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Abstract—Virtual reality (VR) has the potential to induce 
cybersickness (CS), which impedes CS-susceptible VR 
users from the benefit of emerging VR applications. To 
better detect CS, the current study investigated 
whether/how the newly proposed human vestibular 
network (HVN) is involved in flagship consumer VR-
induced CS by simultaneously recording autonomic 
physiological signals as well as neural signals generated in 
sensorimotor and cognitive domains. The VR stimuli were 
made up of one or two moderate CS-inducing entertaining 
task(s) as well as a mild CS-inducing cognitive task 
implemented before and after the moderate CS task(s). 
Results not only showed that CS impaired cognitive control 
ability, represented by the degree of attentional 
engagement, but also revealed that combined indicators 
from all three HVN domains could together establish the 
best regression relationship with CS ratings. More 
importantly, we found that every HVN domain had its 
unique advantage with the dynamic changes in CS severity 
and time. These results provide evidence for involvement 
of the HVN in CS and indicate the necessity of HVN-based 
CS detection.  

 
Index Terms—virtual reality, cybersickness, multimodal 

sensing, cognitive control ability, vestibular network. 

I. INTRODUCTION 

HE term cybersickness (CS) was first used by McCauley & 

Sharkey in 1992 [1]. They delineated it as a special motion 

sickness (MS) that was triggered by visually-induced illusory 

self-motion, namely vection, in a virtual environment 

(“cyberspace”). The fundamental difference between CS and 

MS is that CS occurs strictly with pure visually-induced 

sickness without any real physical movements. In the context 

of consumer virtual reality (VR), many VR games that involve 

moving visual surroundings (e.g., tunnel travel, driving a 

vehicle or experiencing flight or rollercoasters) may elicit 

vection and trigger CS. Although a precise reason for the 

experience of CS is somewhat lacking, sensory-conflict theory 
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(SCT) [2] is one proposal to explain the etiology of CS. That is, 

CS occurs when vection is not matched by corresponding 

vestibular information. To be more specific, there is an absence 

of actual responses from vestibular sensory organs: otoliths 

and/or semi-circular canals. These mismatched sensory inputs 

go through neural pathways arriving in the brain’s multisensory 

information integration (MII) center, leading to a form of 

neurological confusion in the brain. This may result in 

autonomic symptoms, including cold sweating, nausea, 

oculomotor disturbances and disorientation [3]. This is why 

autonomic physiological signals are considered a 

straightforward way to detect CS [4]–[7].  
fMRI studies show that the temporoparietal junction and 

parieto-insular vestibular cortex play an important role in the 

MII center [8] and also indicate an interesting interaction 

between the MII center and the cognitive domain [9]. Given 

these findings, a recent review article directly proposed that the 

function of the human vestibular system goes far beyond just 

the processing of information from two inner ear sensory organs. 

Instead, it is a widespread network (human vestibular network, 

HVN) that includes at least the autonomic, sensorimotor (which 

covers the MII center) and cognitive domains [10]. A collective 

view of these studies led us to hypothesize that the cognitive 

domain is involved in SCT. That is, SCT and the HVN seem to 

share three identical key brain domains; therefore, CS may be 

better detected using combined indicators of dynamic changes 

in the HVN instead of using autonomic physiological signals 

alone. However, direct evidence of the correlates of the HVN 

and CS is lacking.  

Recent studies have replicated the methodology of vection 

induction used in previous fMRI studies and confirmed the 

involvement of the sensorimotor domain from the perspective 

of electroencephalography (EEG), such as significant change in 

the Alpha frequency band in this domain during vection [11], 

[12]. However, it is still necessary to investigate other EEG 

frequency bands in a more comprehensive way because some 

traditional MS studies also observed significant changes in the 

Delta, Theta and Beta frequency bands [13], [14]. In a more 
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recent study [15], Tauscher and colleagues investigated both 

EEG and autonomic physiological signals during CS using a 

physical projection room-based dome VR. The authors claimed 

that the reason they did not use a head mounted display (HMD) 

was that the straps on the HMD would interfere with the EEG 

signals. However, the latest flagship HMDs, such as the Oculus 

Quest 2, use EEG-friendly headbands (see Fig. 1) instead of 

cap-like straps. More importantly, although their EEG 

recordings covered cognitive and sensorimotor domains, they 

did not design the experiment and analyze data from the 

perspective of the HVN. 

Regarding study design, previous studies have been mainly 

based on three steps [4]–[6], [16]: 1) baseline measurement 

prior to CS induction, 2) subjective ratings during CS induction 

using the fast motion sickness scale (FMS) [17] (if assessment 

during CS is the research topic) or the simulator sickness 

questionnaire (SSQ) [18] (if a pre-post CS comparison is the 

research focus), 3) validation of the effectiveness of the 

collected biodata by the subjective ratings. In the design of CS 

induction, issues such as serious symptoms (e.g., retching) have 

not been sufficiently considered, although they may affect the 

consistency between subjective and objective data [19]. For 

data validation, the SSQ is indeed frequently used in CS 

research; however, its two variants, CS questionnaire (CSQ) 

[20] and virtual reality sickness questionnaire (VRSQ) [21], 

appear to be superior to the SSQ for psychometric evaluation 

when using consumer VR HMDs [22]. More importantly, the 

cognitive domain has not been part of previous study designs; 

therefore, the correlation of cognitive indicators with subjective 

CS ratings remains unclear, as are interactions between 

cognitive and sensorimotor domains represented by EEG-based 

functional brain connectivity in CS. Therefore, the HVN as a 

whole is underexplored in CS detection.  

Here, we aimed to understand how cognitive control abilities 

could be affected by CS and which biomarkers can best detect 

CS. Specifically, we assessed if moderate CS has a negative 

impact on some of the cognitive control indicators that are 

critical to work performance. As such, we designed an 

experimental procedure of cognitive task → moderate CS 

induction task(s) → cognitive task, where the cognitive task 

was a VR version of a previous cognitive assessment that 

featured low-vection visual elements and was used to assess 

selective attention-centric cognitive control abilities in the form 

of a perceptual discrimination task [23], [24], and the moderate 

CS induction task(s) were tunnel travel and a rollercoaster that 

featured high-vection scenes. Participants experienced high 

linear vection (tunnel task) with low rotational movement; 

stimuli that are expected to induce a moderate CS response. 

