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Abstract 12 

This paper is devoted to developing an efficient and robust stress updating algorithm in a 13 

relatively simple computational framework to address the two difficulties of implementing 14 

elastoplastic soil models, namely the nonsmoothness and the nonlinearity. In the proposed algorithm, 15 

the nonsmoothness caused by the loading/unloading inequality constraints is eliminated by 16 

replacing the Karush-Kuhn-Tucker conditions with the smoothing function. The stress updating can 17 

be achieved by solving a set of smooth nonlinear algebraic equations in this algorithm. The nonlinear 18 

equations are solved using the line search method, which allows a larger convergence radius of the 19 

solution in contrast to the standard Newton method. Meanwhile, the smoothing consistent tangent 20 

operator corresponding to the unconstrained stress updating strategy ensures the quadratic 21 

convergence speed of the global solution. The modified Cam-clay model is used as an example to 22 

demonstrate the implementation of this algorithm. The correctness, computational efficiency, and 23 

robustness of the algorithm are validated and assessed by comparing it with the analytical solutions 24 

in case of cylindrical cavity expansion and the ABAQUS/Standard default integration method. In 25 

simulations with large load increment sizes, the CPU time consumed by the new algorithm can be 26 

less than half of the ABAQUS default algorithm.  27 

Keywords: Constitutive model integration; Line search method; Smoothing function; Modified 28 

Cam-clay model; soil; Consistent tangent operator 29 
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Notation 

,  stress tensor, deviatoric stress tensor 

,  mean effective stress, generalized shear stress 

 pre-consolidation pressure 

, ,  total, elastic, and plastic strain tensors 

, ,  total, elastic, and plastic volume strains 

,  total and plastic deviatoric strain increment tensors 

,  bulk modulus, shear modulus 

 Poisson's ratio 

 elastic stiffness tensor 

,  compression index, the swell index in the isotropic compression test  

,  initial void ratio, void ratio at  

 slope of the critical state line 

 unit weight 

,  second-order unit tensor, fourth-order unit tensor 

,  volumetric and symmetric fourth-order unit tensors 

 fourth-order projection tensor 

 yield function  

 plastic internal variable 

 plastic modulus 

 plastic flow direction 

 plastic multiplier 

 dimensional parameter 

 smoothing parameter 

,  algorithm parameters in the line search method 

 step size of the search direction 

 search direction vector  

,  merit function, the approximation of merit function  

K0 coefficient of earth pressure at rest 

OCR overconsolidation ratio 

v specific volume 
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1. Introduction 32 

The elastoplastic soil models have been an essential cornerstone in the numerical analysis of 33 

geotechnical problems (Zhang et al. 2020). Numerous elastoplastic soil models have been proposed 34 

to describe the complex mechanical behaviour of various soils under different load conditions 35 

(Dafalias 1980; Hashiguchi 1989; Gao et al. 2014; Yao et al. 2014; Liang et al. 2019; Xiao & Desai 36 

2019; Sun et al. 2020; Gao & Diambra 2021). For instance, the Cam-clay model (Roscoe & 37 

Schofield 1963; Schofield & Wroth 1968) and the modified Cam-clay (MCC) model (Roscoe & 38 

Burland 1968) which are developed within the critical state soil mechanics framework have been 39 

widely used in analysing various geotechnical problems. The elastoplastic soil models are generally 40 

complex, which makes the numerical implementation in a finite element code challenging. 41 

Therefore, a lot of attempts have been made to address the stress updating of elastoplastic soil 42 

models (Borja & Lee 1990; Borja 1991; Sheng et al. 2000; Sloan et al. 2001; Zhao et al. 2005; 43 

Krabbenhoft et al. 2007; Krabbenhoft & Lyamin 2012; Geng et al. 2021). 44 

In the numerical implementation, an elastoplastic model defined in ordinary differential 45 

equations is discretized as a set of algebraic equations constrained by the Karush-Kuhn-Tucker 46 

(KKT) conditions containing the loading/unloading inequality. There are usually two difficulties in 47 

solving the constrained nonlinear equations, i.e., the nonsmoothness induced by the KKT conditions 48 

and the nonlinearity of the constitutive equations. In most stress integration methods, the operator 49 

split method is the most commonly used treatment for the loading/unloading inequality constraints 50 

(Simo & Hughes 2006). In this method, the trial stress obtained by the elastic predictor is used to 51 

estimate the stress behaviour (i.e., elasticity or plasticity) under the current increment step. The 52 
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integration formulas that match the stress behaviour are then chosen to calculate the new state 53 

variables satisfying the KKT conditions. The operator split method has been incorporated into 54 

several typical stress updating algorithms, e.g., the full-implicit return-mapping algorithm (Ortiz & 55 

Simo 1986), the cutting-plane algorithm (Simo & Ortiz 1985; Starman et al. 2014), and the semi-56 

implicit algorithm (Moran et al. 1990). However, the operator splitting inevitably leads to increased 57 

algorithm complexity since the loading/unloading estimations based on the elastic predictor have to 58 

be executed in the calculation of each step. Particular attention must be paid to the stress behaviour 59 

transition from elasticity to plasticity in a load increment when the explicit integration scheme is 60 

employed (Sloan et al. 2001).  61 

There are also some other methods to address the constrained optimization problems in 62 

numerical optimization (Nocedal & Wright 2006). One is to directly solve the constrained 63 

optimization problem, e.g., the projection gradient method and the Zoutendijk feasible direction 64 

method (Nocedal & Wright 2006). The search direction of each iteration is both the descending 65 

direction of the merit function and the feasible direction of the constraint functions. For example, 66 

Zheng et al. (2020) have used the projection-contraction method for the implementation of the 67 

