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Abstract 

Optoelectronic tweezers (OET) is a useful optical micromanipulation technology that has been 

demonstrated for many useful applications. In this work, we studied the use of light patterns with 

different shapes and thickness to manipulate dielectric microparticles with OET. It was demonstrate that 

the maximum velocities of the microparticles increase to a peak and then gradually decrease as the light 
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pattern's thickness increases. Numerical simulations were run to clarify the underlying physical 

mechanisms and it was demonstrated that the observed phenomenon is due to co-influence of horizontal 

and vertical DEP forces related to light pattern's thickness. Further experiments were run on light patterns 

with different shapes and objects with different sizes and structures. The experimental results indicate 

that the physical mechanism elucidated in this research is a universal one that applies for different light 

pattern shapes and different objects, which is useful for enabling users to optimize OET settings for 

various micromanipulation applications in future.  

 

Key words: Optoelectronic tweezers, optical micromanipulation, dielectrophoresis, microparticle, 
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Optoelectronic tweezers (OET) is an optical micromanipulation technology that relies on optically-

induced-dielectrophoresis (ODEP) force for the control and actuation of micro-/nano-scale objects.1-5 

Based on light patterned electric fields, OET is capable of exerting pico-to-nano Newton manipulation 

forces,6,7 and is well suited for parallel and independent control of multiple objects.1,3,8,9 Because of these 

outstanding micromanipulation capabilities, OET has been widely used to manipulate and assemble bio-

analytes and molecules,10-12 cells of different species,13-20 nano-/micro- particles,8,21-25 

electronic/photonic components,26-32 and microrobots,9 thus offering a useful scientific tool to investigate 

microscopic world for physical, chemical and biological studies. More recently, OET technology has 

been successfully commercialized and used in the biopharmaceutical industry for antibody discovery and 

cell therapy development,33 demonstrating the prospect of this technology in both research and industrial 

settings.  

 

 

Figure 1. (a) Schematic of an OET device, in which microparticles are manipulated via positive or 

negative DEP forces. (b) A video frame showing the use of dynamic light pattern to move/rotate multiple 

10 μm polystyrene microbeads at an angular velocity of 0.42 rad/s. Red and yellow arrows represent the 

counter-clockwise and clockwise rotational directions of the microbeads in the central and surrounding 

regions, respectively. See Supplementary Video 1 (clip 1) for more details. (c) Microscope image 



showing the illumination of the microbead suspension with a light pattern depicting a stylized caricature 

of Marie Curie with symbols of Erlenmeyer flask and radiation. (d) Microscope image of the OET-

assembled micropattern. See Supplementary Video 1 (clip 2) for more details. 

 

In an OET system, light pattern is a key factor that influences the moving behaviors of the controlled 

micro-objects. Previous studies have shown that both the wavelength and optical intensity of light pattern 

can influence the performance of OET for particle manipulation.34,35 However, for a standard OET 

system with given light sources, there is little room to adjust the properties of light sources to optimize 

the performance of OET. Since OET is based on ODEP forces, the distribution of light patterned electric 

field has a big influence on the moving behaviors of micro-objects. Therefore, in this work, we studied 

the influence of different-shaped light patterns and their thickness on the moving behaviors of 

microparticles and clarified the underlying physical mechanisms for the observed phenomenon. This is 

important for enabling users to optimize OET settings for efficient manipulation of micro-objects. 

Simulations in COMSOL Multiphysics (COMSOL Inc., USA) were carried out to clarify the 

experimental results and provide insights to the physical mechanisms. It was demonstrated that thicker 

light patterns can induce stronger electric field gradient in the horizontal plane, exerting stronger 

horizontal DEP forces and thus a higher moving velocity for the microparticles. However, light patterns 

beyond certain thickness can increase the DEP force in the vertical plane, making the microparticles 

escape from the OET trap at a lower moving velocity. Therefore, two physical mechanisms should be 

considered when choosing the rightful parameters for light patterns to achieve best OET performance for 

micromanipulation. 