However, participants that did not reach our threshold of 

moderate CS response were subsequently exposed to a 

rollercoaster to experience high degrees of linear vection and 

also much greater amounts of circular vection. The benefit of 

this design was having a more robust CS induction strategy that 

is not detrimentally impacted by inherent population variability 

in subjective sickness ratings. We also conducted a control 

group experiment in which we repeated the experimental 

procedure described above, except with the moderate CS 

induction task(s) replaced by a vection-free neutral task.   

We compared the differences between the first and second 

cognitive tasks in a set of well-established cognitive indicators. 

 
 

(a)                                                                                                         (b) 
Fig. 1.   (a) Block diagram of the proposed multimodal sensing system, where the Lab streaming layer (LSL) protocol was used to synchronize 
VR events with EEG data collection software. The LSL protocol, developed by University of California, San Diego a decade ago, can ensure 
sub-millisecond accuracy as long as both the LSL host (marker sender) and client (receiver) are in the same local network. The LSL’s 
applicability in combined VR-EEG settings has been confirmed in our previous studies [25], [40]. For the physiological sensing platform, USB 
communication between Arduino and Oculus Quest was developed using middleware Java Native Interface (JNI) bindings. JNI was used to 
enable Java code to be called by a non-Java platform so that our VR application can access the hardware layer of Quest and stream all 
physiological data from Arduino’s USB interface into Quest and attach event markers to these data and directly store them as CSV files inside 
Quest. “Attaching event markers” was executed by two lines of consecutive C# code immediately after the task session started or after every 
1-min FMS score reported. The latency was in the order of tens of milliseconds, so there were no meaningful system delays. (b) Sample 
experimental environment. 
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Furthermore, because the cognitive task per se was VR-based 

and not zero-CS, we investigated the correlates of the cognitive 

indicators and CS ratings. More importantly, we took the HVN 

as a whole and explored the correlates of HVN-based 

biomarkers and CS ratings in all three conditions by 

simultaneously recording autonomic physiological signals 

[fingertip temperature, forehead temperature, heart rate (HR) 

and photoplethysmogram (PPG)-based heart rate variability 

(HRV)] and EEG signals generated in sensorimotor 

(temporoparietal junction and parieto-insular vestibular cortex) 

and cognitive domains (frontal to posterior midline), to explore 

which biomarkers are superior to others for the detection of CS 

and can thus be regulated to mitigate CS in future studies. 

Therefore, compared with previous studies, the primary 

contributions of this work are as follows: 

1) This study linked EEG-based cognitive indicators and 

cognitive-sensorimotor functional connectivity indicators to 

subjective CS ratings, which can bridge the gap between the 

proposed HVN and a real-world case. 

2) This study adopted multimodal biometrics so that neural 

and autonomic physiological data could be analyzed in the same 

framework. 

3) This study built a theoretical foundation for the 

development of targeted interventions in real-world VR 

scenarios, where users might be switching between mild and 

strong vection tasks with some frequency over the course of the 

day. 

 
II. SYSTEM ARCHITECTURE AND SETTINGS  

Our sensing platform was based on the newly released all-in-

one Oculus Quest 2 (72 Hz display refresh rate and 89° 

horizontal field of view). As shown in Fig. 1, it was equipped 

with continuous monitoring of multimodal signals [including 

EEG, electrooculogram (EOG), PPG, fingertip and forehead 

temperature] of the participant. 

A. EEG for Cognitive and Sensorimotor Domains 

EEG data were collected through an eight-channel EEG 

recording device (NE® StarStim 8™, Neuroelectrics Inc, 

Barcelona, Spain), which uses a high-resolution, high-speed 

analog-to-digital converter (24 bit at 500 Hz sampling rate). 

Conventional wet electrodes were used and placed at seven 

channels, including locations used to infer the cognitive domain 

(Fz, Cz, and Pz) [23], temporoparietal junction, and the parieto-

insular vestibular cortex-based sensorimotor domain (CP5, CP6, 

P3 and P4) [11], [25]–[27]. The remaining channel (EXT) was 

used to collect EOG using a disposable electrode on the left 

lower eyelid. The ground and reference electrodes were 

connected together and attached to the right earlobe using an 

ear clip. Note, that EEG is poor at measuring neural activity that 

occurs below the upper layers of the brain (the cortex); therefore, 

we used autonomic physiological signals as the best estimates 

of the neural activity related to the autonomic domain (believed 

to be located in subcortical areas, such as the amygdala [10]). 

B. Autonomic Physiological Signals 

PPG data were recorded from the fingertip of the left index 

finger using a set of reflective-type photoelectric sensors 

(including a light transmitter and receiver; 

https://pulsesensor.com/). HR and HRV were extracted and 

analyzed from continuous PPG signals [28], [29]. Fingertip 

temperature data were collected from the fingertip of the left 

middle finger using a digital thermometer (DS18B20, Maxim 

Integrated, Inc.). Forehead temperature data were collected 

from the participant’s forehead skin using a non-contact 

infrared temperature sensor (MLX90614, Melexis, Inc.). The 

position of the forehead temperature sensor was just above the 

Quest 2’s built-in proximity sensor. Both fingertip and forehead 

temperature sensors have a ± 0.5℃ measurement accuracy, 

which is acceptable in the context of up to 2–4℃ CS-induced 

difference [30].  

III. EXPERIMENTAL DESIGN AND ANALYSIS METHODS 

A. Questionnaires for Subjective CS Assessment 

The SSQ has 16 items in total, including three specific 

symptom clusters: nausea (N), oculomotor (O), and 

disorientation (D). Nausea includes symptoms of the feeling of 

nausea, stomach awareness, increased salivation and burping. 

The oculomotor cluster includes eyestrain, difficulty focusing, 

blurred vision and headache and the disorientation cluster 

includes feelings of dizziness and vertigo. The total score (T) of 

the SSQ is the weighted sum of the three symptom cluster 

scores and is used to describe the overall severity.  

Unlike the SSQ which is used to assess CS severity between 

pre-post CS induction, the FMS can rate CS severity quickly 

during CS induction (usually at 1-min intervals). Thus, the FMS 

has higher time resolution than the SSQ. However, the price 

paid for quicker assessment is that the FMS is a single item 

questionnaire that requires participants to focus on nausea, 

general discomfort, and stomach problems only to give an 

overall single score ranging from 0 (not at all) to 20 (severe). 

The VRSQ and the CSQ are two subsets of the original SSQ. 

