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Abstract: This article describes the radiation facilities and associated sample preparation, manage-
ment, and analysis equipment currently in place at the Dalton Cumbrian Facility, a facility which
opened in 2011 to support the UK’s nuclear industry. Examples of measurements performed using
these facilities are presented to illustrate their versatility and the breadth of research they make
possible. Results are presented from research which furthers our understanding of radiation damage
to polymeric materials, radiolytic yield of gaseous products in situations relevant to nuclear materials,
radiation chemistry in light water reactor cooling systems, material chemistry relevant to immobiliza-
tion of nuclear waste, and radiation-induced corrosion of fuel cladding elements. Applications of
radiation chemistry relevant to health care are also described. Research concerning the mechanisms
of radioprotection by dietary carotenoids is reported. An ongoing open-labware project to develop
a suite of modular sample handling components suited to radiation research is described, as is the
development of a new neutron source able to provide directional beams of neutrons.

Keywords: radiolysis; nuclear science; radiotherapy; ionizing radiation; radiation chemistry in
nuclear technology; sources of ionizing radiation

1. Introduction

At present, interest in radiation science is mainly driven by the needs of the nuclear
industry to understand the processes occurring inside reactors and packaged nuclear
materials. Even before the birth of the nuclear industry, the effects of radiation have been
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studied for applications to medicine and chemistry. The race for atomic weapons in the
1940s led to a period of rapid expansion of radiation research, which continued through
the next few decades as uses for radiation were found for material processing. During
World War II, particle accelerators were extensively used as sources of radiation and the
introduction of nuclear reactors provided more complex radiation fields. The intense,
multi-mode irradiation found in the nuclear industry merited intense study, not only to
understand how nuclear systems change with time and use, but to better understand how
radiation can be used in health applications, materials science, and chemistry.

British scientists were at the forefront of the development of nuclear energy, with
the world’s first commercial-scale nuclear power reactor starting up in the UK in 1956 [1].
A rapid period of publicly funded growth of nuclear energy followed, with the country
establishing the facilities and skilled people to operate a closed fuel cycle, one of only a
very small number of countries to do so. Through the 1980s and 1990s, there was a marked
change in the political approach to nuclear energy, with decisions to privatize much of the
industry and withdraw public sector support for the construction and operation of new
nuclear power stations [2]. A consequence of this approach was a reduction in investment
in nuclear research and development, and a corresponding gradual erosion of essential
skills [3]. One area to suffer greatly from this loss of expertise in the UK was radiation
science; a detailed understanding of the interactions between radiation and matter is crucial
to all aspects of the nuclear fuel cycle.

In 2005, the Nuclear Decommissioning Authority (NDA) was created by the UK
government to take over ownership of the nation’s legacy nuclear plant and facilities [4].
The newly formed NDA recognized the need to invest in the development of skills required
to deliver a program of work that would last for more than a century. The NDA also
recognized that radiation science was an area lacking in the depth and resilience of both
expertise and facilities that would be required.

To address the above concern, the NDA began looking for a partnership with research-
focused universities, which led to a formal collaboration agreement with The University
of Manchester, signed in 2006. This agreement committed the parties to invest and work
together to strengthen high-level skills in the area of radiation science. A new research
center for radiation science for the university was created, a center that would allow
academia and industry access to the facilities and expertise to create new knowledge in
radiation science. This facility, the Dalton Cumbrian Facility (DCF), opened its doors in
2011 and quickly established itself as being of strategic national importance in addressing
nuclear legacy challenges, as well as developing and validating materials for future reactor
technologies [5]. The facility now has a well-established user community of over 70 uni-
versities and companies, carrying out research in sectors as diverse as nuclear energy and
healthcare [6]. In the early days of DCF, the resident researchers were pioneers helping to
establish a brand-new capability for the nation and many of those researchers have contin-
ued to pursue a career in the nuclear industry or in radiation science. The capabilities and
expertise at DCF continue to grow. The following sections describe established capabilities
and some examples of their applications in both the nuclear industry and healthcare before
emerging capacities are presented.

2. Review of Established Capabilities

The expertise and capability at DCF are constantly expanding. In the last ten years,
the original capability provided by a single particle accelerator has been complemented
by the addition of a second accelerator and each of the beamlines has been developed for
specific applications. The irradiation capability using photons has also improved; the 60Co
gamma irradiator is now complemented by a cabinet X-ray irradiator to provide a wider
variety of photon energies and dose rates. The suite of stand-alone analytical capability
has also grown.
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2.1. Gamma and X-ray Irradiators

The DCF 60Co gamma irradiator is a self-contained Foss Therapy Services Model 812
with a 9 L sample chamber, shown in Figure 1a, and has previously been described else-
where [7]. All three source rods are currently loaded, and the activity is evenly distributed
along the length of the source rod. There are five attenuator shields, each providing a
dose reduction factor of two such that maximum attenuation provides ×32 reduction. The
dose to samples can be further reduced by using only a single source channel. Due to
the inevitable decay of the 60Co over time, the dose rate of this source changes, being at
a maximum of 500 Gy/min just after a reload. In September 2021, the possible range of
absorbed dose rates was from ~0.1 Gy/min to ~270 Gy/min depending on the location in
the chamber and attenuation. Two shielded service ports are available which enable cabling
or tubing for in situ electronics measurements and/or sample monitoring. A turntable can
be centered at 10 or 15 cm from the sources with central dose rates of ~77 and ~45 Gy/min,
respectively (September 2021). Irradiations can be carried out at cold temperatures in
dry ice or liquid nitrogen using a sample Dewar so that short-lived radical species can
be trapped, allowing their migration and decay to be monitored as the temperature is
gradually increased.
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Figure 1. Irradiation chambers of equipment that supply ionizing photons. (a) The irradiation
chamber of the 60Co gamma irradiator, measuring 20 cm wide by 25 cm deep by 27 cm high. The
guide rods for the sources can be seen at the back of the chamber. One 19 mm rod is visible in the
top of the chamber and another one is visible near the top of the left wall. (b) The X-ray irradiator
sample chamber, measuring 41 cm wide by 88 cm deep and 58 cm high. The X-rays are applied from
above so that the radiation spreads out into a cone travelling downwards. One sample port is located
on the back wall in the bottom right of the image.

A recent addition to the irradiation capability at DCF is a model MR350 cabinet X-ray
irradiator (manufactured by precision X-ray irradiation) which is complimentary to the
60Co gamma irradiator: an electron beam is accelerated onto a tungsten plate to produce
X-rays, mostly through Bremsstrahlung. As a result, a broad X-ray spectrum is produced
rather than the narrow high-energy spectrum produced by the gamma irradiator. The
X-ray irradiator provides a lower dose rate and sample penetration than the 60Co gamma
irradiator while also providing greater flexibility of irradiation conditions as well as a much
bigger sample chamber, shown in Figure 1b. The acceleration can be changed from 30 to
350 kV with the peak in the X-ray spectrum at roughly a third of this energy. The current it
can produce ranges from 0.1 to 30 mA, although the total power of the electron beam can
never exceed 4 kW. The sample position can be changed along with the electron current to
produce dose rates from 140 Gy/min downwards. Automatic dose rate sensing, a range of
apertures, and a turntable to improve dose homogeneity are available. Insertion chambers



Appl. Sci. 2021, 11, 11081 4 of 26

can be used to change the gas atmosphere (e.g., CO2 or hypoxic) whilst access ports allow
for connection to external instruments.

2.2. Accelerator Systems

The DCF ion beam accelerator facility comprises a pair of electrostatic Pelletron accel-
erators manufactured by the National Electrostatics Corporation (NEC), a 5 MV tandem
15SDH-4 and a 2.5 MV single-ended 7.5SH-2 accelerator with a suite of six dedicated
end-stations contained in two independently shielded and interlocked target rooms. The
beam lines from the 2.5 MV accelerator meet two of the beam lines from the 5 MV tandem
to provide common locations to allow beams from both accelerators to be combined in
future dual-beam experiments. To avoid confusion, the text uses beam-line numbers from
the 5 MV tandem to refer to the end stations, which each have unique capability.