Mohr-Coulomb plasticity model. Few model implementations have been, however, developed along 68 

this line, probably due to its tedious constraint correction process (Arora 2016). Another more 69 

popular idea is to use the penalty function or the smoothing function to convert inequality constraints 70 

into equality constraints, which are then added to the merit function. Then all that remains is to solve 71 

an unconstrained optimization problem. The penalty function-based optimization methods mainly 72 

include the Lagrangian method (Contrafatto & Cuomo 2005), the multiplier method (Contrafatto & 73 
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Cuomo 2005), and the interior method (Krabbenhoft et al. 2007). The Lagrangian method and 74 

multiplier method applications to the mixed Hellinger-Reissner functional governing the 75 

elastoplasticity problem are explored by Contrafatto & Cuomo (2005). The important contributions 76 

of this study are that the KKT conditions are equivalently replaced by an equality constraint with 77 

the Max function and the multiplier method affects the entire equilibrium iterations. However, it is 78 

worth noting that the nonsmoothness of the elastoplastic problem is not eliminated in essence but 79 

shifted to the Max function. Krabbenhoft et al. (2007) presented a detailed application of the primal-80 

dual interior-point method in the perfect plasticity, hardening multisurface plasticity, and softening 81 

plasticity, in which the elastoplastic problem's finite element scheme is recast into a second-order 82 

cone scheme to solve. Then, a similar computational framework was extended further to the 83 

implementation of the MCC model by Krabbenhoft & Lyamin (2012). 84 

A more cost-effective and promising method to eliminate the nonsmoothness of elastoplastic 85 

problems is to directly use a single smoothing function to replace two inequality constraints and one 86 

equality constraint in KKT conditions (Areias & Rabczuk 2010). The updating of state variables in 87 

both the elastic and elastoplastic loading cases can be accomplished using integral equations with 88 

the unified form. Estimations for loading/unloading are also unnecessary. This method has great 89 

potential in streamlining the stress updating procedure (Scalet & Auricchio 2018). But its 90 

applications to elastoplasticity models are rare. There are just a few reports about the application of 91 

the smoothing function in crystal plasticity (Schmidt-Baldassari 2003; Akpama et al. 2016) and 92 

finite strain plasticity (Areias et al. 2012; Areias et al. 2015). It is worthwhile to investigate recasting 93 

the stress updating strategy of elastoplastic soil models with the smoothing function.  94 
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After addressing the nonsmoothness generated by the KKT conditions, the solution of nonlinear 95 

stress integration equations (or the solution of unconstrained optimization problem) is another 96 

challenge we have to face. In the implicit stress updating algorithms (Simo & Ortiz 1985; Ortiz & 97 

Simo 1986; Moran et al. 1990), the Newton method has been widely used due to its asymptotic 98 

quadratic convergence speed (Potts et al. 2021). The researchers have noted, however, that the 99 

Newton method's convergence is significantly dependent on the proximity between the initial value 100 

and the final solution (Brannon & Leelavanichkul 2010; Scalet & Auricchio 2018). The optimal 101 

convergence property may be lost when the iteration point exceeds the convergence radius of the 102 

Newton method or the Taylor series used in the Newton method is difficult to approximate the 103 

original problem well in the vicinity of the solution due to the presence of strong nonlinearity 104 

(Contrafatto & Cuomo 2005). Various efforts have been made to close the gap, including the 105 

proposal of some corrective measures, e.g., optimizing the initial iteration point (Hernández et al. 106 

2011), sub-stepping schemes (Pérez-Foguet et al. 2001; Wang et al. 2006), and multi-stage iteration 107 

(Homel et al. 2015; Homel & Brannon 2015), as well as the use of optimization methods with the 108 

strong convergence, e.g., the line search method (LSM) (Dutko et al. 1993; Pérez-Foguet & Armero 109 

2002; Seifert & Schmidt 2008; Scherzinger 2017), the trust region method (Shterenlikht & 110 

Alexander 2012; Lester & Scherzinger 2017), and the homotopy method (Geng et al. 2021). The 111 

LSM is more widely used due to its appealing simplicity and practicability. Unlike the trust region 112 

method, which must take into account the poor scaling problem (Lester & Scherzinger 2017), or the 113 

homotopy method, which must solve a series of homotopy equations of the original problem to 114 

obtain a better iteration point (Geng et al. 2021), the LSM only needs to determine an optimal step 115 
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size additionally under a given search direction to obtain a larger convergence radius. It also has at 116 

least quadratic convergence speed if the newton direction is chosen as the search direction. The 117 

optimal step size can be obtained through a simple iteration formula that does not require the 118 

calculation of the Jacobian matrix (Scherzinger 2017). The performance of the LSM has been 119 

thoroughly tested in the numerical implementation of some isotropic and anisotropic metal models 120 

(Scherzinger 2017; Choi & Yoon 2019; Yoon et al. 2020). Though efficient and robust, this method 121 

has not been used in implementing elastoplastic soil models, which are typically more difficult than 122 

the mental models because soils have stronger nonlinear characteristics, e.g., strain 123 

hardening/softening, volume expansion/contraction, pressure-dependency during shear, etc.  124 

The motivation of this work is to present a low-cost, efficient and robust stress updating 125 

algorithm for elastoplastic soil models based on the appropriate optimization methods. The 126 

elastoplastic model's nonsmoothness and nonlinearity will be addressed by using the smoothing 127 

function and the LSM, respectively. In the remainder of the paper, an unconstrained stress updating 128 

strategy without the need for the loading/unloading estimations is developed by replacing the KKT 129 

conditions with the smoothing function. Under this computational framework, the MCC model is 130 

used as an application object of the proposed algorithm. The backward Euler integration scheme is 131 

used to obtain the stress integration equations of the model. Furthermore, the nonlinear stress 132 

integration equations are solved by the LSM. The smoothing consistent tangent operator (CTO) 133 

corresponding to the unconstrained stress updating strategy is derived. Finally, compared with the 134 

