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Abstract
This paper proposes an efficient and reliable eigenvalue solution technique for analytical
stochastic dynamic stiffness (SDS) formulations of beam built-up structures with para-
metric uncertainties. The SDS formulations are developed based on frequency-dependent
shape functions in conjunction with both random-variable and random-field structural pa-
rameters. The overall numerical framework is aimed towards representing the broadband
dynamics of structures using very few degrees of freedom. This paper proposes a novel
approach combining the Wittrick-Williams algorithm, the Newton iteration method and
numerical perturbation method to extract eigensolutions from SDS formulations. First,
the eigenvalues and eigenvectors of the deterministic DS formulations are computed by
the WW algorithm and the corresponding mode finding technique, which are used as the
initial solution. Then, a numerical perturbation technique based on the inverse iteration
and homotopy method is proposed to update the eigenvectors and eigenvalues. The ro-
bustness and efficiency of the proposed method are guaranteed through several technique
arrangements. Through numerical examples, the proposed method is demonstrated to be
robust within the whole frequency range. This method provides an efficient and reliable
tool for stochastic analysis of eigenvalue problems relevant to free vibration and buckling
analysis of built-up structures.
Keywords: Stochastic eigenvalue solution; Stochastic dynamic stiffness method;
Wittrick-Williams algorithm; Numerical perturbation method; Random field;
Karhunen-Loève expansion.

1. Introduction

It is well-acknowledged that the dynamic properties of built-up structures are affected
by the uncertainties of their physical properties, such as material properties, geometric
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dimensions, boundary conditions and etc. As a result, the dynamic properties of com-
plex built-up structures such as trains, airplanes or machines behavior in a stochastic
way, which are significantly influenced by manufacturing and assembling techniques as
well as the operating environment. However, uncertainties are not taken into consid-
eration in most of structure design, instead, deterministic prediction models are used,
leading to deterministic analysis and design. In this respect, the safety factor method is
usually employed in engineering practice, which sometimes leads to either uneconomical
or unsafe designs. In many high-end equipment manufacturing industries, it becomes
more and more necessary to take parameter uncertainties into account in their modelling,
guaranteeing high-fidelity design.

Modal analysis is a fundamental technique in the analysis and design of engineer-
ing systems [1–5], which is essentially an eigenvalue problem leading to either natural
frequencies and natural modes or critical buckling loads and buckling modes. In real en-
gineering practice, those engineering systems contain uncertainties in, e.g. material and
geometric parameters, which no doubt lead to uncertainties into the related eigenvalues
and mode shapes. For dynamical analysis, free vibration modal analysis is the first step to
obtain the dynamic statistics of linear stochastic dynamic systems. Stochastic eigenvalue
problems also arise in the stability analysis of linear systems with random imperfections.
The study of probabilistic characterization of the eigensolutions of random matrix and
differential operators is an important research topic in the field of stochastic structural
mechanics since the mid-1960s [6]. For example, the stochastic eigenvalues problems could
arise from both discrete systems or continuous systems[7]. The randomness of structural
or geometries parameters[8] can be described by either random variable models or ran-
dom field [9]. In particular, the random variable model doesn’t consider the variability
of structural parameters in spatial domain, while the random field model considers the
spatial variability of structural parameters. For both random variable and random field
models, different formulations and the related eigenvalue solution techniques have been
developed.

In recent years, stochastic finite element method (SFEM) [10–14] has been widely used
in stochastic structural analysis. In this method, a finite number of random variables is
used to replace the random fields with element properties, and a Gaussian probability
model with uncertainties of parameters and boundary conditions can be established to
solve eigenvalue problems. Based on this idea, researchers have developed a variety of
stochastic finite element methods based on random field discretization. These random field
discretization methods can be largely classified into three groups: (i) spatial discretization
such as local averages [15] or mid-point method [16]; (ii) spectral discretization such as
Karhunen-Loève (KL) expansion [17] or other orthogonal expansions for the random fields
[18] and optimal linear estimation-based methods [19]; (iii) shape function discretization
such as using stochastic shape functions [20] or weighted integrals method [21]. The
eigenvalue problems corresponding to stochastic finite element models can be expressed
as the generalized stochastic eigenvalue problem[22]. We refer to the review paper [23–31]
for a variety of technologies and algorithms for stochastic eigenvalue problems. Then the
statistics of eigensolutions can be computed by using a range of different stochastic solu-
tion techniques, which include, but are not limited to, (1) Monte Carlo simulation based
methods [32], (2) perturbation methods [7, 33], (3) surrogate model based techniques such



as polynomial chaos (PC) [32], (4) hybrid methods [34], (5) iterative methods [35] and
asymptotic methods [3, 36]. The random field model based on stochastic finite element
method and the related algorithms have significantly contributed to the field of stochas-
tic eigenvalue problems for engineering applications. However, the research status of
stochastic eigenvalue analysis using stochastic finite element method is shown in Fig.1.
The solution of the stochastic eigenvalue problem can be concerned from the following
three aspects: 1) the complexity of the structure to be solved, 2) the frequency range to be
solved, and 3) the dimension of the random parameters. For stochastic analysis, the effect
of uncertainty is significant in the higher frequency ranges. As the wavelength shrinks
over the higher frequency range, a very fine mesh size is required to accurately represent
the dynamic behavior, which greatly increases the computational effort. In addition, for
complex built-up structures with multiple random structural parameters, a large number
of finite element elements are also needed to obtain the exact solution because one element
cannot be used to simulate any continuous and uniform part of the structure. In these
cases, the SFEM solution may be expensive or infeasible from a computational standpoint.
High-frequency stochastic eigenvalue analysis of complex structures is affected by mesh
density, computation amount and accuracy, which is an area that cannot be covered by
finite element. As Fig.1 shows, stochastic analysis requires an appropriate approach to
avoid these limitations and effects.

Fig. 1: The research field of stochastic eigenvalues

A powerful tool to fill this gap is the dynamic stiffness method (DSM) [37–40]. The
method is often referred to as an exact method as it is based on exact general solution of
the governing differential equations. The method provides the analysts with much better
model accuracy when compared to finite element or other approximate methods. This is
because the analysis accuracy of DSM is independent of the number of elements used in
the analysis. The elegance of the method becomes apparent when higher frequencies and



higher accuracy of results are required. The stochastic dynamic stiffness(SDS) models
for two-dimensional structures such as membranes have recently been developed by the
authors[41]. The SDS models not only have the merits of the dynamic stiffness method
that are accurate for the whole frequency by using very few DOFs but also consider
the parameter uncertainties in the model to allow stochastic analysis. Based on these
SDS models, broadband dynamic response analyses have been carried out for both beam
structures[42] and membrane built-up structures[41]. However, to the best knowledge of
the authors, there has no research on the eigenvalue solution techniques that enable one
to extract eigensolutions from the analytically expressed SDS formulations.

In this paper, an effective and reliable eigenvalue solution technique is proposed to
extract both stochastic eigenvalues and mode shapes from analytical stochastic dynamic
stiffness(SDS) formulations with parameter uncertainties. The SDS formulations are de-
veloped based on both random variable model and random field model to quantify the
uncertainties related to system parameters (such as Young’s modulus, mass density and
Poisson’s ratio). In particular, the KL expansion [10] is used to discrete the random fields
in conjunction with frequency-dependent shape function, the elemental SDS matrices for
structure members are derived in an analytical manner. Then, the WW algorithm is used
to solve the eigenvalues under the deterministic parameters, and the proper mode shape
computation technique is used to solve the eigenvectors based on deterministic model. Af-
ter that, the deterministic eigenvalues and eigenvectors are used as the initial solutions,
and the numerical perturbation method based on the inverse iteration method combined
with the homotopy algorithm is used to iteratively compute the stochastic eigenvalues
and eigenvectors. In general, this work combines the merits of both the KL spectral
expansion and DSM mentioned above, and proposes an accurate and efficient numerical
perturbation method which provides a powerful efficient and accurate tool for stochastic
eigenvalue analysis of built-up structures such as beam, plate and beam-plate built-up
structures.