The 5 MV tandem has a choice of two ion sources at its low energy end: a toroidal
volume ion source (TORVIS [8]) capable of generating up to 100 µA of proton current, or
1 µA of He ion (alpha) current; a second, multi-cathode source of negative ions by cesium
sputtering (MC-SNICS) for the production of heavy ion beams [9]. The MC-SNICS source
uses a custom cathode wheel from NEC with 20 cathode positions, each taking a 6 mm
diameter cathode. This large cathode diameter gives high volumes of cathode material
with long lifetimes—over 50 h of continuous beam production at constant current is typical.
Having many cathodes installed on the wheel at the same time means that switching to
a fresh cathode is very quick, and a selection of different ion species can also be readily
available. Due to the tandem design of the 5 MV accelerator, it can deliver protons beams
of up to 10 MeV, alpha beams of up to 15 MeV, and heavy ions to a maximum of 35 MeV
in energy.

The 2.5 MV single-ended accelerator is equipped with a positive RF plasma ion source
within its terminal shell. This is primarily a source of high-current proton or He ion (100 µA
each) beams, although other noble gas ion beams have been routinely produced; krypton
and xenon ion beams have proved popular for simulating radiation damage within nuclear
fuels or fuel surrogates as these ions are common fission products produced during nuclear
fuel burn-up.

At the high energy end of each accelerator is a dipole switching magnet which can
direct the accelerated ion beam into the desired beamline. Whilst each accelerator can only
supply an ion beam to a single beamline at a time, having a choice of beamlines allows for a
variety of dedicated end-stations to be permanently provided. The layout of the accelerator
complex and relation of the various beamlines are depicted in Figure 2.

Line 1: To cater for the very high levels of prompt radiation (gamma and neutron)
generated by high current, high energy proton irradiations (up to 100 µA at 10 MeV),
this beam line is designated for high damage studies using high energy proton beams
and so is equipped with an irradiation end-station inside its own hotcell. The hotcell is a
radiation enclosure that complements the concrete shielding of the target room, funded as
an EPSRC (Engineering and Physical Sciences Research Council) National Nuclear User
Facility (NNUF). A second, attached, shielded enclosure allows for irradiated samples to be
demounted remotely. Such samples, following prolonged high-dose, high-energy proton
irradiation can be activated to a level that requires either local, shielded storage—provided
for in the hotcell—or to be safely loaded into a shielded ‘croft’ pot for transport to an active
handling lab for subsequent analysis.

Line 2: The only beam line not to have its own dedicated end station. This allows
for users with their own experimental vessels to interface them to the DCF ion beam
accelerators. The fitting of fast reaction (35 ms response) valves in this beam line allow for
more direct coupling to liquid or gas filled enclosures, such as those proposed for in situ
corrosion studies, or simulation of radiation chemistry in deep-space ice cores.

Line 3: In counterpoint to the high-dose studies undertaken on Line 1, this line caters
for a low dose rate (few nA), although at high-energy irradiations for radiation chemistry
studies. This is fitted with a LaVerne-type collimator and exit window to allow for ex-
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vacuum irradiations to take place on liquid or biological samples. The flexible nature of
this end station has already been discussed previously [7].
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Figure 2. Schematic overview (center) of DCF ion beam accelerators and current suite of experimental end-stations. Line 1
is a radiation hotcell for high-dose proton beam irradiations, with one chamber to house the materials damage vacuum
chamber and a second adjacent cell for sample mounting, handling, and storage; Line 2 is for use with separate autoclaves,
or to accommodate a user supplied end-station; Line 3 provides ion beam delivery for radiation chemistry experiments,
flexibly mounted on an ex-vacuum optical table; Lines 5 and B are for in-vacuum radiation damage experiments using
either heavy ions from the 5 MV tandem or light ions from the 2.5 MV accelerator, respectively; Line 7 is the dedicated ion
beam analysis end-station.

Line 5: At present, this has an end station for radiation damage that accepts ion beams
from the 5 MV tandem only. This will be replaced in 2022 with a new end-station, currently
under development, which will accept simultaneous beams from both the 5 MV tandem
and the 2.5 MV single Pelletrons. The dual beam capability will allow for hydrogen or
helium loading of a sample to take place from the 2.5 MV whilst at the same time the
sample is undergoing heavy ion radiation damage delivered from the 5 MV accelerator.
Such studies are of great interest in understanding the behavior of structural materials in
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nuclear plant and in nuclear fuel. The mechanics of the damage process can influence the
hydrogen or helium distribution in high proton or alpha flux environments. In structural
materials, the main concern is helium embrittlement [10,11], whereas in nuclear fuel, both
chemical damage and swelling are of interest [10,12]. The new vessel is designed to take
our current range of radiation damage stages [13] but can also be easily adapted to accept
custom in-vacuum stages proved by our various user groups.

Line 6: Line 6 does not currently have an end station installed as the end position is
used by a radiation damage-end station that takes ion beams from Line B on the 2.5 MV
single-ended accelerator (see Figure 2). Similar to Line 5, this will be upgraded in 2022
to have a dual beam capability with beams from both accelerators delivered to samples
simultaneously. This end-station will, however, also include two major analytic tools. The
irradiation part of the chamber will also feature a compact SIMS (secondary ion mass
spectrometry) head from Hiden-Analytic. This is equipped with a 5 keV ion etch gas gun
and a 0–300 amu quadrupole mass analyzer. It is not envisaged that SIMS measurements
will be taken during ion beam irradiation; rather, this will be paused to allow the SIMS head
to collect a depth profile from a 40 µm diameter spot. If repeated depth profiling during a
long irradiation is desired, it will be a simple matter to pause the irradiation and collect
a SIMS measurement from a fresh location on the sample. Additional to the irradiation
chamber will be a second chamber containing a SPEC Phobios 150 hemispherical analyzer
for high-energy reflection electron energy loss spectroscopy (HR-EELS). The electron
source for this is a Staib EF-1201 nano-focus electron gun capable of providing 12 keV
electrons with a 150 nm focus. This combination offers the prospect of spatial imaging with
EELS spectra covering K-edge core hole spectra for elements up to and including the 3-d
transition metals, and L-edge spectra for higher-z elements. Using this set-up, spatially
resolved changes in the chemical structure at material surfaces as a result of ion beam
radiation-induced damage will be possible. The two analysis chambers can be accessed
by the sample under investigation, which will be mounted on a sample stage on a single
linear transfer arm. Following the commissioning of these two new end-chambers, their
performance will be detailed in a further publication of their own.

Line 7: This is home to an NEC RC43 ion beam analysis end station and is capable of
a variety of ion beam analysis (IBA) techniques, including PIXE (particle-induced X-ray
emission), RBS (Rutherford backscattering spectroscopy), ERD (elastic recoil detection)
and NRA (nuclear reaction analysis). Using ions from the tandem accelerator allows for
both protons and alpha particles to be used as the probe ion, whilst the wide energy range
available provides scope to tune the probe ion energy to specific resonances to enhance the
IBA signal.

The DCF’s ion accelerator capabilities have so far enabled a wide variety of studies
that aim to understand the radiation-induced property changes in materials of interest for
fission and fusion plants. Proton beams are commonly used as a surrogate for neutron
damage in reactor core materials with the advantage of providing higher damage rates
when compared to neutrons, allowing for relatively high damage levels in short periods
of time. Heavy ions are of particular interest in radiation damage studies as although
their range in a material is limited, they create large amounts of damage in their short
path. Some of these studies include candidate materials for plasma-facing walls and
structural materials in fusion reactors [14–17], structural components for fuel assemblies
inside nuclear cores [18,19], as well as investigation of potential new materials for use in
such extreme environments [20,21].