ABAQUS/Standard default integration method (DIM), the correctness, the robustness, and the 135 
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computational efficiency of the proposed algorithm are verified and assessed based on four typical 136 

boundary value problems. 137 

2. Unconstrained stress updating strategy 138 

For a classical rate-independent elastoplastic constitutive model, the mathematical equations 139 

describing the stress-strain relationship are generally defined by a set of ordinary differential 140 

equations with constraints as follows: 141 

   (1) 142 

where the four parts of Eq. (1) are known as Hooke's Law, flow rule, hardening law, and the KKT 143 

conditions, respectively.  is the elastic stiffness and , where  144 

and  are the volumetric and symmetric fourth-order unit tensors, respectively.  and  145 

denote the elastic bulk modulus and shear modulus, respectively. , , , , and  are the 146 

rates of the stress tensor, total strain tensor, elastic strain tensor, plastic strain tensor, and the plastic 147 

internal variable, respectively.  and  denote the direction of the plastic flow rule and 148 

hardening, respectively.  and  are the yield function and plastic multiplier, respectively. Note 149 

that the KKT constrains the allowable state variables, namely,  and  for 150 

loading, and  and  for unloading. The constitutive equations in Eq. (1) are defined 151 

in rate form. In the numerical implementation, it needs to be discretized into algebraic equations in 152 

time by a specific integral scheme. For instance, the equations to be solved for the backward Euler 153 

integration scheme are: 154 
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   (2) 155 

The aim of the stress updating algorithm is to solve Eq. (2) based on a given set of state 156 

variables  at step n and the strain increment  to obtain the state variables 157 

 at step . Note that the difficulty of solving Eq. (2) lies mainly in nonsmoothness 158 

caused by inequality constraints and the nonlinearity of , , , and .  159 

For the inequality constraints in Eq. (2), the classical operator splitting technique appears to 160 

provide good treatment. In this stress updating strategy, the inequality constraints are first activated 161 

by the elastic predictor, where the trial stress is computed by . Then, the trial 162 

stress inside the yield surface (i.e., ) is accepted as the true stress at step , 163 

whereas the trial stress on the outside of the yield surface (i.e., ) is pulled back to 164 

the yield surface by the plastic corrector if the return-mapping algorithm is used, as shown in Fig. 165 

1.  166 

 
Fig. 1 Operator splitting stress updating strategy. 167 
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The nonsmoothness of the elastoplastic problem is inherited from the KKT conditions defined 168 

by Eq. (2). In numerical optimization, the nonsmooth KKT conditions can be replaced equivalently 169 

by the smoothing function, and then Eq. (2) is transformed into the smooth version shown below: 170 

   (3) 171 

where the Fischer-Burmeister (FB) function, i.e., Eq. (3)4 is employed (Fischer 1992; Kanzow 172 

1996).  is a dimensional parameter. Fig. 2 shows the effect of  on the FB smoothing curve. 173 

The smoothing function converges to the KKT conditions when  trends to 0. Note that the 174 

smooth function has a higher curvature near the origin. However, the influence of this high curvature 175 

phenomenon on the calculation can be eliminated by selecting the elastic trial point as the initial 176 

point of iteration. This means that if the current step is elastic, the trial point is accepted and there 177 

is no need for the next iteration. If the current step is plastic, both the initial iteration point, i.e., 178 

 and the convergent iteration point, i.e., 179 

 are far away from the origin of the smooth curve. The search 180 

process of solution does involve areas of high curvature. 181 

 182 
Fig. 2 Smoothing curves with the different values of .  183 
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By using the FB smooth function instead of KKT conditions, Eq. (3) can give rise to an 184 

unconstrained stress updating strategy without the need for loading/unloading estimations, as shown 185 

in Fig. 3. The stress states on both the elastic domain and yield surfaces, as illustrated in Fig. 2, are 186 

projected onto a smooth curve. As a result, the stress-strain behaviour under the pure elastic 187 

loading/unloading condition, elastoplastic loading, and mixed loading can be described uniformly 188 

by a set of smooth equations. Under this computational paradigm, one of the difficulties in solving 189 

the elastoplastic problems, i.e., the nonsmoothness, can be bypassed. The only change required is 190 

to use the smoothing function instead of KKT conditions. More focus should be placed on the 191 

treatment of nonlinearity in Eq. (3). 192 

 
Fig. 3 Unconstrained stress updating strategy.  193 
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In the MCC model, the yield function in elliptical form is employed to determine the elastic domain 199 

of material:  200 

   (4) 201 

where M denotes the slope of the critical state line in the p-q space.  and  are the mean 202 

effective stress and generalized shear stress. The hardening law of the MCC model is defined by the 203 

evolution equation for the pre-consolidation pressure , which is the function of plastic volume 204 

strain increment  as follows:  205 

   (5) 206 

where . , , and  denote the compression index, swell index, and the 207 

initial void ratio, respectively.  208 

The plastic flow direction of the MCC model is expressed as  209 

   (6) 210 

where  denotes the deviatoric stress tensor and  is the second-order unit 211 

tensor. Based on Eq. (6), the expressions of plastic volume strain increment  and deviatoric 212 

strain increment tensor  can be obtained as follows:  213 

   (7) 214 

   (8) 215 

Substituting Eq. (7) into Eq. (5), the updating formula of  can be rewritten as follows: 216 
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For the MCC model, the updating formula of the stress tensor in Eq. (3) can be replaced by 218 

the mean effective stress  and the generalized shear stress  to reduce the number of 219 

integration equations: 220 

   (10) 221 

   (11) 222 

where  is the total volume strain increment.  denotes the secant bulk modulus (Borja 223 

1991) and is defined by: 224 

   (12) 225 

where . The updating formula of  is determined by: 226 

   (13) 227 

where  is the secant shear modulus.  where  is the Poisson's 228 

ratio.  is the total deviatoric strain increment tensor. 229 

Substituting Eqs. (7) and (12) into Eq. (10), one can obtain the updating formula of : 230 

   (14) 231 

Substituting Eq. (8) into (13), the updating formula of  can be rewritten as follows: 232 

   (15) 233 

Substituting Eq. (15) into (11), one can obtain the updating formula of  as follows: 234 