 

Shown in Figure 1(a) is a schematic of an OET device, compromising two plates. The top plate is an 

indium tin oxide (ITO)-coated glass slide; the bottom plate is also an ITO-coated glass slide, but 

deposited with an additional photoconductive layer of hydrogenated-amorphous-silicon (a-Si:H). The 

two plates were mounted together via a 150-μm-thick spacer to form a microchamber, in which the 

micromanipulation was performed. When a bias voltage is applied between the two plates and a light 

pattern is projected on the a-Si:H layer, a non-uniform electric field is generated in the liquid 

microchamber, which interacts with the micro-objects and produces DEP forces. If the micro-object is 

more polarizable than the surrounding medium [i.e. the real part of the Clausius-Mossotti (CM) factor is 

above 0], it will be attracted to the illuminated region due to positive DEP force; if the micro-object is 

less polarizable than the surrounding medium (i.e. the real part of the CM factor is below 0), it will be 

repelled from the illuminated region due to negative DEP force.36 In this work, 10 μm spherical 

polystyrene microbeads (Polysciences Inc., USA) were used, which were suspended in deionized water 

containing “Tween 20” (0.05% v/v) and pipetted into the microchamber of the OET device. The OET 

device was driven by an AC potential (10 Vpp 20 kHz square wave). On applying the AC voltage, the 

polystyrene beads were repelled by the illuminated region due to negative DEP force, allowing the use 

of hollow light patterns consisting of illuminated and dark regions to move and rotate the beads, as shown 

in Figure 1(b) and Supplementary Video 1 (clip 1). Besides, when a static light pattern is projected 



[Figure 1 (c)], the microbeads were repelled from the illuminated region and accumulated at the dark 

region, forming desired micropattern [Figure 1(d)] featuring the used light pattern. More details can be 

found in Supplementary Video 1 (clip 2). These results demonstrate the versatility of the OET technology 

for microparticle manipulation based on different light patterns, and also highlights the importance to 

investigate the influence of different light pattern parameters on electric field distribution and related 

microparticle’s moving behaviors in an OET system.  

 

Figure 2. (a)-(c) Microscope images of a 10 μm polystyrene microbead trapped by “doughnut”-shaped 

light patterns with the same inner diameter but different ring thickness (i.e. 5 μm, 20 μm and 110 μm), 

and moving at 180 μm/s, 430 μm/s and 320 μm/s, respectively. See Supplementary Video 2 for more 

details. Red arrow represents the moving direction. (d) Maximum velocity and maximum DEP force 

versus light pattern's ring thickness. Error bars represent standard deviation for five replicates. 

 

To investigate the influence of light pattern on microparticle’s moving behavior, a single 10-μm-diameter 

bead was trapped by “doughnut”-shaped light patterns with fixed inner diameter at 80 μm but different 

ring thickness, as shown in Figure 2(a)-(c) and Supplementary Video 2 (worth noting that “doughnut”-

shape is the most widely used light pattern shape for OET manipulation). In this case, the light pattern 

was kept stationary while the motorized stage was programmed to move linearly, and the maximum 

moving velocity of the bead was measured by gradually increasing the speed of the motorized stage until 

the bead fell out of the trap. Using this method, the maximum moving velocities of the bead manipulated 

by light patterns with different ring thickness were measured. As shown in Figure 2(d), the maximum 

moving velocity of the bead increases rapidly to a peak and then slightly decreases as the ring thickness 

increases from 2.5 μm to 135 μm. According to Stoke’s law, the DEP actuation force exerted on the bead 

is equal to the viscous drag force,7,17,24,37 i.e:  

𝐹𝐷𝐸𝑃 = 𝐹𝑑𝑟𝑎𝑔 = 6𝜋𝜂𝑟𝜈 (1.) 

where 𝜂 is the viscosity of the liquid, r is the radius of the bead and 𝜈 is velocity of the bead. Since 

gravity forced the bead to sit in proximity to the a-Si:H surface, Faxen’s correction needs to be applied 



to adjust the calculation of the viscous drag force and the DEP force.6,17,37 Therefore, the maximum DEP 

force exerted on a single bead can be calculated for the “doughnut”-shaped light pattern with different 

ring thickness, as shown in Figure 2(d). These experimental results demonstrate the influence of light 

pattern thickness on the moving behaviors of microparticles under OET manipulation.  