In the rest of this paper, Section 2 presents the stochastic dynamic stiffness formu-
lations based on both random variable model and random field model. Then, Section
3 describes the stochastic eigenvalue solution techniques. In more specific, Sections 3.1
reviews the Wittrick-Williams algorithm and mode shape computation techniques for de-
terministic DS models. A numerical perturbation method based on inverse iteration for
solving the stochastic stiffness matrix is proposed in detail in Section 3.2. In Section
4, the proposed analysis method is applied to the beam built-up structures by using
Monte Carlo simulations which are compared with those from other results such as from
stochastic finite element models. Finally, Section 5 concludes the paper.

2. Stochastic dynamic stiffness(SDS) formulation for beam built-up structures with pa-
rameters uncertainty

The governing differential equation of a linear structural system with stochastic pa-
rameter uncertainties, subjected to external excitations is most often a set of linear dif-
ferential equation with random coefficients. The problem can be stated as finding the
solution of equation

L(Ω, r, t)u(Ω, r, t) = f(Ω, r, t) (1)



with prescribed boundary conditions and initial conditions. In the above equation L is a
linear stochastic differential operator, u is the random system response to be determined,
f is the dynamic excitation which can be random, r is the spatial coordinate vector, t
is the time and Ω is the sample space denoting the stochastic nature of the problem.
Eq. (1) with L as a deterministic operator and f as a random forcing function, has
been studied extensively within the scope of random vibration theory [43]. Here our
interest is when the operator L itself is random. There are mainly two methods to model
parametric uncertainty using the probabilistic approach: (a) uncertainty modeling using
random variables, and (b) uncertainty modeling using random fields.

Fig. 2: A beam built-up structure with node 1 clamped

(a) Random variable model (b) Random field model

Fig. 3: The cross-section parameters random variable model and random field model of each beam member

In order to illustrate the difference of between a random variable and a random field,
we introduce a beam built-up structure as shown in Fig. 2. It is composed of 13 different
beam members jointed at 8 nodes. The essential cross-section parameters of a beam
member include the axial stiffness EA(x), bending stiffness EI(x), and mass m(x), where
x is the local coordinate of each beam. The random variable model and random field
model of cross-section parameters of each beam member can be demonstrated in Figs.
3(a) and (b) respectively.

In particular for the random variable model as shown in Fig.3(a), the cross-section
parameters AE(θ), m(θ) and EI(θ) of each beam member are constant (i.e. uniform
cross-section). These parameters of those 13 beam members could be independent of



each other and each item has the following form
AE(θ) = AE0 [1 + ϵAEHAE(θ)] (2)
m(θ) = m0[1 + ϵmHm(θ)] (3)
EI(θ) = EI0 [1 + ϵEIHEI(θ)] (4)

The ‘strength parameters’ ϵAE, ϵm, ϵEI effectively quantify the amount of uncertainty
in the axial stiffness, mass per unit length and bending stiffness of beam. The constants
AE0, m0 and EI0 are respectively the axial stiffness, mass per unit length and bending
stiffness of the underlying baseline model. H(θ) is assumed to be the random process
which is the random number set with Gaussian distribution.

For random field model as shown in Fig.3(b), the cross-section parameters AE(x, θ),
m(x, θ) and EI(x, θ) are continuously changed as the local coordinate x changes and each
item has the following form

AE(x, θ) = AE0 [1 + ϵAEHAE(x, θ)] (5)
m(x, θ) = m0[1 + ϵmHm(x, θ)] (6)
EI(x, θ) = EI0 [1 + ϵEIHEI(x, θ)] (7)

where H(x, θ) is assumed to be the random field associated with the local coordinates.
Stochastic dynamic stiffness formulations are developed for beam member structures

based on both random variable and random field in Sections 2.1 and 2.2, respectively. The
assembly procedure of beam built-up structures considering axial and bending vibration
is described in Section 2.3.

2.1. SDS formulation for a beam member based on random variable modal
Based on the above two random models, the corresponding stochastic dynamic stiff-

ness(SDS) formulations can be derived. For the random variable model, because the
cross-section parameters AE(θ), m(θ) and EI(θ) of each beam element are constant,
they can be directly introduced into the classical dynamic stiffness formulations of the
structure in the following form

fa
l = Da

l (ω, θ)d
a
l f b

l = Db
l (ω, θ)d

b
l (8)

where Da
l (ω, θ) and Db

l (ω, θ) are the dynamic stiffness matrices considering axial vibration
and bending vibration in the local coordinate system respectively and the cross-section
parameters are essentially random variables. fa

l , da
l and f b

l , db
l are the force and displace-

ment matrices considering axial vibration and bending vibration in the local coordinate
system respectively. Since the derivation process is very mature, interested readers are
referred [37–39].

2.2. SDS formulation for a beam member based on random field model
The derivation of the stochastic dynamic stiffness formulation based on the random

field model is more complicated. Section 2.2.1 describes the spectral discretization of the
random fields. Next, Sections 2.2.2 and 2.2.3 provide respectively the SDS formulations
for axial and bending vibration of a beam member.



2.2.1. Random field discretization
Assume that all structural parameters are treated as a Gaussian random field H(x, θ)

with an exponentially decaying autocorrelation function.
C (x1, x2) = e−c|x1−x2| (9)

where the quantity c is inversely proportional to the correlation length. The random field
H(x, θ) can be expanded by using the Karhunen-Loève(KL) expansion in the interval
−l ≤ x ≤ l as

H(x, θ) =
∞∑
j=1

ξj(θ)
√
λjφj(x) (10)

where ξj(θ) are uncorrelated random coefficients, λj and φj(x) are eigenvalues and eigen-
functions. Since H(x, θ) is assumed to be a Gaussian random field, without any loss of
generality we assumed the mean to be zero, thus the eigenvalues and eigenfunctions in
the KL expansion for odd j are given by

λj =
2c

α2
j + c2

, φj(x) =
cos(αjx)√
l +

sin(2αjl)

2αj

, where tan(αjl) =
c

αj

, (11)

and for even j

λj =
2c

αj
2 + c2

, φj(x) =
sin(αjx)√
l − sin(2αjl)

2αj

, where tan(αjl) =
αj

−c
. (12)

These eigenvalues and eigenfunctions in the KL expansion will be used to obtain the
stochastic elemental mass and stiffness matrices. For all practical purposes, the infinite
series in Eq. (10) needs to be truncated at a finite number of terms. The number of terms
could be selected based on the ‘amount of information’ to be retained. This in turn can
be related to the number of eigenvalues retained, since the eigenvalues, λj, in Eq. (10) are
arranged in a decreasing order. For example, if 90% of the information is to be retained,
then one can choose the number of terms, N , such that λN/λ1 = 0.1. The value of N
mainly depends on the correlation length of the underlying random field. One needs more
terms when the correlation length is small. Intuitively this means that more independent
variables are needed for fields with smaller correlation lengths and vice versa.

2.2.2. SDS formulation for axial vibration of a stochastically inhomogeneous bar member

Fig. 4: Axial vibration of a bar member, where the axial stiffness EA(x, θ) and mass per unit length
m(x, θ) are assumed to be random fields.



The governing differential equation for a stochastically inhomogeneous bar under axial
vibration is given as follows

∂

∂x

[
AE(x)

∂U(x, t)

∂x

]
= m(x)

∂2U(x, t)

∂t2
(13)

where U(x, t) is the axial displacement. The axial stiffness AE(x, θ) and the mass per
unit length m(x, θ) are assumed to be random fields taking the form of Eqs. (5)-(6).