VRSQ developers argued that with VR HMDs, nausea-related 

symptoms were not the principal components compared with 

oculomotor and disorientation components. Thus, they 

excluded SSQ-N items from the original 16 SSQ items and 

retained other SSQ-O and SSQ-D items. Regarding CSQ, the 

developer removed two vague symptoms from the original SSQ 

with the intention of more clearly indicating CS because some 

of the symptoms might be triggered by other causes, such as 

fatigue and sweating, which might occur due to pure physical 

effort over time. Remaining symptoms indicated two factors: 

dizziness and difficulty in focusing. 

B. Experimental Procedure 

Fig. 2 shows the procedure for the experimental group 

(viewable on YouTube: https://youtu.be/XHeSXcDID_0). For 

the control group, we repeated the same experimental procedure 

but with the moderate CS induction task(s) replaced by a 

vection-free neutral task (forest scene, which is viewable on 

YouTube: https://youtu.be/RwHr_6zmQW0). This forest scene 

was 10-min long but implemented twice to match the maximum 

duration of the experimental group (e.g., tunnel travel + 

rollercoaster). This was a single-visit within-subject study 

including one pre-procedure introduction (during which a demo 

https://pulsesensor.com/
https://youtu.be/RwHr_6zmQW0
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video was played on a laptop to minimize any pre-procedure 

anxiety) and three or four experimental blocks:  

1) Mild CS-inducing cognitive task. 

2) Moderate CS-inducing task 1 (tunnel travel). 

3) Moderate CS-inducing task 2 [rollercoaster, not 

applicable if the participant had already dropped out or the 

FMS score had already exceeded the pre-defined 

threshold (FMS = 11) in the tunnel travel task]. 

4) Mild CS-inducing cognitive task. 

Each block contained a 5-min baseline measurement prior to 

the 10-min VR task. During the baseline measurements, 

participants were required to close their eyes and listen to soft 

music (slow instrumental featuring traditional Chinese 

instruments). For each block, immediately after the baseline 

measurement and the task was completed, the participant was 

required to report SSQ scores (VRSQ and CSQ scores were 

calculated offline based on SSQ scores). Here, a digital version 

of the SSQ was directly implemented inside the VR scene so 

that participants could report their SSQ scores while wearing 

the VR headset by moving the virtual slider using the VR 

controller’s thumbstick. Similarly, a digital version of the FMS 

was used to collect CS ratings at 1-min intervals. The purpose 

of using digital questionnaires was to minimize the 

opportunities for subjects to remove the VR headset, which 

could temporarily alleviate their symptoms and create a 

confound to the relationship between CS ratings and objective 

measures. The maximum FMS score is 20. Unlike the study of 

Lin et al. [19], which brought participants to the point of 

retching, to minimize the confounding effect of such 

symptomatic behavior and to comply with ethical requirements 

(that is, no more than moderate nausea symptoms), we stopped 

the experiment once the FMS score exceeded 11. 

There were 2-min breaks between blocks. Apart from the 

breaks, participants wore the VR headset all the time and 

multimodal biodata were recorded throughout the whole 

experiment. CS symptoms may become severe as the exposure 

duration increases, particularly after using the VR device for 15 

min [31], [32]; therefore, the multiple baselines and break time 

provided opportunities for us to induce CS but to avoid serious 

episodes of CS (e.g., deep breathing, swallowing and retching 

[19]), which was an ethical requirement. The procedure was 

approved by the ethics panel of the University of Glasgow (No. 

300200009), College of Science and Engineering.  

C. VR Tasks 

Based on the experimental procedure, the following three VR 

tasks were all integrated into a single application (that is, a 

single .apk App file for Oculus Quest). This is a self-contained 

app; the experimenter did not need to perform any additional 

operation or verbally communicate with participants once the 

experiment started.  

1) Cognitive Task: The cognitive task was a memory test 

that was adapted from Virtual Attention (VA), a novel VR 

HMD gaming platform developed at Neuroscape, University of 

California San Francisco [23]. The difference between the 

current version and that described in [23] is that we required 

participants to count and memorize the number of targets 

instead of pressing buttons to respond to the target. This was an 

attempt to minimize the confounding effect of physical effort, 

as suggested by the CSQ’s developer. Each trial of the memory 

test begins with the appearance of a single ocean animal [either 

a “Target” (green sunfish) or a “Non-target” (a different colored 

sunfish or another ocean animal)]. The memory accuracy was 

calculated by dividing the total number of “Targets” by the 

counted number of “Targets”. This task was designed as a mild 

vection VR stimulus; more vection occurred for those stimuli 

that moved in-depth compared with laterally moving objects 

[33], like the faint ripples of internal waves in the underwater 

environment.  

2) Moderate CS Task (Tunnel Travel): As the name 

implies, the tunnel travel required the participant to travel in an 

abstract tunnel, mainly involving the perception of moving in-

depth. This tunnel travel task was adapted from [34]. The route 

was set as a normal driving scenario, including curves, uphill 

and downhill paths, but without upside down and off-axis paths. 

Unlike the fixed movement speed in the original version of [34], 

the movement speed was adjustable in the present study. It was 

increased by 20% in the second time window if the same FMS 

score was reported in consecutive 2-min periods, in order to 

match the participant’s different susceptibility threshold. 
3) Moderate CS Task (Rollercoaster): Given that the 

vestibular sensory organs, otoliths and semi-circular canals, are 

sensitive to linear/gravity and angular acceleration stimuli, 

respectively [35], [36], the rollercoaster task aimed to cover 

both visual-otolith and visual-semi-circular canal mismatch 

through virtual linear and angular acceleration. Here, the virtual 

linear and angular stimuli were achieved by changing the speed 

of rotations and movements of a participant’s point of view. 

Specifically, the participants’ point of view was a camera that 

follows a programmable route that is created by placing a 

number of “waypoints” in the virtual space. When the camera 

passes through any of these waypoints, they can execute code 

 
Fig. 2.   Experimental design.  
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that changes the rotation of the camera, the speed of these 

rotations, or the speed of movement of the camera through the 

route. Even though the route is restarted after roughly 1-min, 

the nature of the rotations leads to changes in the direction of 

the camera, making each lap slightly different than the rest, 

thereby avoiding predictability. Similar to tunnel travel, the 

movement speed of the rollercoaster was increased by 20% in 

the second time window if the same FMS score was reported in 

consecutive 2-min periods. This rollercoaster application has 

been shown to induce moderate CS symptoms in young adults 

in our previous study [37]. 