2.3. Recirculation Loop

Water radiolysis and corrosion under extreme conditions of high temperature and
high pressure (HTHP) can be investigated using a water recirculation loop, shown in
Figure 3a, which was purpose-built by Cormet™ Oy (Vantaa, Finland). Researchers at DCF
commissioned the recirculation loop with four irradiation autoclaves; two are designed
for gamma irradiation while the other two are dedicated for ion beam irradiations. The
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recirculation loop is a mobile station, which can be easily moved between the 60Co irradiator
room and ion beam target rooms.
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Figure 3b shows a schematic diagram of the recirculation loop. The flow system
incorporates a 10 L feed tank. Dissolved oxygen or hydrogen concentration can be mea-
sured in the range of 0–1000 ppb using Hach™ Orbisphere sensors. Water conductivity is
measured using two conductivity amplifiers from ABB™, accurate up to 10 µS/cm. All
four autoclaves incorporate temperature monitoring and control and are able to withstand
temperatures up to 350 ◦C and 220 bar of pressure.
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Advanced control of the fluid flow enables different modes of operation. The simplest
case is system conditioning. In this mode, an aqueous solution is continuously sparged with
the gas of choice, e.g., high-purity argon, nitrous oxide, etc.; and the liquid simply circulates
in a closed loop until equilibrium conditions are reached. Alternatively, irradiated liquid
can be collected for analysis using the once-through operation mode. For corrosion tests,
water flow can be directed through a mixed bed ion exchange column in order to generate
highly deionized water. If radiolytic gas formation is to be evaluated, irradiated aqueous
solution can be first accumulated in a gas stripping device and then purged with suitable
high purity carrier gas, e.g., argon, to allow for dissolved gas extraction and subsequent
mass-spectrometric analysis of extracted gases.

The wetted parts of each autoclave and all components in the high-temperature
part of the recirculation loop are made of Hastelloy C-267 alloy. This alloy is known for
its resistance to oxidation and stress corrosion cracking (SCC), and excellent chemical
durability at high temperatures. The autoclave shown in Figure 4a has a capacity of 50 mL
and has been designed for gamma radiolysis experiments. It features two temperature
sensors (K-type thermocouples) and inlet and outlet water lines. The pressure sensor
and the safety valve are located outside of the 60Co irradiation chamber. A heater band
surrounds the autoclave body and a K-type thermocouple on the heating element monitors
the temperature. Hot parts of the autoclave are made of corrosion-resistant Hastelloy C-276.
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The autoclave design for ion beam irradiations is shown in Figure 4b. This cell has
capacity of only 6 mL. The autoclave has been designed to allow the passage of a proton
beam through a thin window (a few tens of microns thick) that separates the beamline and
the aqueous solution at HTHP inside the autoclave. The window is a metallic foil made of
either C-276 (for radiolysis experiments) or a material under study (for corrosion testing).

2.4. Stand-Alone Analytical Equipment

In addition to the irradiation capability and in situ analytical capability, DCF houses
a suite of ex situ analytical equipment. Gas chromatography is used extensively for
quantifying gaseous products of radiolysis. Two gas chromatographs from SRI instruments
and an Agilent 7890B are set up for different applications. One SRI gas analyzer utilizes
the crush tube method [22], and the other is set up for manual injection of samples taken
from off-the-shelf Swagelok components [23]. The Agilent 7890B is fitted with a PAL3
autosampler allowing rapid analysis of headspace from crimp-cap vials.

Where radiolysis in confined media is of interest, porous media can be characterized
using a combination of techniques. A Micromeritics Autopore V can be used for mercury
intrusion porosimetry while a Micromeritics TriStar II 3020 can be set up with one of several
gases for the analysis of pores down to 2 nm. Complementary analysis can be achieved
using a Micrometrics AcuPyc II 1340 H2 pycnometer. Gas chromatography has been used
in conjunction with nitrogen adsorption to investigate radiolytic hydrogen production
from other heterogeneous porous media [24]. Pore structures can be further characterized
using scanning electron microscopy (Quanta 250 FEG SEM) which is fitted with an energy
dispersive X-ray (EDX) spectroscope to aid in determining local chemical differences in
a material. EDX has been used to successfully identify the morphology of calcite which
formed in cementitious media after irradiation [25]. Further structural characterization
is provided by an Empyreon X-ray diffractometer (Malvern Panalytical) and, along with
nitrogen adsorption and EDX, has been used to determine microstructural changes in
concrete [26].

Further spectroscopic techniques are available to determine radiologically produced
chemical changes. Using a Ram II FT coupled to Vertex series FTIR (Bruker), a combi-
nation of Raman and Fourier-transform Infra-red (FT-IR) spectroscopy has been used to
detect cross-linking and chain scission in a variety of epoxy resins [27] and to establish
a link between radiation chemistry and mechanical properties of a variety of 3D printed
plastics [28]. Light spectroscopy (Agilent Technologies Cary Series UV-VIS-nIR) has been
used for the quantitative measurement of NO2

− and HNO2 via the Shinn method, which
may commonly be found as a result of radiolysis of nitric acid used in the extraction
of useful fission products from used nuclear fuel [29]. Electron paramagnetic resonance
(EPR) is available (Bruker EMX nano) to determine radical formation and has been used
in conjunction with UV-VIS-nIR spectroscopy to elucidate the mechanisms that lead to
unusual radiation-induced color change in glass [30].

3. Exemplar Results

The equipment available at DCF has been used in an impressive array of experiments
since it opened its doors in 2011. A large body of work is of direct relevance to the nuclear
industry, including studies on chemical systems, electronics, and polymers [7]. The scope
of work has evolved with time; applications of radiation research to healthcare are a
burgeoning area of expertise. In this section, a variety of results that capture the breadth
and depth of research are organized by their main area of application.

3.1. Sensing of Gases Produced by Radiolysis

One major area of interest for the nuclear industry is the production of hydrogen from
radiolysis of water that is in the presence of metal oxides. Such systems are important in
both plutonium stewardship and decommissioning of Magnox waste ponds.
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The sludge in Sellafield’s Magnox waste ponds contain Brucite (Mg(OH)2) which is
subject to radiation emanating from the radioactive species present in the waste. Proper
understanding of both the production of hydrogen and the rheological properties of these
sludges is important for the storage, transport, and processing of this legacy waste.

Understanding the role of water-oxide interfaces in radiolytic hydrogen produc-
tion and the evolution if gases in contact with the oxide also underpins safe plutonium
stewardship—the UK’s stockpile of plutonium dioxide is currently stored in sealed cans.
Since work on plutonium would require specialist active handling facilities, surrogates can
be used at DCF, which will add insight into the wider field of radiolysis in the presence of
an oxide surface.

Recent developments in hydrogen probe technology [31] have provided new means
to detect hydrogen. However, since these probes are highly sensitive to radiation, it is
necessary to ensure they are not subject to the direct radiation field [32]. These probes have
been used as an economic, parallelizable, and compact alternative to gas chromatographs
in a range of experiments. Further work involves the calibration of the gas probes to also
quantify amounts of oxygen. Examples of the kinds of measurements being undertaken
in a series of ongoing research programs concerning the role of the role of water-oxide
interfaces in radiolytic hydrogen production are shown in Figure 5.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 28 
 

chromatographs in a range of experiments. Further work involves the calibration of the 
gas probes to also quantify amounts of oxygen. Examples of the kinds of measurements 
being undertaken in a series of ongoing research programs concerning the role of the role 
of water-oxide interfaces in radiolytic hydrogen production are shown in Figure 5. 

  
(a) (b) 

Figure 5. Results of radiolytic gas analysis experiments carried out on the particle accelerator using 
Unisense hydrogen probes to collect data. (a) The response of the hydrogen probe in mV during 
irradiations. Periods of irradiation are marked on the plot in red. (b) A linear trend is seen from 
experiments with fresh solutions of either magnesium hydroxide or potassium bromide. 