Next, we need to use the shape function N(x, ω) to derive the deterministic and random
part of the elemental matrices, i.e., the elemental stiffness and the mass matrices. we can
express these matrices as [39]

Ka(ω, θ) = Ka
0(ω) + ∆Ka(ω, θ),Ma(ω, θ) = Ma

0(ω) + ∆Ma(ω, θ) (14)
The deterministic stiffness and mass matrix can be obtained from equation as

Ka
0(ω) = Γ(ω)K̃a

0(ω)Γ
T (ω),Ma

0(ω) = Γ(ω)M̃a
0(ω)Γ

T (ω) (15)
To obtain the matrices associated with the random components, note that for each

j there will be two different matrices corresponding to the two eigenfunctions in Eqs.
(11)-(12). ∆Ka(ω, θ) and ∆Ma(ω, θ) are the random part of the matrices which can be
conveniently expressed as

∆Ka(ω, θ) = Γ(ω)∆K̃a(ω, θ)ΓT (ω),∆Ma(ω, θ) = Γ(ω)∆M̃a(ω, θ)ΓT (ω) (16)

The matrix ∆K̃a(ω) and ∆M̃a(ω) can be expanded by utilizing the Karhunen-Loève
expansion as

∆K̃a(ω, θ) =

MK∑
j=1

ξKj
(θ)

√
λKj

K̃a
j (ω),∆M̃a(ω, θ) =

MK∑
j=1

ξMj
(θ)

√
λMj

M̃a
j (ω) (17)

where
√
λKj

and
√

λMj
are the eigenvalues corresponding to the random field. The deriva-

tion of the matrices K̃a
j (ω) and M̃a

j (ω) are given in the Appendix A. Finally, the stochas-
tic dynamic stiffness matrix Da

l (ω, θ) for the axial vibration of a bar member under local
coordinates can be obtain as

Da
l (ω, θ) = −ω2Ma(ω, θ) +Ka(ω, θ) (18)

such that fa
l = Da

l (ω, θ)d
a
l , where fa

l = [Fx1 , Fx2 ]
T, da

l = [u1, u2]
T, where Fx with suffices

1 and 2 represent the axial force at the two end nodes (1 and 2) of the bar member; u with
suffices 1 and 2 represent amplitudes of the axial displacement of the bar cross-section at
the two end nodes of the bar member.

2.2.3. SDS formulation for bending vibration of a stochastically inhomogeneous beam
member

The governing differential equation for a stochastically inhomogeneous Euler-Bernoulli
beam under bending vibration is given by

∂2

∂x2

[
EI(x)

∂2W (x, t)

∂x2

]
+m(x)

∂2W (x, t)

∂t2
= 0 (19)



Fig. 5: Bending vibration of a beam member, where the bending stiffness EI(x, θ) and mass per unit
length m(x, θ) are assumed to be random fields.

where W (x, t) is the transverse flexural displacement. The mass per unit length m(x, θ)
and the bending stiffness EI(x, θ) are assumed to be random fields of the form given by
Eqs. (6)-(7).

Next, we need to use the shape function N(x, ω) to derive the deterministic and random
part of the elemental matrices. Like the axial vibration of beam, the elemental stiffness and
mass matrices are given in Appendix B (It should be noted that there are many mistakes
in the explicit expressions for the elemental stiffness and mass matrices in Ref.[42], which
have all been corrected in the Appendix B). Finally, the stochastic dynamic stiffness
matrix Db

l (ω, θ) for the bending vibration of a beam can be given as
Db

l (ω, θ) = −ω2Mb(ω, θ) +Kb(ω, θ) (20)
such that f b

l = Db
l (ω, θ)d

b
l , where f b

l = [Fy1 ,M1, Fy2 ,M2]
T, db

l = [w1, θ1, w2, θ2]
T, where Fy

and M with suffices 1 and 2 represent the shear force, and bending moment at the two end
nodes (1 and 2) of the beam member, respectively; w and θ with suffices 1 and 2 represent
amplitudes of the vertical and bending displacement, and the angular or bending rotation
of the beam cross-section at the two end nodes of the beam member, respectively.

2.3. The assembly procedure of SDS elements for stochastically inhomogeneous beam
built-up structures

A stochastically inhomogeneous beam member under axial and bending vibration is
shown in Fig. 6. The elemental stochastic dynamic stiffness matrix De

l (ω) of a beam
member in local coordinate can be written in the form

f e
l = De

l (ω, θ)d
e
l (21)

where
f e

l = [Fx1, Fy1,M1, Fx2, Fy2,M2]
T de

l = [u1, w1, θ1, u2, w2, θ2]
T (22)



Fig. 6: Both axial and bending vibrations of a beam member, where the bending stiffness EI(x, θ), mass
per unit length m(x, θ) and axial stiffness AE(x, θ) are assumed to be random fields.

De
l (ω, θ) =


Da

l11
0 0 Da

l12
0 0

0 Db
l11

Db
l12

0 Db
l13

−Db
l14

0 Db
l21

Db
l22

0 −Db
l23

Db
l24

Da
l21

0 0 Da
l22

0 0
0 Db

l31
−Db

l32
0 Db

l33
−Db

l34

0 −Db
l41

Db
l42

0 −Db
l43

Db
l44

 (23)

where Fx, Fy and M with suffices 1 and 2 represent the axial force, shear force, and
bending moment at the two end nodes (1 and 2) of the beam member, respectively; u, w
and θ with suffices 1 and 2 represent amplitudes of the axial displacement, the vertical
and bending displacement, and the angular or bending rotation of the beam cross-section
at the two end nodes of the beam member, respectively, where the coefficients Da

l (ω, θ)
and Db

l (ω, θ) have been given in Eqs. (18) and (20). Finally, the stochastic dynamic
stiffness matrix De

g(ω, θ) of a beam member in the global coordinate can be given as

De
g(ω, θ) = TDe

l (ω, θ)T
T (24)

where T is the transfer matrix taking the form

T =


Ct St 0 0 0 0
−St Ct 0 0 0 0
0 0 1 0 0 0
0 0 0 Ct St 0
0 0 0 −St Ct 0
0 0 0 0 0 1

 (25)

where Ct = cos(φ) and St = sin(φ), and φ is the angle of the beam member as shown in
Fig. 7 (from node 1 to node 2) in the global coordinate system. Then, the elemental SDS
matrices can be assembled directly to form the overall SDS matrix of the final built-up
structure.

3. Stochastic eigenvalue solution techniques for stochastic dynamic stiffness formulations

In Section 2, we have developed the stochastic dynamic stiffness (SDS) formulations
for beam built-up structures based on both the random variable and random field models.



Fig. 7: A beam member in the global coordinate system.

Then the stochastic eigenvalues and mode shapes can be extracted from the analytically
formulated SDS matrices. It is worth noting that the stochastic eigenvalue problems in
the form of analytical SDS formulations are essentially transcendental functions of fre-
quencies. Therefore the normal used linear algebraic solvers like Lanczos method is not
applicable any more, and it is necessary to propose the corresponding solution techniques
for these analytical SDS formulations. This section mainly devotes to two eigenvalue solu-
tion techniques and the associated mode shape computation techniques for those dynamic
stiffness formulations. As illustrated in Table 1, the well-known Wittrick-Williams(WW)
algorithm is applicable to both deterministic DS formulations and the SDS formulations
based on random variable models, but is not applicable to the SDS formulations based
on random field models as described in Section 2.2. Under this background, a numerical
perturbation method(NPM) based on inverse iteration with high robustness and high ef-
ficiency is proposed for extracting eigensolutions from stochastic dynamic stiffness(SDS)
formulations based on both random variable models and random field models with the
whole frequency range. It should be mentioned by passing that the proposed NPM is nu-
merical perturbation method based on both the eigenvalues and eigenvectors computed by
the WW algorithm and the corresponding mode shape computation technique. Therefore,
it is very critical that both the eigenvalues and eigenvectors extracted from the baseline
model should be accurate and reliable. Next, in Section 3.1, we first present the highly
robust, efficient and accurate WW algorithm and the associated mode shape computation
technique, then followed by the proposition of the NPM in Section 3.2.