D. Data Pre-Processing and Feature Extractions 

For EEG and EOG, a low-pass filter with a cutoff frequency 

of 40 Hz and a high-pass filter with a cutoff frequency of 0.1 

Hz were applied to remove power line noise and DC drift, 

respectively. The filtered EEG data were then corrected using 

the mean of each channel and EOG-based independent 

component analysis. Regarding PPG, a band-pass filter (0.2 

Hz–5.6 Hz) was used and then a 1st-order differential operation 

was used to remove the baseline wander (more details can be 

found in our previous study [28]). For temperature, we used the 

raw data without any pre-processing. Next, the metrics shown 

in Table I were extracted respectively for further analysis, 

where the definitions for EEG frequency bands were: Delta 

(0.1–3 Hz), Theta (4–7 Hz), Alpha (8–12 Hz) and Beta (13–20 

Hz) [14]. The duration of the time window for extraction was 

2000 ms (or -1000 to 1000 ms for event-related analysis) unless 

they were a standard window length, such as 1-min for HR and 

5-min for HRV [38]. HRV metrics, LF/HF ratio [39], [40] and 

pNN-35 [41] were calculated using Kubios HRV Standard ver. 

3.0 (commercial HRV analysis software 

https://www.kubios.com/). Other metrics were all calculated 

using custom MATLAB scripts and/or EEGLab v2020.0. (an 

open-source MATLAB plugin developed by Swartz Center for 

Computational Neuroscience; www.sccn.ucsd.edu/eeglab).  

As shown in Table I, for the cognitive domain, the commonly-

used metrics, such as event-related spectrum perturbation 

(ERSP)(FzTheta), phase-locking values (PLVs) of inter-trial 

coherence (ITC)(FzTheta), P3a, P3b and the Beta/Theta ratio at 

Cz, and relative band power (RBP)(CzAlpha) were extracted. 

These metrics were used in our previous VR studies to assess 

the attention level from different aspects [23], [42]. Among 

these, ERSP(FzTheta) and P3a were used to measure the initial 

attentional processing. P3b was used to assess the late-stage of 

cognitive discrimination abilities. The PLV of ITC(FzTheta) was 

an indicator of the degree of attentional engagement (Min: 0; 

Max: 1). A value of 1 reflects perfect phase-locking across trials 

and a value of 0 reflects perfectly randomly distributed phases. 

Regarding the Beta/Theta ratio at Cz and RBP(CzAlpha), they are 

spontaneous EEG markers for attention [43] and arousal levels 

[44]. Except for P3a and P3b latencies and RBP(CzAlpha), higher 

values of these metrics were associated with higher levels of 

attention. For the sensorimotor domain, we explored a set of 

metrics in Delta ~ Beta bands, including RBP, ERSP, PLVs of 

ITC and inter-electrode coherence (IEC), where the PLV of IEC 

was a measure to evaluate the functional connectivity from the 

perspective of EEG [45]. Particularly, we used the PLV of IEC 

to investigate if there was an interaction between the cognitive 

and sensorimotor domains. The PLV of IEC is calculated by 

cross-domain EEG electrode sites; therefore, it is a unique HVN 

biomarker.  

E.  Baseline Correction and Normalization 

For SSQ-based analysis, all event-related potentials, and 

ERSP, ITC and IEC values were baseline-corrected using a 

−200 to 0 ms time period (thus, relative values were calculated 

for each participant to control individual state differences). 

Other metrics and SSQ, VRSQ and CSQ scores were 

normalized using the values in the baseline session of that block. 

For FMS-based analysis, we took the values in the first minute 

of that moderate CS induction task as the baseline, and then all 

metrics and FMS scores were normalized. The baseline-

corrected and normalized data provided a means to normalize 

results so that the assessment of CS severity was not 

confounded by individual differences. 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑀𝑒𝑡𝑟𝑖𝑐 =
𝑅𝑎𝑤 −𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100%          (1) 

 

           𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  𝑆𝑐𝑜𝑟𝑒 =
𝑅𝑎𝑤 −𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐹𝑢𝑙𝑙 𝑆𝑐𝑜𝑟𝑒
× 100%           (2) 

  

Where, the full score used in Eq. 2 was to avoid division errors 

just in case the baseline score was zero. The values of the full 

score were determined according to their original publications 

[17], [18], [20], [21]. 

F. Statistical Analyses 

The sickness ratings in the three time points were compared 

using a standard one-way repeated-measures ANOVA with 

time as the within-subject factor. This ANOVA analysis aimed 

to confirm whether the high-vection tunnel travel or 

rollercoaster induced more serious CS if compared with the 

low-vection cognitive tasks. 

For the cognitive assessment, we used the paired t-test to 

compare differences between pre- and post- moderate CS 

induction in a set of well-established indicators of cognitive 

control abilities (see Table I), and for the behavioral 

measurement of memory accuracy. Regarding the correlates of 

HVN biomarkers and CS ratings at each time point per se, an 

automatic linear modeling (LINEAR) procedure with best 

subsets-based variable selection function [46], [47] in SPSS 

19.0 was used for every HVN domain (that is, cognitive + 

sensorimotor + autonomic + IEC between cognitive and 

sensorimotor domains, as listed in Table I) to 1) investigate 

whether a statistically significant regression relationship 

existed, and 2) if so, to further investigate the most important 

and significant objective indicators and whether the combined 

indicators from every HVN domain could achieve better 

regression with higher adjusted R2. For linear regression 

analyses, two sample cases per variable (called CS indicator in 

this study) tend to permit accurate estimation of regression 

coefficients [48]. The best subset-based regression would select 

a maximum 10 indicators each time to build the regression 

model; therefore, the required number of sample cases should 

https://www.kubios.com/
http://www.sccn.ucsd.edu/eeglab
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be at least 10×2 = 20, which is consistent with our sample size 

of N = 20 for each group (see G. Participants). The number of 

indicators was different in each domain; therefore, we used 

Akaike’s Information Criterion (AIC [49]–[51], the lower the 

better) as a reference to evaluate the performance of regression 

models. The statistical significance threshold was set as p ≤ 0.05 

for both regression model and indicators. Adjusted R2 instead 

of R2 was used as the metric to judge the performance of 

regression in the context of minimizing the overfitting problem. 

In SPSS, a leave-one-out method is used to compute the 

indicator importance (II), based on the sum of squared residuals 

(SSR) by removing one indicator at a time from the final full 

model (see Eq. 3). 