Electrochemical hydrogen gas probes have been used to measure the production of 
hydrogen from a magnesium hydroxide/water mixture by proton irradiation (mimicking 
the alpha irradiation field produced by decay of uranium). For this experiment, the 
sample mixture was sealed in a metal sample chamber with a 5 µm aluminum window 
and a Unisense hydrogen probe [31] was attached via a Swagelok fitting. The sample 
chamber was placed so that the radiation beam passes directly through the foil window. 
The samples were irradiated with 5 MeV protons with a 1.3 nA current. This irradiation 
was performed with the chamber full of a mixture (11 ± 5) % (w/w) of magnesium 
hydroxide and water. A separate experiment was performed on a 0.1 mM potassium 
bromide solution. 

The response of the hydrogen probe to four sequential ion irradiations of the sample 
is plotted in Figure 5a. The hydrogen probe response is clearly delayed after the start of 
irradiation indicating that the hydrogen takes time to diffuse out of the sample into the 
headspace of the chamber i.e., to reach equilibrium between the liquid and the gas. 
Although each irradiation is essentially identical, there is a clear decline in the hydrogen 
production rate, indicating radiation-induced hydrogen consumption. This experiment 
shows the hydrogen probe’s potential for real-time hydrogen monitoring and 
measurement of hydrogen yields from ion irradiations. Figure 5b shows results from both 
the magnesium hydroxide and potassium bromide solutions. The increase in the 
hydrogen probe signal per unit energy deposited in for the magnesium hydroxide sample 
was 5.69 ± 0.03 times the increase when the bromide solution was irradiated. 

Gas probes, off-line gas chromatography, and Orbisphere sensors are routinely used 
at DCF to determine radiation-induced changes in gas composition. Examples of 
radiolytic consumption of H2 and O2 are provided in Figure 6 for several metal oxides 
exposed to gamma radiation. 

Off-the-shelf metallic components were used to build the sample assembly, which 
included a 10.5 cm3 sample vessel and a single inlet/outlet fitted with a bellows sealed 
valve [23]. Figure 6a,b shows the results of the gamma irradiation of a 5:5:90 H2−O2−Ar 
mix at 1 bar without any metal oxide present and in the presence of either ceria or zirconia 

Figure 5. Results of radiolytic gas analysis experiments carried out on the particle accelerator using
Unisense hydrogen probes to collect data. (a) The response of the hydrogen probe in mV during
irradiations. Periods of irradiation are marked on the plot in red. (b) A linear trend is seen from
experiments with fresh solutions of either magnesium hydroxide or potassium bromide.

Electrochemical hydrogen gas probes have been used to measure the production of
hydrogen from a magnesium hydroxide/water mixture by proton irradiation (mimicking
the alpha irradiation field produced by decay of uranium). For this experiment, the sample
mixture was sealed in a metal sample chamber with a 5 µm aluminum window and a
Unisense hydrogen probe [31] was attached via a Swagelok fitting. The sample chamber
was placed so that the radiation beam passes directly through the foil window. The samples
were irradiated with 5 MeV protons with a 1.3 nA current. This irradiation was performed
with the chamber full of a mixture (11 ± 5) % (w/w) of magnesium hydroxide and water.
A separate experiment was performed on a 0.1 mM potassium bromide solution.

The response of the hydrogen probe to four sequential ion irradiations of the sample
is plotted in Figure 5a. The hydrogen probe response is clearly delayed after the start
of irradiation indicating that the hydrogen takes time to diffuse out of the sample into
the headspace of the chamber i.e., to reach equilibrium between the liquid and the gas.
Although each irradiation is essentially identical, there is a clear decline in the hydrogen
production rate, indicating radiation-induced hydrogen consumption. This experiment
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shows the hydrogen probe’s potential for real-time hydrogen monitoring and measurement
of hydrogen yields from ion irradiations. Figure 5b shows results from both the magnesium
hydroxide and potassium bromide solutions. The increase in the hydrogen probe signal
per unit energy deposited in for the magnesium hydroxide sample was 5.69 ± 0.03 times
the increase when the bromide solution was irradiated.

Gas probes, off-line gas chromatography, and Orbisphere sensors are routinely used
at DCF to determine radiation-induced changes in gas composition. Examples of radiolytic
consumption of H2 and O2 are provided in Figure 6 for several metal oxides exposed to
gamma radiation.

Off-the-shelf metallic components were used to build the sample assembly, which
included a 10.5 cm3 sample vessel and a single inlet/outlet fitted with a bellows sealed
valve [23]. Figure 6a,b shows the results of the gamma irradiation of a 5:5:90 H2-O2-Ar mix
at 1 bar without any metal oxide present and in the presence of either ceria or zirconia and
supports the results of studies of PuO2 [33,34]: under irradiation, H2 combines with O2,
and this depletion happens more readily in the presence of a metal oxide [23]. Measure-
ment of the H2 concentration post-irradiation was conducted using an SRI gas analyzer
fitted with a 1 mL sample loop, X13 molecular sieve column, and thermal conductivity
detector. The sample vessel was connected directly to the sample loop, which is fitted with
a pressure transducer so that the amount of gas in the sample vessel is known after irradi-
ation. Figure 6a,b indicates that a steady state between the radiolysis of water adsorbed
onto the surface of the metal oxide and the recombination of H2 and O2 is not reached.
Analysis of a 1:1:98 H2-O2-Ar mix gamma irradiated over thoria using the same off-line gas
chromatography set-up is shown in Figure 6c,d [35]. In these experiments, O2 depletion as
well as H2 depletion was determined. A fuller explanation of the effects observed in the
thorium oxide system will be published elsewhere.
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presence of CeO2 and ZrO2 [23]. (c,d) are from a 1:1:98 H2-O2-Ar atmosphere irradiated over 8 g of
thoria and show the change in H2 and O2, respectively [35].
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These experiments show that there are rich dynamics waiting to be explored, which
involves radiolytic production, depletion, and radiation aging of samples. What is needed
is a systematic approach to studying these phenomena whereby a longitudinal study could
be made in order to investigate radiolytic processes in both liquid and headspace as well as
the effects of solid-phase radiation damage on sample aging. Use of the gas probes to take
measurement in situ is the first step towards uncovering these rich dynamics. Adaptation
of the gas probe system for flexible and efficient gamma irradiation studies is underway
(see Section 4.1).

3.2. Materials Chemistry for Nuclear Waste Immobilisation

High-level waste (HLW) generated by the nuclear industry is incorporated into a
glass and the effect of radiation on this glass must be understood for the industry to have
confidence in this waste immobilization method. Glass samples of relevance to the nuclear
industry were produced at Sheffield Hallam University and the compositions are provided
in Table 1. MWsection and Ca/Zn are similar to the base glasses used in the UK [36] while
ISG refers to the International Simple Glass [37]. Vitreous silica samples were purchased
from Galvoptics Ltd. To prepare all four glasses for ion irradiations, one 25 by 25 mm
face was hand polished using diamond lapping films to produce surfaces with <100 nm
roughness. Four samples were loaded into a custom build sample holder for 14 MeV Ni
ion beam irradiation (fluence of 4.56 × 1014 ions/cm2). The holder masked part of each
sample from the ion beam so only a 5 mm by 5 mm area of each sample was irradiated.

Table 1. Three glass compositions, in wt%, of relevance to the nuclear industry were exposed to a
14 MeV ion beam. Vitreous silica was also used. The penetration depth of the ion beam, as calculated
by SRIM-2013 [38], and used in the step height calculations, is also provided.