Table 1: The application of Wittrick-Williams(WW) algorithm and numerical perturbation
method(NPM) for different dynamic stiffness formulations

DS formulations
Solution techniques

WW algorithm NPM
Deterministic

√
Not necessary

Random variable
√ √

Random field ×
√



3.1. Wittrick-Williams algorithm for eigenvalue computation and mode shape computa-
tion technique

Both the deterministic dynamic stiffness(DS) formulations and the SDS formulations
based on random variable models are transcendental functions of frequency where its
elements are trigonometric and hyper-trigonometric functions of frequency. A reliable and
efficient solution technique to extract eigenvalue of natural frequencies from the analytical
deterministic DS formulations of a structure is the powerful Wittrick-Williams (WW)
algorithm [44]. This algorithm ensures that no eigenvalue is missed by monitoring the
Sturm sequence of the ensuring matrix. According to the WW algorithm, the number of
eigenvalues between 0 and a trial frequency ω∗ (mode count J) of the final structure is

J = J0 + s{Kf} (26)
where J0 count is mode count of an element with all nodes clamped, and s(Kf ) is the sign
count (negative inertia) of the final structure Kf evaluated at the trial frequency. For
convenience, the natural frequencies of any member with both ends clamped are denoted
by ωc and are called member clamped-clamped frequencies, with the corresponding modes
being called local ones. And J0 =

∑
Jm, where Jm is the number of ωc of a member subject

to ωc ≤ ω∗, and the summation is over all members. By applying the bisection method,
the eigenvalues where the mode count J shifts can be determined. It is worth emphasis
that the WW algorithm [44], which has been used in many DS formulations, e.g., [45–49].
The WW algorithm is probably the most suitable solution technique for dynamic stiffness
models with the following advantages

i) Accuracy: Eigenvalues within any required precision can be computed;
ii) High efficiency: It is highly efficient mainly due to the small-size matrix;
iii) Analytical elegance: Infinite eigenvalues can be extracted from finite dimensional

matrix;
iv) Certainty: The algorithm ensures that no eigenvalue will be missed.

However, the advantages of ii), iii) and iv) can be realized only when the key problem
of the so called J0 count (the mode count of all fully clamped members) in the WW
algorithm can be effectively solved; Otherwise, either some spurious modes will enter into
the calculation or some true modes will be missed, so that the advantage of the above
iv) certainty cannot be fully realized. However, in the SDS formulations based on the
random field model, the J0 count is not likely to be deduced since the SDS matrices of
each elements are essentially the superposition of many stochastic components as evident
in Eq. (23) and Appendices A and B. Therefore, for such SDS formulations, a new solution
technique will be proposed in Section 3.2.

Once an eigenvalue is obtained, the corresponding eigenvectors(mode shapes) can be
computed. As mentioned earlier, considering that Monte Carlo simulation in random
problems requires a large number of samples, it is very important to select the most
reliable and fast computational technique. Here, based on the criteria suggested [50],
four main different mode shape computation techniques are compared and contrasted in
Table 2, include, (M1) Let the last (or a chosen) element of the eigenvector u0 be an
arbitrary value, and calculate the rest elements. (M2) Let the last h-1 elements of the
eigenvector u0 null and the hth from last element having an arbitrary value, where h is



the distance up the diagonal of dynamic stiffness matrix K∆ changing through the upper
triangle to its lowest negative element. (M3) For the form containing the external force
P, the eigenvector u0 can be directly obtained from P ×K−1. (M4) The transcendental
eigenvalue problem is first reduced to a generalized linear eigenvalue problem by using
Newton’s method in the vicinity of an exact natural frequency identified by the Wittrick–
Williams algorithm. Then the exact eigenvectors can be obtained by using standard
inverse iteration or subspace iteration.

Table 2: Comparison of four main mode shapes computation techniques. Note that for an element of
subjective judgement is used to score from one-star to four-star.

Criterion
Method

M1 M2 M3 M4
Simple ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Fast ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Cheap ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Accurate ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Reliable ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

This paper uses the M4 method for mode shapes computation. The M4 method applies
Newton’s method see Eq.(27), expanding the approximation ωa ∈ (ωl, ωu) of K(ωk)dk = 0
with respect to the eigenvalue ωk.

K(ωk)dk = Kadk + (ωk − ωa)K
′
adk +O((ωk − ωa)

2) (27)
where Ka = K(ωa), K′

a = dK(ωa)/dω. Note that K(ωk)dk = 0, ignoring the second order
and higher order terms, the natural frequency ωk and eigenvector dk can be obtained by
solving the generalized matrix eigenvalue problem

Kad = τK′
ad (28)

where τ = ωa−ωk. The method to solve the generalized matrix eigenvalue problem is the
inverse power iteration method commonly used in the linear matrix eigenvalue problem.
According to Eq.(28), we can get the following form

d̄
(i+1)

= K−1
a K′

ad
(i) (29)

where i is the number of steps of iteration, and the d(0) is a random vector. Then the
updated τ (i+1) can be obtained by

τ (i+1) =
1

d̄
(i+1)
j∗

(30)

where |d̄(i+1)
j∗ | = max |d̄(i+1)

j |. Finally, the updated eigenvector d(i+1) is obtained by

d(i+1) = τ (i+1)d̄(i+1) (31)
The whole iterative process is terminated when

max
∣∣∣d(i+1)

j − d
(i)
j

∣∣∣ < Tol 1 or i = imax (32)



where d
(i)
j is the jth element of d(i), max denotes the maximum value for any j, Tol 1 is

the user specified error tolerance. imax is the maximum number of iterations allowed. It’s
worth noting that since d(i) has been normalized, only absolute error control is used in
Eq.(32). This method can ensure the convergence to the eigenvalue and eigenvector with
the minimum absolute value. The complete algorithm steps of this method are given in
reference [50]. The above WW algorithm and the mode shapes computational technique
can be applied to both deterministic DS formulations and stochastic DS formulations
based on random variable models, but can not be applied to stochastic DS formulations
based on random field models.

3.2. Numerical perturbation method for stochastic DS formulations
The numerical perturbation method based on inverse iteration can be used to solve

the stochastic dynamic stiffness formulations based on both random variable and random
field models. It provides a powerful solution for the dynamic stiffness method to solve
stochastic problems. The derivation process is described in detail below. The numerical
perturbation method needs to take the deterministic eigenvalues and eigenvectors as the
basis of iteration, based on deterministic dynamic stiffness formulation, the deterministic
eigenvalue problem can be written as

K(ω0, x0)u0 = 0 (33)
where K is the deterministic dynamic stiffness matrix of the structure, ω0 denotes the
deterministic eigenvalue, x0 ∈ CN×1 represents the deterministic parameter vector and
u0 is the corresponding deterministic eigenvector for displacement amplitude. Note that
both ω0 and ū0 have already been determined by the procedure given in Section 3.1, thus
can be treated as constants in the following stochastic eigenvalue analysis.

Without any loss of generality, if uncertainties are considered in the dynamic stiffness
model, the stochastic dynamic stiffness formulation becomes

K(ω0 + dω(dx), x0 + dx)(u0 + du(dx)) = 0 (34)
which covers both the random variable models and random field models. It should be
noted that compared to the deterministic model, the perturbation on the eigenvalue ω0 and
eigenvector u0, i.e., dω and du are nonlinear functions of the perturbation of parameter
vector dx. Therefore, the homotopy method is used to obtain eigenvalues and eigenvectors,
The specific form is as follows:

x0 = 0, x1, · · · , xk, · · · , xM = xg, where xk = k(x − x0)/M (35)

ω0, ω1, · · · , ωk, · · · , ωM = ωg, where ωk = k(ω − ω0)/M (36)

u0,u1, · · · ,uk, · · · ,uM = ug, where uk = k(u− u0)/M (37)
where M is the total homotopy number, the value of M can directly affect the conver-
gence of the final stochastic eigenvalues and eigenvectors. For different types of beam, it is
necessary to choose the appropriate M to adjust the convergence. k (k = 0, 1, · · · ,M−1)
is the step of the current iteration. x0, ω0 and u0 are deterministic parameters, eigen-
value and eigenvector. xk, ωk, and uk respectively represent the stochastic parameters,



stochastic eigenvalues and stochastic eigenvectors obtained in each iteration process. xg,
ωg, and ug respectively represent the final stochastic parameters and computed stochastic
eigenvalues and eigenvectors. The characteristic solution iterated in each step will be used
as the initial guess of the next iteration process. At the end of iteration, stochastic eigen-
values and eigenvectors can be obtained. The detailed iterative process of the algorithm
is as follows:

For iteration at step k:
The eigenvector is updated by using inverse iteration. First of all, applying Taylor

expansion onto Eq.(34) at K(ωk, xk+1), one will have[
K(ωk, xk+1) +

∂K(ωk, xk+1)

∂ω
dω

]
uk+1 = 0 (38)

where xk+1 represents the parameter vector. Eq.(38) can be recast into the following form

K(ωk, xk+1)uk+1 = −dω
∂K(ωk, xk+1)

∂ω
uk+1 ≃ −dω

∂K(ωk, xk+1)

∂ω
uk (39)

Therefore, the eigenvector uk+1 can be updated by using the inverse iteration to be

ūk+1 = −K(ωk, xk+1)
−1

(
dω

∂K(ωk, xk+1)

∂ω

)
uk

= −K(ωk, xk+1)
−1 [K(ωk + dω, xk+1)−K(ωk, xk+1)]uk

=
[
I −K(ωk, xk+1)

−1K(ωk + dω, xk+1)
]
uk (40)

Then, the updated eigenvector ūk+1 needs to be normalised to uk+1 such that

uT
k+1

∂K(ωk, xk+1)

∂ω
uk+1 = −1 (41)

in order to ensure the convergence of the iteration procedure, namely

uk+1 =
ūk+1√

|ūT
k+1

∂K(ωk, xk+1)

∂ω
ūk+1|

(42)

After normalization of the updated eigenvector, the eigenvector ūk+1 for the k+1 step
is obtained. Then the eigenvalue is updated by using Rayleigh quotient in combination
with the iterated eigenvectors. By replacing dω of Eq.(34) by ∆ωk, we have[

K(ωk, xk+1) +
∂K(ωk, xk+1)

∂ω
∆ωk

]
uk+1 = 0 (43)

thus, by considering Eq.(41), one has

∆ωk = ūT
k+1K(ωk, xk+1)ūk+1 (44)

and therefore the updated eigenvalue becomes

ωk+1 = ωk + ūT
k+1K(ωk, xk+1)ūk+1 (45)



Based on the above iterative process, we can obtain the eigenvalues and eigenvectors of
k+ 1 step. Finally, the stochastic eigenvalues and eigenvectors of the stochastic dynamic
stiffness formulations based on either random variables or random fields can be computed
by using the above technique.

4. Numerical Results and Discussion

The above eigenvalue and mode shape solution technique have been implemented in
a Matlab code. Next, we used this code for stochastic analysis of eigenvalue problems
in the form of stochastic dynamic formulations based on both random variable model
and random field model. Section 4.1 demonstrates modal analysis of the random variable
model through the Monte Carlo simulations(MCS). For the SDS formulations for beam
built-up structures based on random variable model, both the Wittrick-Williams(WW)
algorithm and the numerical perturbation method(NPM) are used in the MCS, in which
the eigen-solutions computed by the WW algorithm can be treated as benchmark results.
The NPM results are validated against and compared with the results from the WW
algorithm, to demonstrate the high accuracy, reliability and efficiency of the NPM. Later
in Section 4.2, for the SDS formulations for beam built-up structures based on random
field model, the proposed NPM is applied for the stochastic eigenvalue problems, whose
results are compared with those by the stochastic finite element method(SFEM).

4.1. Modal analysis of the random variable model

Fig. 8: Statistical scatter of the first six eigenvalues of the beam built-up structures shown in Fig. 2 based
on random variable models by using numerical perturbation method(NPM). The six vertical continuous
lines represent the deterministic eigenvalues for the first six eigenmodes.

This section adopts the beam built-up structures shown in Fig. 2 as an example.
The mean material properties are considered ρ0 = 2700kg/m3 and E0 = 69GPa. The



area and the area moment of inertia of the cross-section of the underlying baseline model
are A0 = 1cm2 and I0 = 2.876 × 10−11m4. Node 1 of the beam built-up structures is
clamped and the rest nodes are all free. As mentioned in Section 2.1, the EA(θ), EI(θ)
and m(θ) are assumed to be uncorrelated, constantly distributed in length, zero-mean,
unit-standard-deviation Gaussian random parameters(N(0,1)). The ‘strength parameters’
ϵ is assumed to be 0.1, that is, we consider 10% randomness for all the parameter values.

(a) Case 1 Probability density functions of the first two stochastic natural frequencies of the beam

built-up structures shown in Fig. 2 based on random variable model.

(b) Case 2 Probability density functions of the third to sixth stochastic natural frequencies of the

beam built-up structures shown in Fig. 2 based on random variable model.

Fig. 9: Probability density functions of the first six stochastic natural frequencies of the beam built-
up structures shown in Fig. 2 based on random variable model by using both Wittrick-Williams(WW)
algorithm and numerical perturbation method(NPM).

The statistical scatter of the first six eigenvalues of the beam built-up structures
with 1500 samples shown in Fig. 2 based on random variable model by using numerical
perturbation method(NPM) is shown in Fig. 8. Solid lines represent the eigenvalues for
the corresponding deterministic built-up structure model with average parameters, whose
values are λ1 = 311.39Hz, λ2 = 369.03Hz, λ3 = 707.47Hz, λ4 = 736.54Hz, λ5 = 835.93Hz,



λ6 = 889.67Hz. While each random scatter denotes the eigenvalue of the corresponding
random parameters with the given sample. It can be seen that the first two eigenvalues
are well separated and little statistical overlap exists between them. However, the third to
sixth eigenvalues are close to each other and there is distinct statistical overlap between
them. Besides, the scatter degree becomes larger for higher modes than smaller modes,
indicating that uncertainties in stiffness and mass distributions play a more important
role for higher modes. The probability density distribution curves from the MSC results
(using kernel density estimation) calculated by both the numerical perturbation method
and WW algorithm are shown in Fig. 9(a) corresponds to the first two eigenvalues which
are well separated, whereas Fig. 9(b) related to the third-sixth eigenvalues which are close.
The results agree well with the scattering pattern of stochastic eigenvalues. Combined
with Fig. 8 and Fig. 9, the distribution of stochastic eigenvalues can be considered in the
following two forms:

Case 1: Well separated eigenvalues. As in Fig. 9(a), the first two eigenvalues
are well separated. The first two deterministic eigenvalues of the corresponding baseline
model are given by

λ1 = 311.39Hz and λ2 = 369.03Hz (46)
It can be seen that there is little statistical overlap between them because the eigenvalues
are well separated.

Case 2: Close eigenvalues. As in Fig. 9(b), the third to fourth and fifth to sixth
eigenvalues are close to each other. As shown in Fig. 8, the deterministic eigenvalues of
the last four eigenvalues are

λ3 = 707.47Hz, λ4 = 736.54Hz, λ5 = 835.93Hz and λ6 = 889.67Hz (47)

Fig. 10: Relative error of the mean of the first six stochastic eigenvalues of the beam built-up structures
shown in Fig. 2 based on random variable model calculated by numerical perturbation method(NPM)
and Wittrick-Williams(WW) algorithm(Benchmark method).



Clearly λ3 and λ4 are close to each other, while λ5 and λ6 are close to each other. There
is significant statistical overlap between the third to fourth and fifth to sixth eigenvalues
which can also be verified from Fig. 9.

Fig. 10 shows the relative error of the mean of the first six stochastic natural fre-
quencies of 1500 samples by using numerical perturbation method compared to those
by the WW algorithm. These errors are very small(less than 1.2 × 10−5) considering
that the strength of randomness for all random variables (EA(θ), EI(θ) and m(θ)) are
10%. The well separated first two eigenvalues have a relatively small error, whereas the
errors corresponding to third, fourth, fifth and sixth stochastic natural frequencies are
relatively higher. This is expected since normally close eigenvalues introduce relatively
more challenge to eigenvalue solution techniques than well-separated eigenvalues.