   (16) 235 
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Finally, using the FB smoothing function instead of KKT conditions and considering Eqs. (9), 238 

(14), and (16), a set of closed nonlinear equations  including only four independent 239 

variables  can be obtained as follows:  240 

   (18) 241 

where  is recommended equal to  to balance the magnitude and 242 

dimension difference between  and . In this paper, the elastic trial stress point 243 

 is used as the initial iteration point. Selecting  244 

as the value of  will save the computational cost and reduce the influence of the step size on the 245 

numerical stability to some extent. 246 

4. Line search method 247 

The solution of stress integral equations defined by Eq. (18) can be transformed into an 248 

unconstrained minimization problem shown below: 249 

   (19) 250 
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where  and  are the step size and search direction vector at kth iteration, respectively. 255 

The Newton method is a usually good choice to determine search direction due to its asymptotically 256 

quadratic rate of convergence: 257 

   (21) 258 

The task of the LSM is to optimize the step length  for a given search direction to achieve 259 

more reduction of the merit function. This gives rise to a new one-dimensional minimization 260 

problem about :  261 

   (22) 262 

where . The LSM will degenerate into the standard Newton method when 263 

 equals to 1. However, it is not easy to determine the optimal value of  by minimizing 264 

 directly due to the fact that it will involve the computation of the Jacobian matrix. A more 265 

practical strategy is to minimize the approximation of  to obtain an acceptable value of 266 

 that provides an adequate reduction in the merit function. Herein, a simple quadratic curve is 267 

used to fit  as follows: 268 

   (23) 269 

where the coefficient , , and  can be determined by substituting two points  270 

and  into Eq. (23) and considering the condition , where 271 

. The quadratic approximation of  is obtained as follows: 272 

   (24) 273 

Minimizing Eq. (24), the following iterative formula is obtained to update  when the reduction 274 

of  does not satisfy the requirements of the LSM: 275 

ka { }kd

{ } ( ) ( ){ }1 kk

k

-
= - Ñé ùë ûd f x f x

ka

ka

( ) ( ){ } ( ){ }1min    =
2

T kk
k

y a a af f

( ){ } ( ){ }=
k k

a a+f f x d

ka ka

( )ky a

( )ky a

ka

( )ky a

( ) 2ˆ k k
kA B Cy a a a= + +

A B C ( )( )0,  0y

( )( ),  k k
j ja y a ( )( )0,  0y ¢

( ) ( )0 2 0y y¢ = - ( )ky a

( ) ( ) ( ) ( )2 2ˆ 1 2 0k k k
k k jy a a a y a y a= - + +

ka

( )ky a



17 
 

   (25) 276 

The same treatment can also be found in the literature (Scherzinger 2017; Yoon et al. 2020). Then, 277 

the upper limit of  is determined by Goldstein's condition (Nocedal & Wright 2006; Yoon et 278 

al. 2020) herein as follows: 279 

   (26) 280 

The lower limit of  is determined by the following expression to avoid having too small a 281 

step size (Pérez-Foguet & Armero 2002; Scherzinger 2017):  282 

   (27) 283 

where Pérez-Foguet & Armero (2002) proposed to use  and . Eqs. (26) and (27) 284 

specify an interval for the acceptable values of . Based on the LSM presented in this section 285 

and the unconstrained stress updating strategy presented in Section 2, the stress updating procedures 286 

of the MCC model are given in Fig. 4 where  is an input parameter. In theory, the smaller , 287 

the closer the smooth curve is to the KKT condition. However,  cannot be too small to affect the 288 

numerical stability of floating-point calculation. In this paper,  is set to . This selection 289 

allows for a single step solution to be found. For example, the current step is the elastic loading, i.e., 290 

. Then, the following inequality will hold: 291 

    292 

 due to  for the elastic step and . 293 

( )
( ) ( )1

0
0 2

k
j k

j

y
a

y y a+ =
+

ka

( ) ( ) ( )1 2 0k k
j jy a ra y< -

ka

( )
( ) ( )1

0
max ,

0 2
k k
j j k

j

y
a Va

y y a+

ì üï ï= í ý
+ï ïî þ

410r -= 0.1V =

ka

b b

b

b 2 2FTOL

{ }0 2 2 2 2 2 2
4 1 11 0 0 0 n nn f f FTOL f+ ++

= + + + = + +f

2 2
1 1n nf FTOL f FTOL+ ++ + £ Þ 2 2 2 2

1 1 12n n nf FTOL f FTOL f FTOL+ + ++ £ + - Þ

10 2 nf FTOL+£ - 1 0nf + < 0FTOL >



18 
 

 294 

Fig. 4 Flow chart of unconstrained stress updating algorithm using the LSM. 295 

In addition, a necessary emphasis is needed for the meaning of symbols n, k, and j, in which n 296 

denotes the incremental load step, k denotes the local stress updating iteration, and j denotes the 297 

number of iterations required to obtain the optimal search step size of the LSM. Finally, we provide 298 

a synopsis of the LSM used in this paper. First,  is used as the initial value of step size. If 299 

the condition Eq. (26) is satisfied, then we set . If  exceeds the upper 300 
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limit defined by Eq. (26), then we update  using Eq. (27) to search the acceptable value of 301 

step size. 302 

5. Smoothing consistent tangent operator 303 

In the local calculation of nonlinear finite element analysis, two things need to be done. One is 304 

to update the model's state variables using the stress update algorithm, and the other is to provide 305 

the CTO  that is consistent with the integral equations of the model. In the global 306 

calculation, the updated state variables are used to determine the structural internal forces, while the 307 

CTO is used to generate the global stiffness of the structure. When the Newton method is employed 308 

to solve the equilibrium equations in the global calculation, the CTO can preserve the global 309 

solution's quadratic convergence speed (Wu et al. 2006). Based on the operator splitting stress 310 

updating strategy, the elastic and elastoplastic CTOs of the MCC model have been derived in the 311 

studies by Borja and his co-workers (Borja & Lee 1990; Borja 1991). In this section, the 312 

unconstrained stress updating strategy gives rise to a smoothing CTO with a unified form. 313 