Component MW Ca/Zn ISG

SiO2 61.75 56.10 56.18
B2O3 21.88 21.51 17.34
Na2O 11.05 11.48 12.17
Li2O 5.33 2.92 -
ZnO - 6.03 -
CaO - 1.94 4.98
ZrO2 - - 3.27

Penetration Depth (µm) 5.68 6.40 6.75

Profilometry (Bruker Contour Elite K with Multimode 8 AFM System at the University
of Sheffield) provided optically gathered 3D surface maps of the border between the
irradiated and unirradiated sample areas. Step heights were calculated as a percentage of
the penetration depth of the incoming ion beam, as reported by SRIM-2013 [38] (Table 1),
using the mean step height from seven measurements at different points along the border.

Figure 7 shows that vitreous silica compacted under ion beam irradiation, whereas
all other glasses expanded. The change in volume of the silica corresponds to values
recorded in other literature [39–41]. For both the MW and Ca/Zn glass, a fourfold increase
in ion beam flux leads to a twofold increase in the degree of swelling. A much smaller
volume change was observed in ISG such that the effect of altering the flux is not clear. The
structure of these glasses comprises a network of tetrahedral units (SiO4, AlO4, BO4) and
trigonal (BO3) units. Network modifiers (Na, Li, Ca, and Zn) exist in the glass as somewhat
free-floating ions that charge compensate non-bridging O atoms, and in the case of ISG,
also charge compensate for Al in the glass network. The different responses suggest that
glass chemistry plays a part in their radiation response. The expansion of the UK base
glasses suggests that the network is depolymerizing and so producing more dangling
bonds, which may be influenced by the reorganization of the mobile network modifiers in
response to the ion beam. The trend with flux suggests that the chemical changes that lead
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to the volume change are dose rate dependent. Further work will probe these chemical
changes using, for example, Raman and NMR spectroscopies.
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Work is also underway at DCF, focusing on understanding the interplay between
radiation and the crystalline phases that are present in waste form [36]. Complementary
work will probe how radiation affects leaching in anoxic groundwater, in a disposal scenario
where the canister housing the glass has begun to corrode. Similar work has previously
been carried out under oxic conditions [42]. Such studies will provide confidence in
understanding how the waste form will evolve over the long timescales (hundreds of
thousands of years) relevant to geological disposal of radioactive waste.

3.3. Applications of Radiation Science to Healthcare

Radiation chemistry in aqueous systems is an ongoing area of research at DCF which
has applications beyond the nuclear industry; healthcare is one example of this wider
application. The redox conditions generated during radiation therapy can damage human
cells, so investigation is required to understand how healthy cells can be protected. Radi-
ation chemistry also offers a novel approach to studying in vivo processes: many of the
free radicals that can be generated radiolytically are also present in vivo during normal
metabolic processes and are over-produced during oxidative stress. Work at DCF was
inspired by clinical studies of dietary supplementation to help prevent oxidative stress, and
subsequent diseases such as cancer, where a pro-oxidant effect could not be explained [43].

Several dietary carotenoids (CAR) have been shown to give protection to human
lymphoid cells from damage by γ-radiation, after two weeks of dietary supplementation
with 70–90 mg/day of an individual carotenoid [44,45]. This protective effect declines as
the oxygen concentration increases, and the rate of decline depends on which carotenoid
is administered. Remarkably, for the carotenoid lycopene (the red pigment in tomatoes),
no protection at all was observed at 100% oxygen, falling from 5-fold protection in air and
50-fold protection in the absence of oxygen. It is postulated that the link between oxygen
concentration and cell protection is mediated by an initial addition of a hydroxyl radical
(OH•) to CAR, followed by the addition of oxygen to the radical adduct (CAROH•) forming
a more damaging peroxyl radical (CAROH-OO•). This series of reactions is outlined in
Equations (1)–(3) and is known as the oxygen effect.

CAR + OH• → CAROH• (1)

CAROH• + O2 
 CAROH-OO• (2)

CAROH-OO• + cell→ cell death (3)
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To assist in understanding the underlying radical-based mechanisms of the cellular
results described above, the effect of gamma radiation on carotenoids in solution has been
studied using a total dose of 25 Gy. The dietary carotenoids studied in the cellular work are
lipid soluble, so detergent needs to be used to solubilize them in water. Astaxanthin was
solubilized in aqueous 2% Triton-X 100 detergent. Crocetin, a water-soluble carotenoid,
was also studied to eliminate any effects of the detergent. Damage of the carotenoids is
indicated by bleaching, determined using UV-Vis spectroscopy. Radiolysis of air-saturated
water generates oxidizing and reducing species, including OH• and superoxide (O2

•−).
Bleaching of carotenoids in essentially oxidizing conditions was studied using nitrous oxide
to convert electrons generated during radiolysis to OH•. A separate study of air-saturated
formate (NaCO2H) solutions was carried out to investigate the role of O2

•−, since in the
presence of air, NaCO2H converts all the primary radicals, eaq

−, OH• and H•, to O2
•− [46].

Sodium formate was used at a concentration of 0.1 M. The results are shown in Figure 8.
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For the formate systems, Figure 8 shows that there is a small but detectable reduction
in absorbance for astaxanthin in air-saturated aqueous Triton-X 100 solution compared to
an un-irradiated sample. We obtain similar results for crocetin in water (Figure 8b) which
shows that there is no effect of the Triton detergent associated with the rather low reactivity
of carotenoids with O2

•−. In cellular studies, O2
•− was also shown to play no role in the

oxygen effect by studying the effect in the presence of superoxide dismutase (SOD) [45].
For the air-saturated system wherein formate was not added, the results in Figure 8

correspond to astaxanthin or crocetin bleaching of approximately 35%, demonstrating an
increase in the reactivity of carotenoids with OH• compared to O2

•−. A further substan-
tial bleaching of both astaxanthin and crocetin is observed in the nitrous oxide system,
wherein the concentration of OH• is doubled. Ignoring the very small bleaching due
to O2

•− in this system, a doubling of the amount of carotenoid bleached compared to
the air saturated system should be expected: instead, we see that only about 60% of the
carotenoids are bleached due to the bimolecular reaction, OH• + OH• → H2O2 (rate con-
stant, 2k = 1.1 × 1010 M−1s−1) [47], which also occurs: doubling the concentration of OH•

increases the significance of this reaction by a factor of four.
To further understand the mechanism of the effect of oxygen concentration on cell

protection, the bleaching of crocetin in mixtures of N2O and oxygen after a 25 Gy gamma
irradiation has also been studied. The concentration of crocetin fell by 8.4, 18.0, 22.0, 25.5,
and 26.6 % as the oxygen concentration increased from 0% to 10, 20, 50, 60, and 80% oxygen.
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That is, damage (bleaching) due to reaction with the radicals formed is enhanced by the
presence of oxygen.

These radiation chemistry solution studies support the molecular mechanism sug-
gested for the oxygen effect (i.e., reactions (1)–(3), above). Overall, the cell studies indicate
the equilibrium constant for (2) is highest for lycopene, followed by β-carotene, zeaxanthin,
and astaxanthin, and is lowest for lutein [45]. Administering dietary supplements in the
weeks prior to radiation therapy could improve patient outcomes, and these results form
one part of an extensive suite of work to understand the role of radiation chemistry in cell
death and survival. Furthermore, radiation chemistry can be used to probe the effect of
radicals produced during normal metabolic processes.

3.4. Commerical Polymeric Materials of Interest to the Nuclear Industry

Two polymeric materials are being considered for different applications in the nuclear
industry: the decontamination of surfaces by strippable coatings and the 3D printing
of components or hand tools. In decontamination, the removal of radioactive particles
from the surfaces of large items such as concrete walls has the potential to reduce waste
volumes. Commercial strippable coatings may be used for surface decontamination and
three samples have been selected for comparative gamma and 5.25 MeV He ion irradiation,
based on an initial sift of twelve different coatings that were subjected to gamma irradiation
only. [48]. All samples were irradiated to a total dose of 500 kGy. Samples for gamma
irradiation were loaded into 20 mL crimp-capped glass vials filled with laboratory air and
received a dose rate of ~80–90 Gy/min. Samples for He ion irradiation were loaded into
a bespoke sample cartridge and irradiated in vacuum using a rastered ion beam until an
accumulated charge of 285 µC was reached. Analysis using FT-IR and Raman spectroscopy,
shown in Figure 9, revealed that coating 1 exhibited a loss of absorption across many
wavelengths indicative of depolymerization and, in the case of gamma irradiation, reacted
with air to develop nitrogen-containing functional groups (Raman peak shifts at 450 cm−1

and 625 cm−1). Coating 3 showed less change in absorption while coating 8 showed very
little change in absorption; hence, it is the most promising strippable decontamination
coating for applications to the nuclear industry.