 

To clarify the physical mechanism for the observed experimental results, simulations were carried out in 

COMSOL Multiphysics based on a 2D simulation model. The model length (X axis) and height (Y axis) 

were set to 500 μm and 150 μm, respectively. The OET trap created by the “doughnut”-shaped light 

pattern is located at the bottom of the model, with its inner diameter set to 80 μm and thickness set to 

different values used in the experiment (using the parameter sweep function). Other simulation 

parameters (voltage, frequency, medium conductivity, etc.) were set according to the actual experimental 

parameters. To simulate the electric potential distribution, an AC/DC module of COMSOL Multiphysics 

was applied and specific boundary conditions were implemented for the simulation model. In this work, 

electric insulation was set for the sides of the model and the top side of the model was set as ground (0 

V), while the bottom side of the model was given an electric potential of 10 V. Different parts in the 

simulation model were defined as sub-domains and the interfaces between different sub-domains were 

set to continuity boundary condition. Then, the electric potential and electric field was computed by 

solving the continuity equations: 

∇ ∙ 𝐽 = 𝑄𝑗,𝑣 (2.) 

𝐽 = 𝜎𝐸 + 𝑗𝜔𝐷 + 𝐽𝑒 (3.) 

𝐸 = −∇𝑉 (4.)

where J is the current density, 𝑄𝑗,𝑣 is the volumetric source of current, 𝜎 is the electrical conductivity, 

E is the electric field, 𝜔  is the angular frequency, D is the electric displacement, 𝐽𝑒  is externally 

generated current density, V is the electrical potential.  

 

Figure 3. Plots for (a) simulated electric potential, and (b) simulated electric field for an OET trap formed 

by illuminating a light pattern on the photoconductive layer of an OET device. The simulated electric 

potential and electric field are plotted in heat maps (blue = low, red = high). The inset in (b) is a magnified 



view of the main-panel data in the dashed square. Simulated gradients of electric field square (c) along 

X axis (horizontal plane), and (d) Y axis (vertical plane) above the edge of light patterns with different 

thickness (2.5-85 μm). 

 

Shown in Figure 3(a) and (b) are the heat maps of the simulated electric potential and electric field 

distribution (i.e. cross-sectional view of an OET device). As shown, there is a big potential change at the 

edge of the light pattern resulting in a region of strong electric field with sharp field variation. This is 

caused by the difference in conductivity between the illuminated and dark a-Si:H surface. Since the bead 

reaches its maximum velocity at the edge of the light pattern, it is of great importance to investigate the 

DEP manipulation force exerted to the bead at the edge of the light pattern. Based on classic DEP theory 

for spherical microparticles,36 the DEP force is given by: 

𝐹𝐷𝐸𝑃 = 2𝜋𝑟3𝜀𝑚𝑅𝑒[𝐾(𝜔)]∇𝐸2 (5.) 

where r is the radius of the bead, 𝜀𝑚 is the permittivity of the medium, 𝑅𝑒[𝐾(𝜔)] is the real component 

of the CM factor, ∇𝐸2 is the gradient of the external electric field’s square. Therefore, the DEP force 

exerted to the microbead is proportional to the gradient of electric field square (i.e. 𝐹𝐷𝐸𝑃 ∝ ∇𝐸2). Based 

on the electric field distribution in Figure 3(b), the gradients of electric field square in X and Y directions 

(i.e. in horizontal and vertical planes) at the edge of the light pattern can be calculated for light patterns 

with different thickness, as shown in Figure 3(c) and (d), respectively. Based on the results in Figure 3(c), 

it can be inferred that the horizontal DEP force exerted to the bead increases as the light pattern thickness 

increases and the force saturates after the light pattern thickness reaches 20 μm. Besides, based on the 

results in Figure 3(d), it can be inferred that the vertical DEP force exerted to the bead increases as the 

light pattern increases and no sign of force saturation is observed. These simulation results provide 

important insights to the possible physical mechanism for the observed phenomenon on the moving 

behaviors of microbeads when they are manipulated by light patterns with different thickness. When the 

light pattern's thickness increases, the horizontal DEP force to balance the fluid viscous drag force also 

increases, therefore the maximum velocity of the bead increases along with the increase of the light 

pattern thickness. When the light pattern thickness increases to around 20 μm, the horizontal DEP force 

starts to saturate, resulting in the saturation of the bead's moving velocity. However, when the light 

pattern thickness increases to above 20 μm, the vertical DEP force continues to increases and the bead 

will experience stronger upward DEP force, which can lift the bead and make it escape with a hop. This 

interesting bead escaping behavior (i.e. the hopping behavior) has been investigated in our previous work 

and was shown mainly due to vertical DEP force.38 Therefore, for light patterns above 20 μm, the induced 

horizontal DEP forces are similar but the induced vertical DEP forces are stronger for light patterns with 

larger thickness. As a result, the bead is more likely to be lifted up when manipulated by light patterns 

with larger thickness and thus can escape the OET trap at a slightly lower velocity. This explains why 

the moving velocity of bead increases to a peak and then start to decreases as the light pattern thickness 

increases (Figure 2).  