Taking the derivative of Eq. (17), we can obtain: 314 

  (28) 315 

where  is expressed by: 316 

  (29) 317 

where  318 
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From Eqs. (29) and (30), the expressions of  and  can be 321 

simplified as the function of  as follows: 322 

  (32) 323 

  (33) 324 

where the coefficients , , , and  are expressed by: 325 

  (34) 326 

Taking the derivative of Eq. (15) with respect to ,  can be also written as the 327 

function of as follows: 328 

  (35) 329 

where .  is the fourth-order projection tensor where  is 330 

the fourth-order unit. . Now, only  is unknown, which can be obtained 331 

by imposing the total differential of Eq. (18)4: 332 

  (36) 333 

Then, substituting Eqs. (32), (33), and (35) into Eq. (36) and rearranging the expression can 334 

yield: 335 

  (37) 336 
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  (38) 338 

where  339 

  (39) 340 

Substituting Eqs. (32), (35) and (37) into Eq. (28), the smoothing CTO based on the 341 

unconstrained stress updating strategy is obtained: 342 

  (40) 343 

It can be seen that the smoothing CTO does not distinguish between the elastic and elastoplastic 344 

loading cases due to the fact that the integral equations of the constitutive model are a set of smooth 345 

equations without loading/unloading inequality constraints. In addition, when  trends to 0, the 346 

smoothing CTO can degenerate into the elastic and plastic CTOs derived by the operator splitting 347 

technique in elastic and elastoplastic loading cases, respectively. For the elastoplastic loading case, 348 

there are  and  when  tends to be 0. Then, the results that  349 

and  can be obtained. Substituting  and  into Eq. (36), Eq. (36) 350 

will be reduced to the total differential of the yield function. The derivation of smoothing CTO will 351 

thus yield the same result as the plastic CTO.  352 
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Before proving that the smoothing CTO can also degenerate into the elastic CTO under the 353 

condition of elastic loading/unloading, the expression of the elastic CTO of the MCC model is 354 

derived first. Considering the integral equations of the stress tensor in elastic loading case under the 355 

operator splitting stress updating strategy, we have: 356 

  (41) 357 

Taking Eq. (41) with respect to , the elastic CTO can be obtained as follow:  358 

  (42) 359 

Substituting  and  into Eq. (42), the expression of the 360 

elastic CTO is given as follows: 361 

  (43) 362 

Now, we give the degradation form of the smoothing CTO in the elastic loading case. For the 363 

elastic load step, there are  and  when  tends to be 0. Substituting 364 

 and  into Eq. (39), the results that  and  are 365 

obtained, and then substituting them into Eq. (36), we can obtain . Substituting 366 

 and  into Eq. (32), we obtain: 367 

  (44) 368 

Similarly, substituting  and  into Eq. (35), we obtain: 369 

  (45) 370 

Substituting Eqs. (44) and (45) into Eq. (28), we have: 371 

  (46) 372 

Considering the condition that there is  for the elastic load step, the 373 
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degradation form of the smoothing CTO defined by Eq. (46) is equivalent to the elastic CTO 374 

defined by Eq. (43). The above equivalences also prove the rationality using the smoothing function 375 

instead of the KKT conditions.  376 

6. Numerical validation 377 

Based on the proposed algorithm, the MCC model was implemented in ABAQUS finite 378 

element software via the external subroutine UMAT, which was then used to simulate four boundary 379 

value problems encompassing the typical load conditions of geotechnical engineering. In the first 380 

boundary problem, the correctness of the proposed algorithm is validated by comparing it with the 381 

analytical solution. In the following three examples, the computational efficiency and robustness of 382 

the proposed algorithm are explored by comparing with the ABAQUS/Standard DIM, i.e., implicit 383 

return mapping algorithm (Simo & Hughes 2006). In addition, all the examples are run on the same 384 

computer, which is outfitted with an Intel Core i7-9750 processor @ 2.60 GHz, 16 GB of RAM.  385 

6.1. Cylindrical cavity expansion 386 

First, the proposed algorithm is compared with the analytical solution of the cylindrical cavity 387 

expansion problem provided by the literature (Chen & Abousleiman 2012; Chen & Abousleiman 388 

2013) for both undrained and drained conditions. As shown in Fig. 5 (a), a cylindrical cavity with 389 

the initial radius  exists in a cylindrical soil with infinite height and radius, which is subjected to 390 

initial total vertical stress , horizontal stress  and internal pressure . Then, under the 391 

action of internal pressure, the radius of the cylindrical cavity gradually expands from  to . 392 

As can be noticed, the cylindrical cavity expansion is an axisymmetric plane strain problem, which 393 

can be analyzed by the simplified model shown in Fig. 5 (b). The geometric simplification can be 394 

implemented by using the eight nodes axisymmetric pore pressure element (CAX8P) for the 395 

undrained case and the eight nodes axisymmetric element (CAX8) for the drained, respectively. 396 

0r

v0s h0s 0s
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Table 1 presents the material parameters of the soil from the literature (Chen & Abousleiman 2012) 397 

where the OCR, K0 and  denote the overconsolidation ratio, the coefficient of earth pressure at 398 

rest, and the void ratio at  respectively. The simulation process includes three analysis 399 

steps. In the initial step, the translational degree of freedom of the top and bottom edges in the 3-400 

direction and the translational degree of freedom of the left edge in the 1-direction are fixed. The 401 

translational degree of freedom of the right edge in the 1-direction is fixed only for the drained case. 402 