 

𝐼𝐼 =
𝑆𝑆𝑅_𝑤𝑖𝑡ℎ𝑜𝑢𝑡_𝑡ℎ𝑒_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 − 𝑆𝑆𝑅_𝑓𝑢𝑙𝑙_𝑚𝑜𝑑𝑒𝑙 

𝑆𝑢𝑚(𝐼𝐼)_𝑜𝑓_𝑎𝑙𝑙_𝑡ℎ𝑒_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠
 (3) 

 

G. Participants 
A total of 44 healthy right-handed young adults attended this 

study, 24 for the experimental group and 20 for the control 

group. Four participants in the experimental group were 

excluded onsite for the following reasons: 1) The PPG signals 

from three of them were abnormal because of very cold hands. 

2) The data of one participant were unable to be normalized 

because his FMS score in the first minute had already exceeded 

the pre-defined threshold. Therefore, 40 participants (mean age: 

23 y/o; range 20–32 years; 9 males) took part in the entire study. 

We focused on young people here because their cognitive 

functions are the most developed [45]. All participants had 

normal or corrected-to-normal vision, and were self-reported 

free from neurological/psychiatric disorders. All participants 

were required to sit still during each block. All participants 

reported playing less than 2 hr of video games per month. Also, 

all participants reported playing less than 30 min of VR games 

as of the experimental date. Therefore, there were neither 

professional game players nor first-time VR users [23]. All 

participants were paid £10/hr for their participation. 

IV. RESULTS 

A. Subjective CS Ratings 

One-way repeated ANOVA analysis shows that there were no 

statistically significant differences between the three time 

points in the control group for all nine kinds of sickness ratings 

[that is, three questionnaires and their respective subscales: 

SSQ (×4), VRSQ (×3) and CSQ (×2)]; while there were 

statistically significant differences in most of the nine kinds of 

ratings [except for SSQ-O (F(2,38) = 2.862, p = 0.007] and 

TABLE I 
SUMMARY OF THE OBJECTIVE METRICS USED IN THIS STUDY 

HVN domains Measurements Implications 

Cognitive 

(Fz, Cz, Pz) 

Phase-locking values (PLVs) of inter-trial coherence (ITC) of 

frontal midline (Fz) at Theta band 

The degree of attentional engagement 

Event-related spectrum perturbation (ERSP) of frontal midline 

(Fz) at Theta band 

The initial attention level in cognitive discrimination 

Latency and amplitude of the event-related potential (ERP) at 

Fz (P3a) 

The initial attention level in cognitive discrimination 

Latency and amplitude of the ERP at Pz (P3b) The late-stage attention level in cognitive discrimination 

Beta/Theta ratio at Cz Spontaneous EEG marker for attention level 

Relative band (Alpha) power (RBP*) at Cz Spontaneous EEG marker for arousal level 

Sensorimotor 

(CP5, P3, P4, CP6) 
RBP (Theta~Beta) at all sites Spontaneous EEG power spectrum at the four sensorimotor sites 

ERSP (Theta~Beta) at all sites Event-related EEG power spectrum at the four sensorimotor sites 

PLVs of ITC (Theta~Beta) at all sites The consistency of brain activities at the four sensorimotor sites 

PLVs of inter-electrode coherence (IEC) of (Theta~Beta) of 

right-to-left hemisphere 

Brain functional connectivity between the right and left 
sensorimotor areas 

Cognitive-

Sensorimotor 
Interaction 

PLVs of IEC of (Theta~Beta) in two directions:  
1. Frontal midline (Fz) to right posterior (F2R for short);  

2. Frontal midline (Fz) to left posterior (F2L for short);  

where the cluster of CP5 and P3 stands for left posterior 
and the cluster of CP6 and P4 stands for right posterior. 

Brain functional connectivity between the cognitive domain and 
the right and left sensorimotor areas. 

Autonomic Heart Rate (HR) Excitability of the autonomic nervous system 

Fingertip temperature (FT) Thermoregulatory cutaneous responses 

Forehead temperature Thermoregulatory cutaneous responses 

Heart rate variability (HRV) LF/HF ratio** Frequency domain feature for arousal level 

pNN-35*** Time domain feature for arousal level 

*RBP was calculated by dividing the FFT power of one EEG band by the sum of the FFT power of all four EEG bands (δ, θ, α and β). FFT power was calculated 

using a 1000-point Hanning (that is, a 2-s epoch since the EEG was sampled at 500 Hz) moving window with 500 (that is, 50%) overlapping points. **LF/HF ratio 
was calculated by dividing the FFT power of HRV’s low frequency (LF) band (0.04–0.15 Hz) by the high frequency (HF) band (0.15–0.4 Hz). ***pNN-35 was 

the percentage of peak-to-peak intervals (>35 ms) divided by the total number of peak-to-peak intervals. 
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CSQ-Diff [F(2,38) = 0.997), p = 0.378] in the experimental 

group. Further pairwise comparison results show that there 

were no significant differences between the two cognitive tasks, 

while there were significant differences in the comparisons of 

both the moderate CS task vs the 1st cognitive task and the 

moderate CS task vs the 2nd cognitive task for the majority of 

questionnaires. These results indicate that indeed high-vection 

tunnel travel or rollercoaster induced more serious CS 

compared with that induced by the low-vection cognitive task. 

B. Cognitive Assessments 

For the experimental group, paired t-test results showed that 

among the cognitive indicators in Table I, the degree of 

attentional engagement, and the initial attention level in 

cognitive discrimination, were decreased in the second 

cognitive task if compared with that in the first [t(19) = 2.194, 

p = 0.041 with the PLV of ITC(FzTheta) = 0.198 ± 0.007 vs 0.181 

± 0.007 as well as t(19) = 2.298, p = 0.033 with ERSP(FzTheta) 

= 0.178 ± 0.078 vs 0.021 ± 0.067 dB]; however, this decreasing 

trend of cognitive control abilities was not associated with a 

decreasing behavioral measurement [t(19) = -0.34, p = 0.737 

with memory accuracy = 98.2% ± 1.34 and 98.7% ± 0.73 for 

the first and second cognitive tasks, respectively]. These results 

indicate that the degree of attentional engagement and the initial 

attention level in cognitive discrimination were negatively 

affected by the moderate CS even though these effects had yet 

to lead to a significant difference in behavioral performance.  

We repeated this analysis in the control group in which we 

found that the degree of attentional engagement and initial 

attention level in cognitive discrimination were increased in the 

second cognitive task [t(19) = -8.255, p < 0.001 with the PLV 

of ITC(FzTheta) = 0.19 ± 0.005 vs 0.28 ± 0.009 as well as t(19) 

= -4.105, p = 0.001 with ERSP(FzTheta) = -0.404 ± 0.103 vs 

0.352 ± 0.135 dB] and were associated with an improved 

memory accuracy [t(19) = -2.327 with 90.843% ± 3.612 vs 

99.110% ± 0.633]. This was a benefit of the control group 

because according to our previous study [23], a training effect 

(that is, improved performance) should be observed if the same 

cognitive task is carried out twice or more. Taken together, 

these results indicate that the moderate CS at least suppressed 

the training effect by reducing the participant’s degree of 

attentional engagement and initial attention level in cognitive 

discrimination. 