Table 3: The mean of natural frequencies covering low-, mid- to high-frequencies ranges for the beam
built-up structure shown in Fig. 2 based on random variable model, computed by both the Wittrick-
Williams(WW) algorithm and the numerical perturbation method(NPM), compared with the correspond-
ing eigenvalues of deterministic model computed from the WW algorithm.

Modes
Deterministic model Random variable modal

WW algorithm(Hz) WW algorithm(Hz) NPM(Hz)

1 311.39 310.95 310.95
2 369.03 369.17 369.17
3 707.47 702.07 702.08
30 3849.2 3843.6 3843.8
40 5358.0 5355.5 5355.6
50 6829.2 6890.6 6890.4
100 16324 16226 16226

Computation
times(s)

174.05 120.19

In order to demonstrate the reliability and efficiency of the proposed NPM, Table
3 shows the mean of natural frequencies covering low-, mid- to high-frequencies ranges
for the beam built-up structure computed by both the Wittrick-Williams(WW) algorithm
and the numerical perturbation method(NPM) based on random variable model, and com-
pared with the corresponding eigenvalues of deterministic model computed from the WW
algorithm. It can be seen that the mean results calculated by the proposed NPM matches
very well to those by the benchmark solutions computed by the Wittrick-Williams(WW)
algorithm within the whole frequencies ranges. Moreover, the proposed NPM requires
only three quarters of the computation time of the WW algorithm. The mean and the
absolute value of standard deviation of the first 100 stochastic natural frequencies of 1500
samples calculated by the two methods are shown in Figs. 11(a) and (b) respectively. It
can be seen that both the curves follow each other very closely. Fig. 12 shows the mean(a)
and standard deviation(b) of the first three stochastic mode shapes of the beam built-up
structures based on random variables model by using both Wittrick-Williams(WW) al-
gorithm and numerical perturbation method(NPM). All mode shapes are normalized for
maximum displacement. It can be seen that the mean of the first three stochastic mode
shapes obtained by the two methods are very consistent.



Fig. 11: The statistics of the first 100 natural frequencies of the beam built-up structures shown in Fig.2
based on random variable models by using the numerical perturbation method(NPM) and Wittrick-
Williams(WW) algorithm. (a) Mean and (b) The absolute value of standard deviation of the first 100
stochastic natural frequencies.

(a) Mode 1 (a) Mode 2 (a) Mode 3

(b) Mode 1 (b) Mode 2
(b) Mode 3

Fig. 12: The statistics of the first three mode shapes of the beam built-up structures shown in Fig.2
based on random variable models by using the numerical perturbation method(NPM) and Wittrick-
Williams(WW) algorithm. (a) Mean and (b) standard deviation of the first three stochastic mode shapes.
‘−−’ Numerical perturbation method, ‘——’ Wittrick-Williams algorithm.



4.2. Modal analysis of the random field model

(a) The axial vibration of a bar. (b) The bending vibration of a beam.

Fig. 13: The statistics of the first six natural frequencies of the axial vibration and the bending vibration
of a beam based on random field models by using the SDSM combined with the numerical perturbation
method(SDSM+NP) and SFEM. (a) Mean and (b) standard deviation of the first six stochastic natural
frequencies.

First, two simple numerical examples are considered to illustrate the application of
the method proposed in this paper for axial vibration and bending vibration of a clamp-
free beam respectively. The mean material properties of the beam are considered as
ρ0 = 7800kg/m3 and E0 = 210GPa. The length of the beam is L = 1.5m and the
rectangular cross section has width 40.06mm and thickness 2.05mm. The area moment of
inertia of the cross-section I0 = 2.876× 10−11m4. The ‘strength parameters’ ϵ is assumed
to be 0.1, that is, ϵEI = 0.1, ϵm = 0.1 and ϵAE = 0.1. The correlation length of the
random fields describing EI(x), m(x) and AE are assumed to be L/2.

The mean and the standard deviation of the first six stochastic natural frequencies
of 1500 samples of axial vibration and bending vibration of a beam obtained by using
the SDSM combined with the numerical perturbation method(NPM) are shown in Fig.
13, compared with the SFEM results. It can be seen that the results obtained from the
SFEM match those of the SDSM developed in this paper with excellent accuracy. In
addition, it can be found that for the same standard deviation, the discrete degree of
natural frequencies of the axial vibration of a beam is significantly affected by the ran-
dom field model. Table 4 shows the mean of natural frequencies covering low-, mid- to
high-frequencies ranges for the axial vibration and the bending vibration of a beam, com-
puted by both the SDSM combine with numerical perturbation method(SDSM+NPM)
and SFEM. The results in the table have converged to four significant numbers. It can be
seen from the table that with the increase of the number of elements, the convergence of
low-order average eigenvalue of finite element calculation of random samples is relatively
stable, while the convergence of high-order average eigenvalue is not stable. Moreover
the method proposed in this paper has nearly four times the computational advantage
compared with the stochastic finite element method(SFEM).



Table 4: The mean of natural frequencies covering low-, mid- to high-frequencies ranges for the axial
vibration and the bending vibration of a beam based on random field models, computed by both the
SDSM combine with numerical perturbation method(SDSM+NPM) and SFEM.

Method Element
num-
ber

Natural frequencies (Hz)
Computation
times(s)

1 2 3 30 50 100

Axial
vibra-
tion

SDSM
(NPM)

1 5292.1 15876 26460 312233 523916 1053125 20.07

SFEM
(Eigs)

300 5292.1 15876 26467 312612 524595 1053824 32.16

500 5292.1 15876 26463 312272 524002 1053298 57.02

600 5292.1 15876 26460 312235 523918 1053145 119.72

Bending
vibra-
tion

SDSM
(NPM)

1 4.6915 29.229 82.389 11439 32208 130135 115.67

SFEM
(Eigs)

400 4.6919 29.257 82.730 11435 32212 130333 139.65

500 4.6917 29.226 82.399 11440 32208 130165 250.65

600 4.6913 29.229 82.385 11439 32208 130144 531.45

Fig. 14: Statistical scatter of the first six eigenvalues of the beam built-up structures shown in Fig. 2
based on random field model by using numerical perturbation method(NPM). The six vertical continuous
lines represent the deterministic eigenvalues for the first six eigenmodes.



Another numerical example is the beam built-up structures shown in Fig. 2. The
results for this example are obtained based on random field model by using numeri-
cal perturbation method(NPM) with 1500 samples. The random ‘scatter’ of the first
six eigenvalues is shown in Fig. 14. The six vertical continuous lines represent the
deterministic eigenvalues for the corresponding built-up structure model with average pa-
rameters, whose values are λ1 = 311.39Hz, λ2 = 369.03Hz, λ3 = 707.47Hz, λ4 = 736.54Hz,
λ5 = 835.93Hz, λ6 = 889.67Hz. While each random scatter denotes the eigenvalue of the
corresponding random filed with the given sample. It can be seen that compared with the
eigenvalue results calculated by the random parameter model, the statistical overlap area
of the first two orders of random eigenvalues corresponding to the random field model in-
creases, but it still maintains a certain separation.And the statistical overlap region of the
last four order eigenvalues also increases relatively. Besides, the scatter degree becomes
larger for higher modes than smaller modes, indicating that uncertainties in stiffness and
mass distributions play a more important role for higher modes.

Fig. 15: Probability density functions of the first six stochastic natural frequencies of the beam built-up
structures shown in Fig. 2 based on random fields model by using numerical perturbation method(NPM).