In the geostatic step, the pressure load is applied on the right edge of the model to balance the in-403 

situ stress. In the third analysis step, the displacement load in the 1-direction is applied on the left 404 

edge of the model to simulate the cavity expansion process. It is worth noting that, for the undrained 405 

case, the permeability coefficient and the total time of the third analysis step are set to  406 

and 0.001 s (Liu et al. 2019). It can be approximately considered that there is almost no dissipation 407 

of pore water pressure in the cavity expansion process due the very short drainage time. The initial 408 

pore water pressure is set to . Fig. 6 and Fig. 7 show the comparison results for the 409 

undrained and drained conditions, respectively. The changes law of the axial stress , the radial 410 

stress , the vertical stresses , the excess pore water pressure  and the specific volume 411 

 from the proposed algorithm and the analytical solution are in good agreement, which proves 412 

the correctness of the proposed algorithm and the effectiveness of the UMAT.  413 

Table 1 Summary of soil properties 414 

OCR        

1 100 100 160 120 60 1.086 0.625 

3 120 120 120 120 0 0.973 1.0 

10 144 144 72 120 72 0.802 2.0 
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 415 

 
(a) 

 
(b) 

Fig. 5 Summary of cylindrical cavity expansion: (a) original boundary problem; (b) simplified 416 
model and mesh. 417 
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(b) 

 
(c) 

Fig. 6 Comparison between the proposed algorithm and analytical solution under undrained 420 
conditions: (a) OCR = 1; (b) OCR = 3; (c) OCR = 10. 421 
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(a) 424 

 
(b) 

 
(c) 

Fig. 7 Comparison between the proposed algorithm and analytical solution under drained 425 
conditions: (a) OCR = 1; (b) OCR = 3; (c) OCR = 10. 426 

6.2. Tunnel excavation 427 

Tunnel excavation simulation is a typical application for the MCC model in the numerical 428 

analysis of geotechnical engineering (Gawecka et al. 2021). This subsection considers a numerical 429 

example of tunnel excavation with lining support. The geometry and mesh of the numerical model 430 

are presented in Fig. 8. The element type of soil and lining is the 20 nodes brick element (C3D20). 431 

The material parameters of the MCC model and the unit weight  of soil are set to , 432 

, , , , and , respectively. The initial stress field 433 
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and initial void ratio  , which change along the depth of soil layer, are generated in the geostatic 434 

stress analysis step, where  based on the critical state soil 435 

mechanics. In the excavation analysis step, the removal of soil and the addition of lining are realized 436 

based on the element activation and deactivation, respectively. The simulation results of tunnel 437 

excavation are shown in Fig. 9. It can be seen that resilience occurs at the tunnel's bottom and 438 

subsidence occurs at the tunnel's top, reflecting the deformation features of excavation in clay. The 439 

ground surface settlement is the greatest in the tunnel region due to soil removal, and it decreases 440 

with increasing horizontal distance, as shown in Fig. 9 (b). The ground surface settlement curve 441 

from the proposed algorithm is coincident with that from the ABAQUS/Standard DIM, which 442 

further verifies the correctness of the proposed algorithm and subroutine.  443 
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(b) 

Fig. 8 Summary of tunnel excavation: (a) geometry and boundary conditions; (b) mesh. 444 

 445 
(a) 446 

 447 
(b) 448 

Fig. 9 Simulation results of tunnel excavation: (a) displacement field in the 3-direction; (b) ground 449 
surface settlement curves. 450 
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The following numerical example is a bearing capacity test of rigid strip footing, which has 452 

been widely used to assess the numerical implementation of critical state models due to the strong 453 

rotation of principal stress and the singularity at the edge of footing (Sheng et al. 2000). The 454 

geometric information, boundary conditions, and mesh of foundation are shown in Fig. 10, where 455 

the element type is set to 8 nodes brick element (C3D8). The elements 4 and 2260 at the edge of 456 

footing are indicated additionally for subsequent analysis. The material parameters of the MCC 457 

model and the unit weight  of soil are taken from the literature (Sheng et al. 2000), i.e., 458 

, , , , , and . The initial stress field 459 

and initial void ratio  are generated by the submerged weight of soil and pre-load  460 

imposed on the ground surface in the geostatic stress balance analysis. In the unload analysis step, 461 

the pre-load is completely removed with 4 equal load increments. Then, the displacement with462 

m is applied on the footing in the load analysis step with 16 equal load increments. Fig. 463 

11 (a) presents the generalized shear stress distribution of the soil layer at the end of the load. In Fig. 464 

11 (b), the load-displacement responses from the LSM and ABAQUS/Standard DIM are in good 465 

agreement. The reasonability of the proposed algorithm is validated once again. Notes that the 466 

continuum tangent operator is also considered in the implementation of the MCC model to highlight 467 

the effectiveness of the smoothing CTO for the convergence behaviour of the global solution.  468 
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 469 
 470 

(a) 

 
(b) 

Fig. 10 Summary of bearing capacity test of foundation: (a) geometry and boundary conditions; 471 
(b) mesh. 472 
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 473 
(a) 474 

 475 
(b) 476 

Fig. 11 Simulation results of bearing capacity test of foundation: (a) generalized shear stress 477 
distribution; (b) footing load versus footing displacement. 478 

The convergence behaviour at the critical node for different algorithms is depicted in Fig. 12. 479 

In comparison to the LSM with the continuum tangent operator, the LSM with the CTO and 480 

ABAQUS/Standard DIM shows excellent convergence. The reason is that the CTO can guarantee 481 

the quadratic convergence speed of the Newton method used in the global equilibrium problem. 482 

Using the continuum tangent operator instead of the CTO will disturb the search direction of the 483 

Newton method and further destroy the convergence speed and radius of the Newton method.  484 
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(a) 

 

(b) 
Fig. 12 Convergence behaviour at the critical node: (a) LSM with the CTO and the 485 

ABAQUS/Standard DIM; (b) LSM with the CTO and the continuum tangent operator.  486 

Similar results are also observed in Fig. 13. For the LSM with CTO and ABAQUS/Standard 487 