C. Exploring HVN-based CS Biomarkers  

As shown in Fig. 3, overall results showed that this brain 

network presented dynamic changes in CS severities with time. 

The cognitive domain was the predominant domain in the initial 

mild CS task, while the autonomic domain became the best one 

to describe CS during the moderate CS task performed later. 

Finally, when the same mild CS task was performed again, the 

sensorimotor domain stood out. We elaborate details of these 

results in the following three points. 

1)  The Cognitive Task (Pre-moderate CS): For the 

experimental group, Fig. 4(a) shows that both cognitive and 

sensorimotor indicators achieved eight significant regression 

relationships out of the nine kinds of CS ratings. The best 

regression relationship was achieved by combining the 

indicators of all three domains together for SSQ-D with 

adjusted R2 = 99.6%, p < 0.001 and AIC = 29. The importance 

ranking of the indicators in this best regression model showed 

the cognitive indicators, ITC(FzTheta) (p < 0.001, importance = 

0.227) and ERSP(FzTheta) (p < 0.001, importance = 0.196), to be 

the top two (see Table II). Further regression coefficient 

analysis showed a negative relationship between ITC(FzTheta) 

and SSQ-D, but a positive relationship between ERSP(FzTheta) 

and P3b amplitude, indicating that as the symptoms of 

disorientation were worsening, the participant's degree of 

attentional engagement was decreasing while more attentional 

resources (no matter if it is for initial attentional processing or 

late-stage cognitive discrimination) were allocated. The 

reasoning behind the phenomenon of enhanced allocation of 

attentional resources is that the perception of vection per se is 

an attention-demanding cognitive activity [52]. 

In addition, we found that in this best model, Theta- and Beta-, 

together with the Alpha-related sensorimotor power spectrum 

indicators were selected, indicating the significance of 

investigating all EEG frequency bands in the sensorimotor area. 

More interestingly, we observed that three IEC indicators of 

midline frontal to left posterior areas [IEC(Delta), IEC(Alpha) 

and IEC(Beta)] were selected, indicating interaction between 

the frontal cognitive domain and the left sensorimotor domain. 

This result not only confirmed the existence of the cognitive-

sensorimotor interaction but also further showed that it 

occurred in the left posterior sensorimotor area. This 

phenomenon was consistent with a previous neurostimulation 

study [27], in which the authors found that intervention on the 

left posterior sensorimotor area could mitigate traditional MS. 

We found that HR, the only selected autonomic indicator, 

ranked last. In the control group, the best model was achieved 

using SSQ-O and VRSQ-O. We found that ITC(FzTheta) was still 

ranked top (p < 0.001, importance = 0.250), followed by other 

sensorimotor and cognitive indicators. No autonomic indicators 

were selected. Taken together, these results clearly show that 

the leading domain of the HVN in the first cognitive task was 

cognitive, followed by sensorimotor and autonomic domains.  

2) The Moderate CS Task: For the experimental group, Fig. 

4(b) shows that the sensorimotor domain achieved significant 

regression relationships for all nine CS ratings, followed by the 

autonomic domain in the context of SSQ-based analysis. We 

did not find any significant regressions for the cognitive domain. 

Similar to the first cognitive task, the best regression model was 

achieved using the indicators of all three domains with R2 = 

85.4%, p < 0.001 and AIC = 119.29 for SSQ-O and VRSQ-O. 

Further analysis showed that ITC(Alpha) in the left 

sensorimotor area (P3) (p < 0.001, importance = 0.239) and 

 
Fig. 3.   Varied leading domain in the HVN. 
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facial temperature (p < 0.001, importance = 0.150) were the top 

two indicators. ITC(P3Alpha) presented positive while facial 

temperature showed negative coefficients.  

When we zoomed in the time resolution from SSQ-based 10-

min to FMS-based 1-min, we found that the indicators of each 

domain achieved significant regression relationships. Among 

these, the autonomic domain stood out with adjusted R2 = 33%, 

p < 0.001 and AIC = 1061.69, followed by the sensorimotor 

domain with adjusted R2 = 22.4%, p < 0.001 and AIC = 1099.47, 

while the cognitive domain contributed the least to this 

regression relationship with adjusted R2 = 3.2%, p = 0.006 and 

AIC = 1134.39. Still, the best regression model was achieved 

by combining all three domains together with adjusted R2 = 

53.4%, p < 0.001 and AIC = 999.56. Table II shows that HR 

TABLE II 
RANKINGS OF THE SIGNIFICANT INDICATORS (P≤0.05) AND CORRESPONDING REGRESSION COEFFICIENTS 

1st cognitive task Moderate CS tasks 2nd  cognitive task 

Indicators Importance Coefficient Indicators Importance Coefficient Indicators Importance Coefficient 

ITC(Fz_Theta) 0.227 -99.334 HR 0.102 0.473 ITC(CP5Theta) 0.267 -620.218 

ERSP(FzTheta) 0.196 
23.056 

Fingertip 

Temperature 
0.089 2.210 ERSP(CP5Beta) 0.155 -30.667 

ERSP(CP5Theta) 0.159 -16.628 RBP(CP5Delta) 0.085 1.921 ERSP(P3Alpha) 0.144 17.208 

P3bAmp 0.131 
0.521 

Facial 

Temperature 
0.078 -5.415 ERSP(P3Delta) 0.115 15.022 

IEC(F2LDelta) 0.063 -48.765 RBP(CP5Alpha) 0.077 0.734 ITC(CP5Delta) 0.113 216.322 

