechanistic
understanding of this remarkably complex process. One thing
that has become increasingly clear in recent years is the variety of
membrane insertase and translocase complexes that exist within
the mitochondria and appear to be highly adaptive, and most
often act in concert with each other in dynamic ways to facilitate
membrane protein biogenesis.

Even the relatively well understood presequence and carrier
insertion pathways have revealed some new and exciting features
recently. For example, the fact that the presequence (stop-
transfer) pathway of TIM23 is able to work in conjunction
with the Oxa1 insertase for the biogenesis of a number of
inner membrane proteins, as well as the recent discovery of
unconventional TIM22 substrates which suggests the
recognition and insertion mechanism used by this insertase is
more complex than previously thought.

A relatively unexplored avenue to date has been the
involvement of the import and assembly protein Mia40 in
oxidative folding required for membrane protein assembly.
Mia40-dependent disulfide formation within transmembrane
helices has however been identified in the essential proteins
Tim22 and Tim17 (Wrobel et al., 2013, 2016). These disulfides
may well stabilise transmembrane helical structure and could be
important for other mitochondrial membrane proteins.

Despite all of these recent advances, there are still a number of
key areas that require work to develop a full mechanistic
understanding of the mitochondrial membrane protein

biogenesis process. As discussed in this review, it is assumed
that all of the known insertase complexes are able to laterally
diffuse growing membrane proteins into the lipid environment
through a “lateral-gate” type mechanism. While there is support
for this theory based on the most recent structural data, what
remains lacking for all of the mitochondrial insertases is a
structural snapshot of this lateral diffusion process occurring.
This has been shown for certain related bacterial insertases, but
certainly an independent verification of this process by
mitochondrial insertases would be incredibly valuable.

High-resolution structural data is still lacking for both the
TIM23 complex and the Oxa1 insertase, while the recent
structures of the TIM22 complex of both yeast and humans
need further work to provide mechanistic details of insertion. It
seems likely that the remarkable improvements in cryo-EM
techniques will lead to structural data for these complexes
being available in the near future and will likely provide us
with further clues as to the insertion process. It will be very
interesting to see structural snapshots of precursor protein
translocation and biogenesis through all of the mitochondrial
insertase complexes and to analyse these in conjunction with
previously published cross-linking data to further elucidate the
translocation and insertion process in mitochondria.
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