DIM, the overall number of iterations and the CPU time consumed are similar. This high similarity 488 

of convergence speed also verifies the validity of smoothing CTO derived by the unconstrained 489 

stress updating strategy. For the LSM with the continuum tangent operator, three to four times the 490 

iteration number and computation time are required, significantly increasing the computational cost 491 

of numerical analysis. On the other hand, it is worth emphasizing that the LSM will require some 492 
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additional computational efforts for the determination of the optimal step size compared with the 493 

Newton method. This additional computational cost will lead to an increase of about 5% in 494 

computing time compared with the Newton method (Lester & Scherzinger 2017) when the number 495 

of global equilibrium iteration is the same. The main advantage of the LSM is to allow larger step 496 

size calculation. 497 
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(c) 
Fig. 13 Number of iterations at each load increment: (a) LSM with the continuum tangent 500 

operator; (b) LSM with the CTO; (c) ABAQUS/Standard DIM. 501 

In what follows, the evolution of stress state and yield surface corresponding to elements 4 and 502 

2260 in Fig. 10 (b) are analyzed, which will aid knowledge of the unconstrained stress updating 503 

strategy. Note that, in both elements, only integral point 8 is employed. In the unloading analysis 504 

step, i.e., the path from stress point 1 to stress point 5, the stress points of the two elements break 505 

away from the yield surface and move in the elastic region, as shown in Fig. 14 (a) and Fig. 15 (a). 506 

The yield surface remains unchanged because there is no plastic deformation. In the loading analysis 507 

step, i.e., the path from stress point 5 to stress point 21, the stress point moves to the yield surface 508 

again. The plastic deformation starts to occur after the stress point reaches the yield surface. For 509 

element 4, as shown in Fig. 14 (b), the stress point first lies on the 'dry' side of the critical state line, 510 

then temporarily travels to the 'wet' side, and eventually returns to the 'dry' side. The change of stress 511 

path indicates that the soil around the integral point undergoes a transformation from strain-512 

softening to strain-hardening and back again. Correspondingly, the yield surface shrinks first, then 513 

expands, and eventually shrinks again. The stress state of the integral point for element 2260 is 514 
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always on the 'wet' side of the critical state line, as shown in Fig. 15 (b). The strain-hardening 515 

behaviour is the only thing that is seen. The yield surface is always expanding. It is worth 516 

emphasizing that due to the use of the smoothing function, the stress point is always on or inside 517 

the yield surface. From the perspective of the unconstrained stress updating strategy, the allowable 518 

stress region in Fig. 14 (a) and Fig. 15 (a), including the elastic region and the yield surface, is 519 

projected onto a smoothing curve. Whether loading or unloading cases, the stress point is always on 520 

the smoothing curve, as shown in Fig. 14 (c) and Fig. 15 (c). The KKT conditions are always satisfied 521 

due to the fact that the smoothing function is an equivalent approximation of KKT conditions.  522 

 
(a) 

 
(b) 

G
en

er
al

iz
ed

 sh
ea

r s
tre

ss
 

kP
a

q

Total time s

1.0
1.5

2.0
2.5

3.0 0102030405060

0
10

20
5

15
25

Hydrostatic pressure kPap

1

2

3

4

5

17
620

8

13
14 15

16

710

18

9

19

1112

21

' Dry' side 'Wet' side

1

2

3

4

5

17

6

20

8
167

18
19

21

× × ×

Crit
ica

l s
tat

e l
ine

13
14 109

11
12

8

17

15
16

G
en

er
al

iz
ed

 sh
ea

r s
tre

ss
 

kP
a

q

Hydrostatic pressure kPap



37 
 

 
(c) 

Fig. 14 Stress path at integral point 8 of element 4: (a) the result in the p-q-time coordinate system; 523 
(b) the result in the p-q coordinate system; (c) the result in the f- -time coordinate system. 524 
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(c) 

Fig. 15 Stress path at integral point 8 of element 2260: (a) the result in the p-q-time coordinate 525 
system; (b) the result in the p-q coordinate system; (c) the result in the f- -time coordinate 526 

system. 527 

6.4. Cylindrical sample with cyclically combined tension and shear 528 

The last example is that the cylindrical sample is subjected to cyclically combined tension and 529 

shear load. The example is often used to test the numerical implementation of the constitutive model 530 

based on the optimization methods (Shterenlikht & Alexander 2012; Lester & Scherzinger 2017; 531 

Scherzinger 2017) since it generates a sufficiently hard stress condition to evaluate the algorithm's 532 

robustness. Fig. 16 gives the necessary information of the cylindrical specimen and its finite element 533 

model where the C3D8 element is employed. The material parameters used for the example are set 534 

to , , , and . The initial void ratio and the initial stress state are 535 

set to  and . Fig. 17 demonstrates the history curve of 536 

displacement load, which is applied on the top surface of the cylinder in 10 loading analysis steps. 537 

The initial time increment of each analysis step is 0.1s. The automatic time incrementation method 538 

of ABAQUS software is used to determine the following size of load increment. The generalized 539 

shear stress distribution of the cylinder at the end of the load is shown in Fig. 18 (a). The reaction 540 
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force responses of the top surface of the cylinder obtained by the proposed algorithm and 541 

ABAQUS/Standard DIM are depicted in Fig. 18 (b). Again, the findings of the two algorithms 542 

demonstrate good consistency.  543 

  
 (a) (b) 

Fig. 16 Summary of the cylindrical sample with cyclically combined tension and shear: (a) 544 
geometry and boundary conditions; (b) mesh 545 

  546 
Fig. 17 Time-history curve of displacement load in the 1-direction 547 
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 (a) 

 
(b) 

Fig. 18 Simulation results of the cylindrical sample with cyclically combined tension and shear: 548 
(a) generalized shear stress distribution; (b) reaction force response in the 1-direction.  549 