A similar study has been conducted on fused filament fabricated (i.e., 3D printed
plastic) materials and the chemical changes as a result of radiation have been compared
to changes in mechanical properties. [28] Although a variety of filament compositions
are available commercially, two types deserve attention here: PLA (polylactic acid) is a
very common choice of filament that has been found to perform poorly under irradiation
while a filament based on nylon was seen to perform best, under the conditions studied:
gamma radiation was applied at a dose rate of 13 kGyh−1 for Nylon and 6 kGyh−1

for PLA to achieve a variety of total absorbed doses. FT-IR and Raman analysis, along
with Gel permeation chromatography to determine molecular weight, found that PLA
predominantly undergoes chain scission, for doses of up to 0.3 MGy, with a decrease in
both Young’s Modulus and ultimate tensile strength (UTS). Nylon demonstrated only
very small changes in Raman spectra, for much larger total doses (up to 5.3 MGy) which
correlate with results of mechanical testing where no statistical change in UTS was found.
However, the FT-IR spectra revealed a reaction with water vapor and further chemical
changes indicative of chain scission suggesting that there were some chemical changes that
did not affect mechanical properties. Such changes may have occurred in components that
are added to the filament to modify other properties, with the unfortunate side effect of
producing a sticky texture to the irradiated material.
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Both of these examples from commercial materials, made using a proprietary mix of
chemicals, demonstrate that radiation testing is a pre-requisite for understanding their
limitations in a nuclear environment. They also indicate that a complex interplay between
additives that may be incorporated into such materials and the radiation chemistry may
lead to some undesirable performance. In the case of 3D printing, the chemical changes
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may be related to the way in which oxygen can move through the printed structure during
irradiation, so it is feasible that the print pattern can be adapted to limit changes to the
material. Such results indicate that care must be taken in selecting and designing materials
for nuclear environments and open the door to the development of novel polymers for
specific nuclear applications.

3.5. Applications of the Re-Circulation Loop

Water radiolysis under extreme conditions of HTHP is an important issue in nuclear
reactor technology, especially in the context of radiation-enhanced corrosion of structural
materials in the primary circuit of light water reactors (LWRs). In nuclear reactor tests,
because of the mixed radiation field, individual contributions of gamma and neutron
radiation to the overall water radiolysis are difficult to distinguish and quantify. The unique
setup at DCF makes it possible to separate out these effects. Two applications are considered
here in relation to the conditions that exist in two different nuclear reactor technologies.

3.5.1. Radiation Chemistry in LWRs

Neutron flux makes a major contribution to the radiation field in the core of water-
cooled nuclear reactors. When neutrons interact with water molecules, energetic recoil
protons are produced (there is also a small fraction of recoil oxygen atoms being formed),
which, in turn, induce radiolysis of water by electrostatic interactions. It has been proposed
that by using protons it would be possible to quantitatively determine the contribution
of neutron radiation to the water radiolysis under LWR conditions [49]. Thus, an overall
radiolytic effect for any specified neutron flux can be associated with corresponding proton
recoils, for which the radiolytic product yields can be determined directly. Such information,
along with data gathered from separate gamma irradiation experiments, would lead to the
accurate modelling of the chemistry at high temperature and for reducing radicals where
data are limited. At DCF, this goal is pursued by generating protons with energies of up
to 10 MeV using the tandem ion accelerator to irradiate water with added scavengers. A
series of gamma and proton radiolysis experiments is underway; an exemplar of obtained
data is shown in Figure 10.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 28 
 

limitations in a nuclear environment. They also indicate that a complex interplay between 
additives that may be incorporated into such materials and the radiation chemistry may 
lead to some undesirable performance. In the case of 3D printing, the chemical changes 
may be related to the way in which oxygen can move through the printed structure during 
irradiation, so it is feasible that the print pattern can be adapted to limit changes to the 
material. Such results indicate that care must be taken in selecting and designing materials 
for nuclear environments and open the door to the development of novel polymers for 
specific nuclear applications. 

3.5. Applications of the Re-circulation Loop 
Water radiolysis under extreme conditions of HTHP is an important issue in nuclear 

reactor technology, especially in the context of radiation-enhanced corrosion of structural 
materials in the primary circuit of light water reactors (LWRs). In nuclear reactor tests, 
because of the mixed radiation field, individual contributions of gamma and neutron 
radiation to the overall water radiolysis are difficult to distinguish and quantify. The 
unique setup at DCF makes it possible to separate out these effects. Two applications are 
considered here in relation to the conditions that exist in two different nuclear reactor 
technologies. 

3.5.1. Radiation Chemistry in LWRs 
Neutron flux makes a major contribution to the radiation field in the core of water-

cooled nuclear reactors. When neutrons interact with water molecules, energetic recoil 
protons are produced (there is also a small fraction of recoil oxygen atoms being formed), 
which, in turn, induce radiolysis of water by electrostatic interactions. It has been 
proposed that by using protons it would be possible to quantitatively determine the 
contribution of neutron radiation to the water radiolysis under LWR conditions [49]. Thus, 
an overall radiolytic effect for any specified neutron flux can be associated with 
corresponding proton recoils, for which the radiolytic product yields can be determined 
directly. Such information, along with data gathered from separate gamma irradiation 
experiments, would lead to the accurate modelling of the chemistry at high temperature 
and for reducing radicals where data are limited. At DCF, this goal is pursued by 
generating protons with energies of up to 10 MeV using the tandem ion accelerator to 
irradiate water with added scavengers. A series of gamma and proton radiolysis 
experiments is underway; an exemplar of obtained data is shown in Figure 10. 

  
(a) (b) 

Figure 10. (a) Determined G-value of molecular hydrogen as a function of the fluid flow rate (kg/h) 
through the autoclave upon gamma irradiation of deaerated 1 mM KBr solution. (b) Radiation 
chemical yield of H2 from a scavenger system containing 1 mM NO3−, 1 mM Br−, and 10 mM CHO2− 
under deaerated conditions and room temperature irradiated with a proton beam as a function of 

Figure 10. (a) Determined G-value of molecular hydrogen as a function of the fluid flow rate (kg/h)
through the autoclave upon gamma irradiation of deaerated 1 mM KBr solution. (b) Radiation
chemical yield of H2 from a scavenger system containing 1 mM NO3

−, 1 mM Br−, and 10 mM
CHO2

− under deaerated conditions and room temperature irradiated with a proton beam as a
function of particle energy. All irradiations were performed using 10 nA current with exposures
lasting for 15 min.

The results shown in Figure 10a describe the verification of the Hach™ Orbisphere H2
sensor response to changes made to the flow rate through the autoclave (shown in Figure 4a
during a single continuous test. There are two main reasons for performing recirculation
loop experiments in dynamic mode, i.e., with a continuous flow: (1) displacing irradiated
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fluid from the autoclave to prevent excessive accumulation of radiolytic products; and
(2) delivering formed products, e.g., H2, to the built-in sensors for analysis. A deaerated
aqueous solution containing 1 mM KBr has been used in this gamma-irradiation test under
room temperature conditions and the data were corrected to account for the time that the
solution was flowing through the section of the loop located outside of the irradiation
chamber. The radiation chemical yield of molecular hydrogen (G(H2)) is well-known
for this system: gamma irradiation of 1 mM KBr produces H2 at 0.45 molecules/100 eV
yield [50]. The results presented in Figure 10a indicate that the flow rates below 1.4 kg/h
lead to the underestimation of the H2 concentration, whereas the flow rates above 2.0 kg/h
result in the G(H2) overestimation. We interpret this as the sensor having an optimal
flow range for detection of H2; hence, the “sweet spot” for the flow rate, giving correct
hydrogen values, has been identified to be ca. 1.4 kg/h; this flow rate has been used in all
subsequent experiments.