ERSP(P3Theta) 0.050 8.524 IEC(F2LBeta) 0.073 -0.209 ITC(CP6Alpha) 0.079 216.764 

IEC(F2LAlpha) 0.048 23.742 ITC(P4Theta) 0.073 -0.216 ITC(P4Beta) 0.074 213.788 

IEC(F2LBeta) 0.044 30.066 RBP(CP5Beta) 0.073 0.366 ERSP(CP6Alpha) 0.054 7.723 

ERSP(CP5Beta) 0.043 5.734 RBP(CP5Theta) 0.072 0.447    

HR 0.025 -0.564 ITC(P3Theta) 0.070 0.130    

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 4.   The adjusted R2 values of LINEAR analysis for every HVN domain and questionnaires. (a) The initial mild CS-inducing cognitive task. 
(b) The moderate CS-inducing tasks. (c) The 2nd mild CS-inducing cognitive task. *p≤0.05 **p≤0.001. The highest adjusted R2 value in each 
task is marked in red. The label “HVN” stands for a set of combined biomarkers of cognitive + sensorimotor + automatic + IEC-based cognitive-
to-sensorimotor functional connectivity. 
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and fingertip temperature (FT) are the top two indicators with a 

positive coefficient for both, indicating increased autonomic 

responses with increased CS ratings. This is consistent with 

previous studies [4], [30]. None of the cognitive indicators were 

selected in the best model. These results indicate that the 

cognitive domain was no longer predominant while the 

sensorimotor and autonomic domains were more activated 

compared with the previous cognitive task period. We also 

found that frontal to left posterior IEC(Beta) was selected in the 

FMS-based best regression model, indicating that the cognitive-

sensorimotor interaction still existed and showed consistency in 

the location of interaction based on the findings in the previous 

cognitive task period (That is, the left sensorimotor area; see 

Fig. 5). In the control group, we did not find any significant 

regression relationship between HVN biomarkers and the CS 

ratings of the neutral task (forest scene). These results showed 

that the importance of HVN-based biomarkers in the moderate 

CS condition was autonomic > sensorimotor > cognitive, which 

is partly consistent with work of Tauscher et al., who showed 

that the autonomic physiological signals were superior to EEG 

signals [15]. 

3) The Cognitive Task (post-moderate CS): According to our 

previous study in which the time of self-reported full recovery 

from moderate CS symptoms was less than 5 min [37], we 

hypothesized that the cognitive domain could be back to being 

the predominant element in the second cognitive task after the 

end of moderate CS induction and the 7-min relaxation (2-min 

break plus 5-min eye-closed baseline session). Indeed, this 

hypothesis can be verified from the self-reported CS ratings (as 

explained in Results A). However, from the perspective of 

biometrics, the cognitive assessments in Results B already 

showed that a participant’s degree of attentional engagement 

represented by ITC(FzTheta) and the initial attention level in 

cognitive discrimination represented by ERSP(FzTheta) were 

reduced by moderate CS, even though further regression 

analysis [see Fig. 4(c)] indicated a weak sign of post-moderate 

CS recovery in the cognitive domain, evidenced by one 

significant regression relationship out of the nine CS ratings 

(that is, R2 = 15.3%, p = 0.05 and AIC = 104.95 for VRSQ-D). 

The best regression model was achieved by the sensorimotor 

domain with R2 = 87.5%, p < 0.001 and AIC = 86.75 for SSQ-

T, indicating the significance of objective measurements (that 

is, EEG-based sensorimotor indicators) on the evaluation of the 

aftereffect of moderate CS. Unsurprisingly, two sensorimotor 

indicators, ITC(CP5Theta) and ERSP(CP5Beta), were selected as 

the top two indicators in the best model (see Table II). Further 

examination of coefficients showed that both indicators had a 

negative relationship with CS ratings, indicating an inhibition 

effect of CS on Theta and Beta bands of the left sensorimotor 

area, which once again showed the necessity of investigating 

other non-Alpha EEG frequency bands. We did not find any 

significant indicators in cognitive-sensorimotor interaction and 

 

 
Fig. 5.   Comparisons of the multimodal biodata in the first and last minute during moderate CS-inducing tasks. The grand average data is shown 
by the bar charts (The p values were obtained using the paired t-test). An example from a representative participant who required withdraw at the 
8th minute of the tunnel travel task is shown by the curve graphs. PLV stands for phase locking value (Min:0; Max:1) for IEC. A value of 1 reflects 
perfect phase-locking across trials and a value of 0 reflects perfectly randomly distributed phases. FT and F2LBeta stand for the fingertip temperature 
and frontal cognitive to left sensorimotor IEC at Beta frequency band, respectively. 
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the autonomic domain. Unlike the experimental group above, 

the dominant position of ITC(FzTheta) (p < 0.001, importance = 

0.265) reoccurred in the control group, followed by autonomic 

and sensorimotor indicators. Taken together, these results 

indicate that ITC(FzTheta) was a reliable indicator to represent 

the moderate CS-induced impact on cognitive control abilities. 

V. DISCUSSION 

A. The Significance for Real-World Applications 

We found that the cognitive control ability represented by the 

degree of attentional engagement was decreased by CS in a 

visual selective attention-based cognitive task. This 

phenomenon was confirmed by comparing cognitive indicators 

before and after a moderate CS condition and was also observed 

during the mild CS-inducing cognitive task per se. These results 

indicate that experiencing CS can have immediate 

consequences beyond CS alone, for example, people will 

perform worse at attentionally demanding real-world activities, 

such as mentally demanding work. Our results also show that 

multimodal biosensing-based HVN biomarkers could best 

detect CS if compared with a single modality (e.g., using 

cognitive, sensorimotor, and autonomic modalities alone), 

indicating that HVN biomarker-guided CS regulation with the 

goal of improving cognitive control ability is a feasible solution 

to mitigate VR-induced CS. This is especially pertinent given 

that last year, just as COVID-19 was sweeping the world, the 

flagship consumer VR, Oculus Quest 2 was launched along 

with its “Infinite Office” promotional video [53]. This video 

offers a whole new possibility for people who are already 

working from home to port the PC/laptop-based work 

environment to VR, just as forward-thinking researchers have 

suggested [54]. This possible change gives VR more functions 

for work rather than just the stereotypical game/entertainment 

platform. In the post-COVID-19 era, we foresee more 

opportunities to use VR in daily life, such as during commuting. 

Researchers have already started to investigate how people 

could use VR in cars and airplanes during travel [55], [56]; an 

important area where people could directly benefit from CS-

reduced VR applications.  