Finally, based on this example with the complex stress states, the computational efficiency and 550 

robustness of the proposed algorithm are further evaluated. The CPU time, the number of load 551 

increments, and the number of global equilibrium iterations are used as the assessment indices of 552 

algorithm performance. Fig. 19 (a) compares the change in the size of load increments for the two 553 

algorithms. The result shows that the proposed algorithm allows substantially larger load increments 554 

than the ABAQUS/Standard DIM. Correspondingly, the proposed algorithm only spends 40.9% of 555 
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the ABAQUS/Standard DIM CPU time and gets almost the same results. The number of global 556 

iterations and load increments can also demonstrate the benefits of the proposed algorithm. In the 557 

automatic time incrementation method, too many failed attempts will prohibit the size of load 558 

increment from increasing, requiring more load increments. And the iterations wasted on failed 559 

attempts also increase the computational cost. As shown in Fig. 19 (b), the proposed algorithm's 560 

calculation rarely encounters the failed attempts. The failed load increments and global iterations of 561 

the proposed algorithm are only 10.0% and 17.6% of the ABAQUS/Standard DIM, respectively. 562 

Therefore, the size of the load increment of the proposed algorithm keeps increasing trend almost 563 

all the time. There are fewer load increments and global iterations required, as shown in Fig. 19 (c), 564 

For the representative example, the total number of load increments and the global iterations of the 565 

proposed algorithm is only 24.1% and 45.8% of those in the ABAQUS/Standard DIM, respectively. 566 

 567 
(a) 568 

Ti
m

e 
in

cr
em

en
t/

s

Total time / s

LSM with the CTO:  188.1 sCPU time =
ABAQUS / Standard DIM:  460.5 sCPU time =



42 
 

 
(b) 

 
(c) 

Fig. 19 Convergence behaviour: (a) the change in the load increment size; (b) the number of load 569 
increments; (c) the number of global equilibrium iterations. 570 

Finally, a summary of the comparison between ABAQUS/Standard DIM and the proposed 571 

algorithm is given. In the ABAQUS/Standard DIM, the operator splitting technique with the elastic 572 

prediction is used to address the loading/unloading inequality constraints. The nonlinear equations 573 

are solved by the Newton method. In the proposed algorithm, the non-smoothness caused by the 574 

loading/unloading inequality constraints is addressed by the smooth function. Compared with the 575 

operator splitting technique, it avoids the loading/unloading estimations in each increment step and 576 

unifies the stress integral equations in elastic and elastoplastic cases. On the other hand, the LSM is 577 
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used to solve nonlinear equations, which allows a larger convergence radius than the Newton 578 

method. Therefore, better robustness and computational efficiency of the proposed algorithm than 579 

ABAQUS/Standard DIM are observed in Fig. 19. 580 

7. Conclusion 581 

For the numerical implementation of elastoplastic soil models and even for the elastoplastic 582 

model in general, the nonlinearity and nonsmoothness have been the challenges that need to be 583 

overcome. This paper presents an efficient and robust stress updating algorithm to address the two 584 

problems above. By replacing the KKT conditions involving the loading/unloading inequality 585 

constraints with the smoothing function, the stress integration equations are transformed into a 586 

smooth form, which brings unconstrained stress updating framework. In addition, the stress 587 

integration equations and the smoothing CTO corresponding to this stress updating strategy have a 588 

unified form regardless of the loading and unloading cases. The benefit is that it provides a concise 589 

computational framework for the numerical implementation of the model, and it also avoids the 590 

nonsmoothness of the elastoplastic problem. 591 

On the other hand, the nonlinearity of the constitutive model may lead to the solution 592 

divergence at the local calculation, particularly for a larger strain increment input. The proposed 593 

algorithm improves the solution's convergence by using the LSM, which considerably reduces the 594 

possibility of local calculation failure caused by the model nonlinearity and a step size that is too 595 

large. The computation cost is reduced since the finite element calculation can be completed in 596 

fewer increment steps. In the representative example presented in Section 6.4, the number of load 597 

increments and global iteration of the proposed algorithm spent on the failed attempts is only 10.0% 598 
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and 17.6% of the ABAQUS/Standard DIM. The CPU time required by the proposed algorithm is 599 

only 40.9% of that needed for the ABAQUS/Standard DIM. This superior performance ensures the 600 

efficient numerical analysis of geotechnical engineering problems and brings a prospect worth 601 

applying the proposed algorithm in other elastoplastic models.  602 
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Appendix: elements in the Jacobian matrix 609 

To facilitate the derivation of the Jacobian matrix  of residual equations in Eq. 610 

(18), the derivatives of  with respect to the unknown variables , , , and 611 

 are derived first.  can be expressed as follows: 612 

  (47) 613 

Taking the derivative of Eq. (47), we can obtain: 614 
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Then, the derivatives of the secant shear modulus  with respect to the unknown variables 616 

, , , and . . can be easily obtained. The expression of  is: 617 

  (49) 618 

Based on the chain rule, we can obtain: 619 

  (50) 620 

In what follows, the elements in the Jacobian matrix of the residual equation are given 621 

successively. The derivatives of  are: 622 

  (51) 623 

The derivatives of  are: 624 
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  (53) 627 

The derivatives of  are: 628 

  (54) 629 

The derivatives of  are: 630 

  (55) 631 
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Fig. 7 Comparison between the proposed algorithm and analytical solution under drained conditions: 641 

(a) OCR = 1; (b) OCR = 3; (c) OCR = 10. 642 

Fig. 8 Summary of tunnel excavation: (a) geometry and boundary conditions; (b) mesh. 643 

Fig. 9 Simulation results of tunnel excavation: (a) displacement field in the 3-direction; (b) ground 644 

surface settlement curves. 645 

Fig. 10 Summary of bearing capacity test of foundation: (a) geometry and boundary conditions; (b) 646 
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Fig. 11 Simulation results of bearing capacity test of foundation: (a) generalized shear stress 648 

distribution; (b) footing load versus footing displacement. 649 

Fig. 12 Convergence behaviour at the critical node: (a) LSM with the CTO and the 650 
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Fig. 18 Simulation results of the cylindrical sample with cyclically combined tension and shear: (a) 662 

generalized shear stress distribution; (b) reaction force response in the 1-direction.  663 
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