The probability density distribution curves from the MSC results (using kernel density
estimation) calculated by numerical perturbation method(NPM) are shown in Fig. 15
which are corresponding to the first two eigenvalues and the last four eigenvalues of the
scatter graph. There is a significant region of statistical overlap which can also be verified
from the plot of the actual samples in Fig. 14. In addition, it is worth noting that in Fig.
15, although the probability density distribution we obtained is about the third to sixth
determined eigenvalue solution, we can see that there is a probability distribution near
the position of ω = 1020Hz. This can be proved by the scattered point distribution at the
same position in Fig. 14. This is similar to the seventh eigenvalue ω7 = 1016.03Hz of the
beam built-up structures. This is a very interesting phenomenon that first appeared in
the eigenvalue probability density distribution curves of structural uncertain parameters.
This is because after the introduction of stochastic dynamic stiffness theory, the core
of the eigenvalue solution is the solution of J . The principle is described in Section 3.1.
When J changes, J+1, the latter eigenvalue of the structure will be obtained. Here, when
we are studying random problems, we set the dispersion of the sample to 0.1. Therefore,



the sample range in which the sixth eigenvalue will occur involves the frequency sample
that will change J . The change will occur near the seventh eigenvalue, so that the given
sample will be discrete near the seventh eigenvalue. This is why we can see the extra
probability distribution in the probability density graph.

5. Conclusions

This paper proposes an efficient and reliable eigenvalue solution technique for free
vibration analysis of beam-based built-up structures with parametric uncertainties. The
method takes advantages of the stochastic dynamic stiffness (SDS) formulations that
represent uncertain dynamic systems by using very few degrees of freedom. The dimension
reduction has been achieved by combining the spectral discretization of the time-domain
in the form of dynamic stiffness and the spectral discretization of the random domain in
the form of Karhunen-Loève expansion. The numerical perturbation method based on
the inverse iteration is proposed to extract the stochastic eigenvectors and eigenvalues
from the stochastic dynamic stiffness formulations. The novelty of the proposed approach
include:

• The accurate eigenvalues and eigenvectors are used as the initial iterative solutions
of the numerical perturbation method to ensure the accuracy of the results.

• The numerical perturbation method is based on the inverse iteration method and
uses the homotopy method to iterate the initial solution to obtain the stochastic
eigenvalues and eigenvectors which has high robustness.

• In the iteration process, the calculation steps of each iteration are simple, which
greatly improves the calculation efficiency. It is also well proved by comparing the
results with other methods.

For the beam-based built-up structures, unlike the conventional finite element ap-
proach, a fine meshing is not necessary. This greatly saves the calculation time, particu-
larly for stochastic problems. The advantages will be more obvious during the structure
optimization design. In summary, the key advantages of the method developed are:

• It has obvious computational advantages for the modal analysis of medium and high-
frequency vibration of beam built-up structures considering parameter uncertainties.

• This method can solve the dynamic stiffness formula of the arbitrarily assembled
beam built-up structure and can conduct the stochastic modal analysis of the arbi-
trarily assembled beam built-up structure to study its dynamic characteristics.

• This method is applicable to the stochastic dynamic stiffness formulations based
on both the random variable model and random field model. It can reasonably
quantify the uncertainty of the structural parameters for different engineering cases,
and propagate it into the structure to reflect the real properties of the structure.

By comparing with the WW algorithm and SFEM method, the accuracy and efficiency
of the proposed method are verified. In the following research, the method will be used to
further study plate structures and beam-plate built-up structures considering parameter
uncertainties and connection uncertainties.
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Appendix A. Expression of spectral elemental matrices associated with the KL expansion
of a beam member under axial vibration

This appendix gives the derivation of the matrices K̃a
j (ω) and M̃a

j (ω) with the KL
expansion for the axial vibration of a beam member.

K̃a
j (ω) =

∫ L

0

ϵAEAE0 cos(αj(−L/2 + x))√
L/2 +

sin(αjL)

2αj

{
∂s(x, ω)

∂x

}{
∂s(x, ω)

∂x

}T

dx (A.1)

=
ϵAEAE0√

(L/2 + cαsα/αj)

a2

αj

(
4a2 − α2

j

)×[
2αjacαj

cs+ (−αj
2 + 4a2 − αj

2c2) sαj
(−2αja+ 2αjac

2) cαj
+ αj

2sαj
cs

(−2αja+ 2αjac
2) cαj

+ αj
2sαj

cs −2αjacαj
cs+ (4a2 − αj

2 + αj
2c2) sαj

]
(A.2)

In the above expression
cαj

= cos (αjL/ 2) and sαj
= sin (αjL/ 2) (A.3)

and the eigenvalues αj should be obtained by solving the transcendental Eq. (11) with
l = L/2. In Eq. (A.1) the KL eigenfunction is shifted to take account of the fact that Eq.
(11) is defined for −L/2 ≤ x ≤ L/2 while the element shape functions are defined over 0 ≤
x ≤ L. In Eq. (A.1) we have used the identity sin(αjL) = 2 cos (αjL/ 2) sin (αjL/ 2) =
2cαsα. In a similar manner, using the expression of the eigenfunction for the even values
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of j as in Eq. (12) one has

K̃a
j (ω) =

∫ L

0

ϵAEAE0 sin(αj(−L/2 + x))√
L/2− sin(αjL)

2αj

{
∂s(x, ω)

∂x

}{
∂s(x, ω)

∂x

}T

dx (A.4)

=
ϵAEAE0√

(L/2− cαsα/αj)

a2

αj

(
4a2 − α2

j

)×[
(−αj

2 + αj
2c2) cαj

+ 2αjasαj
cs −αj

2cαj
cs+ 2αjasαj

c2

−αj
2cαj

cs+ 2αjasαj
c2 (αj

2 − αj
2c2) cαj

− 2αjasαj
cs

]
(A.5)

The mass matrix can also be represented as Eqs. (14)-(17). The eigenvalues and
eigenfunctions corresponding to the random field Hm(x, θ) needs to be used to obtain the
elements of M̃a

j (ω). Using the expression of the eigenfunction for the odd values of j as
in Eq. (11) one has

M̃a
j (ω) =

∫ L

0

ϵmm0 cos(αj(−L/2 + x))√
L/2 +

sin(αjL)

2αj

s(x, ω)sT (x, ω) dx (A.6)

=
ϵmm0√

(L/2 + cαsα/αj)

1

αj

(
4a2 − α2

j

)×[
−2αjacαj

cs+ (4a2 − αj
2 + αj

2c2) sαj
(2αja− 2αjac

2) cαj
− αj

2sαj
cs

(2αja− 2αjac
2) cαj

− αj
2sαj

cs 2αjacαj
cs+ (−αj

2 + 4a2 − αj
2c2) sαj

]
(A.7)

In the above expression the eigenvalues αj should be obtained by solving the tran-
scendental Eq. (11). In a similar manner, using the expression of the eigenfunction for
the even values of j as in Eq. (12) one has

M̃a
j (ω) =

∫ L

0

ϵmm0 sin(αj(−L/2 + x))√
L/2− sin(αjL)

2αj

s(x, ω)sT (x, ω) dx (A.8)

=
ϵmm0√

(L/2− cαsα/αj)

1

αj

(
4a2 − α2

j

)×[
(αj

2 − αj
2c2) cαj

− 2αjasαj
cs αj

2cαj
cs− 2αjasαj

c2

αj
2cαj

cs− 2αjasαj
c2 (−αj

2 + αj
2c2) cαj

+ 2αjasαj
cs

]
(A.9)

Eqs. (A.1)–(A.8) completely define the random parts of the elemental stiffness and
mass matrices. The exact closed-form expression of the elements of the above four matrices
further reduces the computational cost in deriving these matrices.