Figure 10b shows the H2 production results from the proton beam irradiation of a
scavenger system containing 1 mM NO3

−, 1 mM Br−, and 10 mM CHO2
− under deaerated

conditions and room temperature. All irradiations were performed with the same beam
current (10 nA) and were 15 min in duration. The results indicate that the hydrogen yield,
G(H2), increases when the energy of incident protons is increased. These results are in
agreement with the findings of Ashmore et al. [51], who also reported a moderate increase
of G(H2) in the proton beam energy range between 1 and 3 MeV under 25 ◦C. Future
experiments will be performed in the higher ion energy range (up to 6 MeV) to explore
hydrogen formation trends as a function of decreasing track-average LET of H projectiles.

Another promising scavenger system has been recently developed by Bartels et al.
in their endeavor to establish the reducing radical escape yield Gesc(eaq

− + ·H) and the
Gesc(H2) in low LET water radiolysis as a function of temperature up to 350 ◦C [52]. Future
experiments at DCF will include this system to enable direct comparison of results from
our differing experimental set-up.

Ongoing experimental work is expected to generate essential data for stochastic
modelling of the track structure and associated radiation chemistry, as demonstrated in,
for example, the work of Sanguanmith et al. [53] as well as Pimblott and LaVerne [54].
Furthermore, experimental measurements of the primary yields from proton irradiations
can be incorporated into conventional deterministic kinetic models used to assess the
primary circuit chemistry in LWRs, using methods outlined in reference [55].

3.5.2. Gamma Radiation-Induced Corrosion

Under pressurized water reactor (PWR) conditions, the in-pile corrosion response of
zirconium alloy fuel cladding elements is significantly enhanced relative to that predicted
by (radiation free) autoclave corrosion test data. The corrosion rate of zirconium alloys
is predicted by using empirical models correlated to temperature, heat flux, and fast
neutron flux and/or fluence. Although there are sound mechanistic reasons as to why
neutron flux accelerates corrosion, such as microstructural damage to the underlying
metal, it may not be the sole contributor to enhanced corrosion in-reactor. The majority of
research into irradiation effects in zirconium alloys is based on simulating the effects of
neutron irradiation damage; however, within a reactor, there are other forms of radiation,
i.e., gamma radiation, which could affect corrosion behavior. There is limited knowledge on
the effects of gamma radiation on zirconium alloy corrosion in the open literature, but there
is evidence that a process related to photon dissolution of the protective barrier oxide layer
enhances the in-reactor post-transition corrosion rates [56,57]. Zirconium dioxide (ZrO2) is
an n-type semiconductor and exposure to gamma radiation will lead to enhanced electronic
conductivity via exciton (electron-hole pair) formation. In addition, gamma irradiation
may also induce heterogeneous radiolysis within the porous oxide layer. Further details on
these processes can be found in reference [58]. A key question is whether the incorporation
of a gamma flux parameter will lead to an improved model for predicting zirconium alloy
corrosion under reactor conditions.
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In this application, the high-temperature–high-pressure (HTHP) recirculation loop
has been used to simulate PWR conditions and the mini-autoclave, with electrochemical
feedthroughs, allowing in situ measurements during gamma irradiation of test specimens
in the 60Co gamma irradiator. The program to date has shown that gamma irradiation
has an effect on the electrical conductivity of ZrO2 and that heterogeneous radiolysis is
possible in a post-transition oxide.

Figure 11 shows the photo-voltage (PV) response of a pre-transition oxide and post-
transition oxide under gamma irradiation at a test temperature of 150 ◦C. The PV is a
measure of the open circuit potential (OCP) during gamma irradiation minus the OCP
when gamma radiation is not present. The pre-transition oxide is dense and non-porous; the
decrease in PV indicates the formation and separation of electron-hole pairs, which causes
the PV to decrease with increasing gamma dose. When the gamma radiation is “turned
off” the PV increases to its non-irradiated state, which indicates the recombination of these
electron-hole pairs. The post-transition oxide is a thick, porous oxide and the increase in
PV indicates an increase in oxidizing environment, which suggests that heterogeneous
radiolysis is occurring within the porous oxide layer.
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These preliminary results support the working hypothesis that gamma radiation may
have an effect on enhanced corrosion. Further experiments and analysis of the results will
be required to ascertain whether gamma irradiation has a significant effect on enhanced
corrosion behavior in-reactor.

4. New and Emerging Capabilities

The Dalton Cumbrian Facility continues to develop and key areas of new capability
include the automation of experiments to aid in repeatability and variable-energy neutron
beams. As is outlined below, these variable energy neutrons are relevant to understanding
proton therapy for the treatment of cancer.

4.1. Automated, Reaptable Experiments

In order to conduct radiation chemistry experiments efficiently, the DCF researchers
have instigated the Small MOdular Radiation Experimental Systems (SMORES) project,
which aims to integrate measurement devices, actuators, sensors, valves, and other small
items of experimental equipment in a modular fashion, all controlled through a common
computer interface. In this project, a suite of modular components is being developed from
which a range of radiation science experimental rigs can be rapidly constructed as required.
These components are constructed from either commercially readily available items or ones
that can be 3D printed. As programmable experiments will be able to be conducted over
long periods of time, SMORES will facilitate the kinds of longitudinal studies indicated by
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the thorium results shown in Section 3.1. However, the SMORES project remit is wider;
eventually, it is envisaged that it will support all of the radiation chemistry experiments
taking place at DCF. There is also interest in some of the components being used with
radioactive samples in high activity glove boxes. Once the Python software library is
complete, we plan to release all the designs and 3D printer files as open labware, along
with the software, which will be open source.

One key concept within SMORES is the parallelization of automated measurements.
To this end, a system has been developed whereby a number of sample chambers are each
separately addressable. This is achieved through the use of radiation hard solenoid valves
which separate each member of an array of pre-loaded sample chambers connected to
a sample manifold, as illustrated in Figure 12. Each sample chamber is also fitted with
its own powder filter to protect the solenoid valve and the manifold and, optionally, a
radiation hard electrical feedthrough to support in situ sensing.
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Figure 12. Illustration of a particular configuration of SMORES components to facilitate four parallel
studies involving the dynamics of gas and liquid phase radiolysis in the presence of metal oxides.
The grey semi-transparent cube illustrates the approximate volume of the DCF 60Co irradiator. The
60Co rods are located at the back of the irradiator and the assembly that sits outside of the grey
irradiator volume makes use of sample ports in the irradiator shielding.

Gases can be added or removed from the head spaces of any selectable sample holder
simply by opening its solenoid valve with all the other holder’s valves being closed, through
the use of one of the gas syringes. Similarly sampled gas can be sent to electrochemical gas
probes, a gas chromatograph, or other types of gas sensor for analysis. Since each of these
valves and other components are computer controllable using Python, one can develop a
wide range of longitudinal experiments, simply be developing Python scripts.