 



 

Figure 4. (a)-(c) Microscope images of a 10 μm polystyrene microbead trapped by rectangular-shaped 

light patterns with same length but different thickness (i.e. 5 μm, 25 μm and 110 μm), and moving at 35 

μm/s, 125 μm/s and 90 μm/s, respectively. Red arrow represents the moving direction. (d) Maximum 

velocity and maximum DEP force versus light pattern's thickness. Error bars represent standard deviation 

for five replicates. 

 

To test the universality of the physical mechanism, rectangular-shaped light patterns with fixed length at 

270 μm but different thickness were used to manipulate a microbead, as shown in Figure 4(a)-(c) (worth 

noting that rectangular-shaped light patterns are widely used for cell/microparticle sorting in OET-

integrated microfluidic devices17,39-43). The maximum velocity and maximum DEP force of the bead were 

measured/calculated accordingly, as shown in Figure 4(d). For a single microbead manipulated by 

rectangular-shaped light patterns with different thickness, its maximum velocity and maximum DEP 

force increase rapidly to a peak and then slightly decrease as the light pattern thickness increases from 

2.5 μm to 135 μm. These results are similar to those observed experimentally for “doughnut”-shaped 

light patterns, suggesting the underlying physical mechanism a universal one that applies for light 

patterns with different shapes.  

 

 

 

 



 

Figure 5. (a) SEM image of a micro-gear. (b)-(d) Microscope images of a micro-gear trapped by 

“doughnut”-shaped light patterns with same inner diameter but different ring thickness (i.e. 10 μm, 40 

μm and 110 μm), and moving at 300 μm/s, 410 μm/s and 350 μm/s, respectively. Red arrow represents 

the moving direction. See Supplementary Video 3 (clip 1-3) for more details. (e) Maximum velocity of 

the micromotor versus light pattern’s thickness. Error bars represent standard deviation for five replicates. 

(f)-(h) Microscope images showing the escape of a micro-gear from an OET trap with flipping behavior. 

See Supplementary Video 3 (clip 4) for more details. 

 

Apart from microparticles, more experiments were carried out on other micro-objects, such as gear-

shaped micromotors, as shown in Figure 5(a). The micromotor is made of SU8 materials and fabricated 

using standard photolithography technique.9 It has a size of 200 μm and a height of 60 μm, much larger 

than the used 10 μm polystyrene microbead. The micromotor can be made to move at different velocities 

by “doughnut”-shaped light patterns with same inner diameter but different ring thickness, as shown in 

Figure 5(b)-(d) and Supplementary Video 3 (clip 1-3). The maximum velocity of the micromotor was 

measured for light patterns with different ring thickness, as shown in Figure 5(e). A similar trend was 

observed as for the cases with the microbeads, in which the maximum velocity increases to a peak and 

then slightly decreases as the light pattern thickness increases. These results demonstrate the universality 

of the physical mechanisms governing the moving behaviors of micro-objects regardless of the size, 

structure and material of the micro-objects when they are manipulated by OET with light patterns of 

different thickness. Shown in Figure 5(f)-(h) are microscope images of a micromotor escaping from a 

“doughnut”-shaped light pattern (from Supplementary Video 3 clip 4). Due to the vertical DEP force, 

the micromotor is lifted up and flip, and then escape the OET trap. These results help visualize the 

escaping behaviors of micro-objects in an OET system upon reaching its maximum moving velocity and 

also highlight the influence of vertical DEP force and related lifting effect on the micro-objects under 

OET manipulation.  

 



In conclusion, we studied the influence of different light pattern thickness on the moving behaviors of 

microparticles and micromotors manipulated by OET. The experiments were supported by numerical 

simulations. It was found that the light pattern thickness can influence both the horizontal and vertical 

DEP forces significantly, leading to a first increase and then a decrease of the moving velocity of the 

micro-objects as the light pattern thickness increases. This work provides important information of 

optimizing light pattern parameters to achieve better OET performance for micromanipulation 

applications. In particular, users should consider both the horizontal and vertical DEP forces when 

selecting appropriate light pattern parameters to increase the moving velocities of micro-objects and exert 

stronger manipulation forces, which is important for improving OET performance for many applications. 

 

Supporting Information 

Descriptions of experimental setup, OET device structure and sample preparation are provided in the 

Supporting Information file. 
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