Appendix B. Expression of spectral elemental matrices associated with the KL expansion
of a beam member under bending vibration

This appendix gives the derivation of the matrices K̃b
0(ω), M̃b

0(ω), K̃b
j(ω) and M̃b

j(ω)
and the explicit expressions for the spectral stiffness and mass matrices associated with
the KL expansion for the bending vibration of a beam member. The deterministic stiffness



matrix and mass matrix can be obtained from Eq. (15), K̃b
0(ω) and M̃b

0(ω) are obtained
by the following equation

K̃b
0(ω) = EI0

∫ L

x=0

{
∂2s(x, ω)

∂x2

}{
∂2s(x, ω)

∂x2

}T

dx (B.1)

=
EI0b

3

2


bL− cs 1− c2 cS − sC −1 + cC − sS
1− c2 cs+ bL 1− cC − sS −cS − sC

cS − sC 1− cC − sS CS − bL −1 + C2

−1 + cC − sS −cS − sC −1 + C2 CS + bL

 (B.2)

M̃b
0(ω) = m0

∫ L

x=0

s(x, ω)sT (x, ω)dx (B.3)

=
m0

2b


bL− cs 1− c2 −cS + sC 1− cC + sS
1− c2 cs+ bL −1 + cC + sS cS + sC

−cS + sC −1 + cC + sS CS − bL −1 + C2

1− cC + sS cS + sC −1 + C2 CS + bL

 (B.4)

Note that for each j there will be two different matrices corresponding to the two
eigenfunctions to obtain the matrices associated with the random components.

Using the expression of the eigenfunction for the odd values of j as in Eq. (11) one
has

K̃b
j(ω) =

∫ L

0

ϵEIEI0 cos[αj(−L/2+x)]√
L/2+

sin(αjL)
2αj

{
∂2s(x,ω)

∂x2

}{
∂2s(x,ω)

∂x2

}T

dx

= ϵEIEI0√
(L/2+cαsα/αj)

K̂j

(B.5)

where cα, sα are defined in Eq. (A.3) and K̂j ∈ C4×4 is a symmetric matrix obtained
in Appendix Appendix A. In a similar manner, using the expression of the eigenfunction
for the even values of j as in Eq. (12) one has

K̃b
j(ω) =

∫ L

0

ϵEIEI0 sin[αj(−L/2+x)]√
L/2−

sin(αjL)
2αj

{
∂2s(x,ω)

∂x2

}{
∂2s(x,ω)

∂x2

}T

dx

= ϵEIEI0√
(L/2−cαsα/αj)

K̂j

(B.6)

The mass matrix can also be represented as above. The eigenvalues and eigenfunctions
corresponding to the random field Hm(x, θ) needs to be used to obtain the elements of
M̃b

j(ω). Using the expression of the eigenfunction for the odd values of j as in Eq. (11)
one has

M̃b
j(ω) =

∫ L

0

ϵmm0 cos(αj(−L/2 + x))√
L/2 +

sin(αjL)

2αj

s(x, ω)sT (x, ω) dx (B.7)

=
ϵmm0√

(L/2 + cαsα/αj)
M̂j



In the above expression the eigenvalues αj should be obtained by solving the transcen-
dental Eq. (11). In a similar manner, using the expression of the eigenfunction for the
even values of j as in Eq. (12) one has

M̃b
j(ω) =

∫ L

0

ϵmm0 sin(αj(−L/2 + x))√
L/2− sin(2αja)

2αj

s(x, ω)sT (x, ω) dx (B.8)

=
ϵmm0√

(L/2− cαsα/αj)
M̂j

Eqs. (B.5)-(B.8) completely define the random parts of the elemental stiffness and
mass matrices. The definite integrals appearing in these expressions can be evaluated
in closed-form. This further reduces the computational cost in deriving the elemental
matrices. The exact closed-form expression of the elements of the above four matrices
can be obtained as

K̂11 =
4b6sαj−2b5αjcαj cs+(−αj

2+αj
2c2)sαj b

4

−αj
3+4αjb2

K̂12 =
(2−2c2)cαj b

5−b4αjsαj cs

−αj
2+4b2

K̂13 =
(2cS−2sC)cαj b

7+(2αj+2αjCc)sαj b
6+(−αj

2Cs−αj
2cS)cαj b

5−b4αj
3sαjSs

4b4+αj
4

K̂14 =
(−2Ss−2+2Cc)cαj b

7+2b6αjsαj cS+(−αj
2Ss+αj

2−αj
2Cc)cαj b

5−b4αj
3Csαj s

4b4+αj
4

K̂22 =
4b6sαj+2b5αjcαj cs+(−αj

2−αj
2c2)sαj b

4

−αj
3+4αjb2

K̂23 =
(2−2Ss−2Cc)cαj b

7−2b6αjCsαj s+(−αj
2Cc+αj

2Ss+αj
2)cαj b

5−b4αj
3sαj cS

4b4+αj
4

K̂24 =
(−2cS−2sC)cαj b

7−2b6αjsαjSs+(αj
2Cs−αj

2cS)cαj b
5+(−αj

3−αj
3Cc)sαj b

4

4b4+αj
4

K̂33 =
−4b6sαj+2b5αjSCcαj+(αj

2C2−αj
2)sαj b

4

4αjb2+αj
3

K̂34 =
(−2+2C2)cαj b

5+b4αjSCsαj

4b2+αj
2

K̂44 =
4b6sαj+2b5αjSCcαj+(αj

2C2+αj
2)sαj b

4

4αjb2+αj
3 .

The subscript j is omitted in K̂ for notational convenience. Because the matrix is
symmetric, only the upper triangular part is shown. All the terms appearing in the above
expressions have been defined in the main body of the chapter. The elements of the
stiffness matrix associated with the even values of j in Eq. (B.6) can be obtained as

K̂11 =
−2b5sαj cs+(αj−αjc

2)cαj b
4

−αj
2+4b2

K̂12 =
b4cαjcαj s−2b5c2sαj

−αj
2+4b2

K̂13 =
(2cS−2sC)sαj b

7+(−2αjCc+2αj)cαj b
6+(−αj

2Cs−αj
2cS)sαj b

5+b4αj
3cαjSs

4b4+αj
4

K̂14 =
(2Cc−2Ss+2)sαj b

7−2b6αjcαj cS+(−αj
2Cc−αj

2−αj
2Ss)sαj b

5+b4αj
3Ccαj s

4b4+αj
4

K̂22 =
(−2sαjαj cos(αjL)cs+2cαjαj sin(αjL)cs)b5+((−αj

2+αj
2 cos(αjL)c

2)cαj+sαjαj
2 sin(αjL)c

2)b4
−αj

3+4αjb2

K̂23 =
(−2−2Cc−2Ss)sαj b

7+2b6αjCcαj s+(−αj
2Cc−αj

2+αj
2Ss)sαj b

5+b4αj
3cαj cS

4b4+αj
4

K̂24 =
(−2cS−2sC)sαj b

7+2b6αjcαjSs+(αj
2Cs−αj

2cS)sαj b
5+(−αj

3+αj
3Cc)cαj b

4

4b4+αj
4



K̂33 =
2b5SCsαj+(αj−αjC

2)cαj b
4

4b2+αj
2

K̂34 =
2C2b5sαj−Cb4αjScαj

4b2+αj
2

K̂44 =
2b5SCsαj+(αj−αjC

2)cαj b
4

4b2+αj
2 .

The elements of the mass matrix associated with the odd values of j in Eq. (B.7) can
be obtained as

M̂11 =
4b2sαj−2bαjcαj cs+(−αj

2+αj
2c2)sαj

−αj
3+4αjb2

M̂12 =
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−αj
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4
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4
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3sαj cS
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4

M̂24 =
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2Cs−αj

2cS)cαj b+(−αj
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4
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3
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2
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3 .

The elements of the mass matrix associated with the even values of j in Eq. (B.8) can
be obtained as

M̂11 =
−2bsαj cs+(αj−αjc

2)cαj

−αj
2+4b2

M̂12 =
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4
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M̂23 =
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4

M̂24 =
(−2cS−2sC)sαj b

3+2b2αjcαjSs+(αj
2Cs−αj

2cS)sαj b+(−αj
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4

M̂33 =
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2)cαj

4b2+αj
2

M̂34 =
2C2bsαj−CαjScαj

4b2+αj
2

M̂44 =
2bSCsαj+(αj−αjC

2)cαj

4b2+αj
2 .
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