B. Comparison with Prior Works about CS Detection 

This is the first study using HVN-based multimodal 

biometrics to detect consumer VR-induced CS. Based on 

automatic linear modelling analysis, we found that the 

combined indicators from all HVN domains achieved the best 

detection result with the highest adjusted R2 value and lowest 

AIC value. However, currently we have no way to directly 

compare this regression-based result with previous studies, as 

few of them shared adjusted R2 {only one was found [4] and 

our study produced better results than those in [4] with better 

adjusted R2 value for SSQ-T (77.5% vs 29.6%), SSQ-N (47.5% 

vs 10.1%), SSQ-O (85.4% vs 67.4%) and SSQ-D (55.6% vs 

26.8%)} and no previous study provided AIC values. But, some 

meaningful qualitative comparisons still can be made for other 

aspects: 1) Ground truth: we found two studies that used the 

same ground truth, FMS with 1-min time resolution [6], [7], but 

other studies just asked the participants to self-report their 

scores if they felt CS [5], [16], [57]. Thus, the time window of 

CS ratings was randomized which could lead to data being 

missed according to our previous experience [37]. 2) Data 

reliability: some consumer EEG devices were used to collect 

EEG data [16], [58]. Even though these authors claimed that the 

signal quality was confirmed by the devices’ built-in algorithms, 

it remains unknown how compatible the hard shells of 

consumer EEG devices are with EEG-VR settings (no figures 

of the actual experimental settings are stated in these studies). 

The present study used a research-class device. Its feasibility 

for use with EEG collection in consumer VR conditions has 

been validated in both event-related and spontaneous situations 

[23], [42]. More importantly, data reliability can be directly 

based upon well-established cognitive indicators [e.g., frontal 

midline ITC(Theta) and ERSP(Theta) were ranked the top two 

indicators in our initial cognitive task].  

C. Relationship between HVN Domains 

There is an open question about the HVN. That is, what is the 

functional architecture of the HVN? [10]. Do cognitive and 

sensorimotor domains require autonomic functioning as a 

background condition, or can the three domains work 

independently? Although the present study is unable to answer 

this circuit-level question, at least from the perspective of CS 

detection, we observed that autonomic functioning was not the 

primary domain in the mild CS conditions. Also, although we 

indeed observed that the cognitive-sensorimotor functional 

connectivity metrics significantly associated with CS ratings, 

they did not stand out in any task condition, according to the 

indicator rankings. These results seem to suggest the 

independence of every HVN domain. However, we observed 

that the combined indicators from all three domains could 

together establish the best correlations with CS ratings, 

indicating the interaction of every HVN domain. Taken 

together, these results likely suggest that the functional 

architecture of the HVN can change dynamically in the context 

of CS. 

D. The Significance of Using Various Questionnaires 

Subjective questionnaires are important measures to estimate 

the ground truth of CS; therefore, the present study used three 

kinds of questionnaire to evaluate CS more accurately. The 

results indeed revealed the significance of using various 

questionnaires. For example, Fig. 4(b) shows that the VRSQ-T 

in some cases showed a better regression relationship than the 

commonly-used SSQ-T, evidenced by higher R2 and smaller 

AIC values for the sensorimotor domain (R2 = 61.6%, p = 0.000 

and AIC = 132.84 vs R2 = 53.4%, p = 0.000 and AIC = 141.45) 

and a significant p value for the autonomic domain (R2 = 29%, 

p = 0.004 and AIC = 147.36 vs R2 = 0%, p = 1 and AIC = 

159.39). In addition, non-SSQ questionnaires can show their 

uniqueness. For example, we would miss the opportunity to 

observe the sign of recovery in the cognitive domain and the CS 

aftereffect on the autonomic domain were we not using the 

VRSQ-D and CSQ-Diff. These empirical findings suggest that 

it is necessary to create and validate a larger composite 

questionnaire for future CS studies. This will provide a more 

robust estimation of the CS ground truth to provide as much 

subjective information as possible to interpret the objective 

biomarkers found. 

E. Limitations 
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Although the present findings provide evidence 

demonstrating that indeed SCT and the HVN seem to share 

three brain domains in the context of consumer VR-induced CS, 

the nature of the experiment does not provide a mechanistic 

understanding of how SCT works on the HVN. To be specific, 

the causal evidence between CS and the HVN needs to be 

captured by further neurostimulation experiments that can 

directly manipulate the HVN metrics and CS ratings. For 

example, transcranial alternating current stimulation can be 

used to modulate the phase coherence between the cognitive 

and sensorimotor domain and to investigate if CS ratings are 

significantly associated with the modulation effects. In addition, 

the current study does not explore the functional architecture of 

the HVN and this needs to be addressed. Moreover, FMS is only 

a measurement of nausea and general discomfort during CS 

induction. Thus, the conclusion about the predominant position 

of the autonomic domain during CS induction may be different 

if other questionnaires are used. However, to our best 

knowledge, except for FMS, no questionnaires are currently 

regularly used to evaluate CS with a shorter time window. This 

study used two kinds of CS induction task to induce moderate 

CS. One was the tunnel travel, the other was the rollercoaster, 

which was a more nauseating version of the tunnel ride for 

people with higher susceptibility thresholds. The benefit of this 

kind of design was having a more robust (near-personalized) 

CS induction strategy that is not detrimentally impacted by 

inherent population variability during subjective sickness 

ratings. However, one problem of this approach is that it is not 

possible to research the two CS induction conditions 

respectively; therefore, the selected biomarkers in the FMS-

HVN regression relationship can only be used to detect the CS 

grade, and may not identify the specific type of vection behind 

the CS. Also, the autonomic domain was represented by 

autonomic physiological signals; a more direct measurement 

should be performed once brain data from VR-fMRI settings 

become available in the future. Furthermore, the present study 

was conducted in right-handed healthy young adults. Further 

research is needed to explore how well the HVN links to CS 

ratings in different populations. 

VI. CONCLUSION 

The newly proposed HVN led us to hypothesize that CS may 

affect the cognitive domain. To verify this hypothesis, we 

designed an experimental procedure of cognitive task → 

moderate CS task(s) → cognitive task. We used the paired t-test 

to compare a set of well-established cognitive indicators with 

associated behavioral performance before and after participants 

experienced the induced moderate CS. We then employed a 

multiple regression method to put those cognitive indicators in 

the context of HVN-based biomarkers to investigate their 

correlations with CS ratings. The paired t-test results confirmed 

that indeed the cognitive control ability represented by the 

degree of attentional engagement was reduced by moderate CS 

and was behaviorally associated with a suppressed training 

effect. These results indicate that moderate CS may reduce the 

sustained attention abilities that are critical to work 

performance. Therefore, future studies can be designed to 

investigate the relationship between CS and sustained attention. 

Regression results revealed that single domain-based CS 

detection is not reliable. We should take the HVN as an 

indivisible whole to objectively detect CS, particularly in real-

world daily VR applications where users might be switching 

between low and high vection tasks based on necessity, e.g. 

pausing work to engage in entertainment and then going back 

to work again. 
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