One challenge, particularly for biologically relevant samples, is to ensure that small
amounts of a thin, potentially scarce, sample can be placed into the beam from one of DCF’s
ion accelerators under computer control. In many use cases, it is important to ensure the
whole sample is irradiated prior to post-irradiation analysis. To meet this challenge, a new
sample handling system has been developed within the SMORES project. It is illustrated
schematically in Figure 13a. The sample holder is a spherical shaped open topped vessel 3D
printed in polypropylene. It has a stem attached to an electric motor. The holder/electric
motor assembly is held in place using a robotic arm. This sample holder is called the
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‘spinning wine glass’ holder for obvious reasons. Indeed, the idea for this sample holder
came when aerating a glass of wine.
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Figure 13. A new sample handing system developed for ion beam experiments. (a) Schematic
illustration of the spinning wine glass sample holder and syringe pumps configured to support
irradiation of thin samples. (b) The amount of ferric ions produced by irradiation by 5 MeV protons.
The dashed line shows the early high ferric ion production at 0.64 µmolJ−1 the dotted line showing
the later slower production at 0.275 µmolJ−1.

A liquid sample can be placed into the sample holder manually or under computer
control, e.g., using the computer-controlled syringe pumps developed previously [59],
when it will sit in the bottom of the sample holder. The sample holder can then be spun,
again under computer control, by actuating the motor. The resultant centrifugal force
pushes the sample to the holder’s equator (defined with respect to the axis of rotation).

While the sample holder is being spun, the sample can be irradiated using the ion
beam. Once the irradiation is complete, the motor is turned off, so the sample returns to the
bottom of the holder. It can then be poured into another vessel for storage and subsequent
analysis. Full mixing of the sample is ensured by periodically turning the motor off and
then on again during irradiation, although this has not been necessary with samples used
to date.

The spinning wine glass system was tested using the Fricke dosimeter. This dosimetry
used 10 mM ferrous sulphate in 0.4 M sulfuric acid samples. Each sample was irradiated
with a 5 MeV proton beam. The samples where irradiated for between 1 and 10 min.
The results of these irradiations are shown in Figure 13b. The ferric ion yield for the first
4.5 joules of irradiation is 0.64 ± 0.03 µmolJ−1 and the yield is reduced after 4.5 joules
of irradiation to around 0.275 ± 0.01 µmolJ−1. Reported errors are from fitting alone as
the sample was only irradiated once at some energies so each measurement is reported
separately. These yield results are consistent with previous studies into the Fricke dosimetry
with ions [60]. The change in ion production is also expected due to oxygen depletion [61].

4.2. Variable-Energy Neutron Beams

Another recent activity has been the development of variable-energy neutron beams
in a project nicknamed DANUBE (DAlton Neutron User BEams). Figure 14 illustrates
examples of neutron production schemes available using DCF accelerators. All of these re-
actions rely on collision of two light nuclei (p, d, 7Li, 11B), so the neutron energy kinematics
is highly dependent on the angle.
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impact of 7Li ions on hydrogen-rich targets. At high energies the 7Li ions produce neutrons 
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Figure 14. Simulations of examples of the kinematics available for neutron production in thin targets
using the accelerators available at DCF. Each line is labelled with the collision conditions pertaining
to the neutron production. The x-axis shows the angle at which neutrons would be ejected with
respect to the beam axis. The corresponding neutron energy is indicated on the y-axis. Towards the
bottom left of this figure, several of the lines, corresponding to the inverse kinematic 7Li(p,n)7Be
reaction, are shown. These lines show two values of neutron energy, although they do not cover the
full angular range. This is because the reaction can produce two neutron energies in the lab frame,
but it is impossible to produce neutrons at large angle, i.e., these collisions result in a directed beam.
The insert illustrates the kinematics giving rise to this effect and is explained in the main text.

Building on a concept demonstrated previously [62], the 7Li inverse kinematics neu-
tron generation scheme was implemented as it promises the highest fluxes by using the
7Li(p,n)7Be reaction. One of the attractive features of this scheme is that the projectile
nucleus is more massive than the target nucleus, meaning that the center of mass of the
collision system is moving forwards when viewed in the laboratory frame of reference.
As a consequence, neutrons going into 4π in the collision frame all go into the forward
direction in the laboratory frame. The closed contours are shown in Figure 14 for the
impact of 7Li ions on hydrogen-rich targets. At high energies the 7Li ions produce neutrons
with two distinct energies in the forward direction in the laboratory frame. The higher
energy peak is due to forward ejection in the collision frame, which is further boosted in the
laboratory frame by the motion of the center of mass of the collision pair, as illustrated by
the blue arrows in the insert to Figure 14. The lower energy peak is due to backward-ejected
neutrons in the collision frame, which results in slower neutrons in the laboratory frame,
as illustrated by the red arrows in the insert.

As 7Li ions pass through a hydrogen-rich solid target, they will progressively slow
down. However, they undergo negligible scattering. As they slow, they will produce
a progressively more forward pointing beam of neutrons, i.e., the cone of neutrons in
the center of mass frame shown in the Figure 14 insert will progressively close down.
This process is illustrated by the three lines for 19.5, 14.5, and 13.18 MeV Li-ions. Below
13.18 MeV, neutrons are no longer produced as the collision is below the production
threshold for the reaction. Hence, the prediction from kinematic simulations is that for
7Li ions impacting onto a thick hydrogen-rich target, no neutrons are expected below an
energy of 13.18 MeV, after which an increasing yield of forward-directed neutrons will be
expected along with a negligible yield of neutrons to the side of the ion beam axis. Results
from the initial commissioning of our neutron beam, as shown in Figure 15, agree with
these predictions.
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Figure 15. Results of the first commissioning experiments of the DANUBE neutron beam. The blue
points show the current-normalized relative yield of neutrons in the forward direction, while the red
points show the same yield but for 90◦ from the beam axis.

The target used for this experiment was a simple static polymer. The below-threshold
production of forward-directed neutrons and the small yield of sideward directed neu-
trons are probably due to interactions with impurities in the target. However, they are
unimportant from the viewpoint of neutron-beam experiments.

One motivation for developing a high-energy neutron beam is to explore the radiation
biology of neutron irradiated cells. This is motivated by the inevitable neutron burden
created in proton therapy. High-energy protons, upon entering the patient, drive the
reaction p + 16O→ p + 15O + n, which can produce neutrons almost up to the energy of
the initial proton beam (typ > 200 MeV). This reaction has a cross section of almost 100 mb
for energies above 20 MeV [63], which, combined with the high density of oxygen (mostly
through a patient’s water content), leads to approximately one high-energy neutron being
created by every proton entering a patient during a proton therapy session. However,
most of our current knowledge of neutron radiobiology pertains to boron neutron capture
therapy, which involves much lower energy neutrons.

One of the major uses of proton therapy is the treatment of pediatric cancers; however,
currently, there is insufficient radiobiology data to properly quantify the effect of the high-
energy neutrons generated: “It is necessary to study RBE for tumor induction as a function
of neutron dose, energy, dose-rate, tissue type, and size of the exposed patient” [64].
Simulations suggest that even using this simple static polymer target are sufficient to
embark on a program of measurements of this kind, with dose rates of >0.01 Sv/min being
available. More sophisticated targets, under development, would allow for 100 times
higher neutron fluxes when high-energy neutron-driven chemistry relevant to reactor
cooling systems becomes accessible.

5. Conclusions

The radiation facilities along with the associated sample management facilities at DCF
have been shown to support a wide range of research related to radiation chemistry that is
primarily aimed at supporting the UK’s nuclear industry. Results concerning material dura-
bility and suitability in harsh environments where radiation is present, and production of
flammable gasses in particular, have been presented. Results from this research have stim-
ulated the development of new sample-handling equipment ideal for longitudinal studies
in radiation environments. This equipment has been described and will be instrumental in
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determining the dynamics of radiolytic gas generation. The greater understanding afforded
by such studies will provide greater confidence in the safe operation of nuclear facilities.

Healthcare-related research opportunities available at such a facility have been illus-
trated using exemplar results that probe the mechanisms of radioprotection, and by the
development of a neutron source that will enable the assessment of the late-cancer effects
caused by the inevitable production of neutrons during proton therapy.

Taken together, the body of work presented here shows the benefit of concentrating a
suite of radiation-research facilities together close to a nation’s nuclear industry as well as
the potential for diversification beyond the mission implied by this co-location.
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