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ABSTRACT
This paper presents a new method called the functional distributional clustering al-
gorithm (FDCA) that seeks to identify spatially contiguous clusters and incorporate
changes in temporal patterns across overcrowded networks. This method is moti-
vated by a graph-based network composed of sensors arranged over space where
recorded observations for each sensor represent a multi-modal distribution. The
proposed method is fully non-parametric and generates clusters within an agglom-
erative hierarchical clustering approach based on a measure of distance that defines
a cumulative distribution function over temporal changes for different locations in
space. Traditional hierarchical clustering algorithms that are spatially adapted do
not typically accommodate the temporal characteristics of the underlying data. The
effectiveness of the FDCA is illustrated using an application to both empirical and
simulated data from about 400 sensors in a 2.5 square miles network area in down-
town San Francisco, California. The results demonstrate the superior ability of the
the FDCA in identifying true clusters compared to functional only and distributional
only algorithms and similar performance to a model-based clustering algorithm.

KEYWORDS
Agglomerative hierarchical clustering; functional; distributional; spatial;
non-parametric

1. Introduction

Clustering is an unsupervised learning method that maximises a measure of similar-
ity between groups of objects to identify clusters with homogeneous characteristics
[35, 41]. Heterogeneous datasets present diverse challenges for determining valuable
insights and demand bespoke clustering algorithms that are able to accommodate mul-
tiple constraints (space, time, and network). Conventional methods of this exploratory
approach include hierarchical [39] and partitional (e.g., k-means [29], Gaussian mixture
models, etc.) techniques. Hierarchical methods (e.g., agglomerative process) generate a
set of clusters in which smaller clusters are nested within larger clusters and a dendro-
gram illustrates the arrangement of clusters generated by the hierarchical clustering
framework. On the other hand, k-means is a partitioning process which assigns objects
to a pre-specified number of clusters.
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Numerous clustering methods have been developed for the purpose of clustering
spatio-temporal datasets. The development of clustering methods are motivated by
distinct characteristics such as the source of generated data (a static source (e.g.,
sensors at fixed locations across a road network) versus a dynamic source (e.g., trajec-
tories corresponding to trips recorded across a network for a specific car) and choice of
functional model. Hierarchical clustering algorithms have been modified to incorporate
diverse constraints and generate spatially contiguous clusters. Several definitions of the
distance measure to determine the notion of similarity for spatio-temporal data include
the use of adapted Ward linkage [7, 8], coefficients of basis functions to smooth the ob-
served data [16] and via a kernel estimator of the multivariate spatial data dependence
structure [15]. Hierarchical clustering algorithms have also been used in combination
with other models, as a two-stage process, to better incorporate space and time con-
straints (e.g., Bayesian spatio-temporal models [1, 23] and Kriging interpolation [6]).
Other classical clustering algorithms have also been developed to identify differences
in the shapes of curve patterns [11], to take advantage of diverse functional charac-
teristics [9, 21, 22] or detect temporal patterns at a specific location of the network
[10].

Dynamic clusters (e.g., formed by measuring similarities between trajectory pairs)
correspond to partitions of space and their evolution over time and relevant clustering
methods seek to accommodate changes in time and space simultaneously. Methods
include the modified DBSCAN [2] approach, extended kernel density estimation [4,
40] and nearest neighbour methods [31]. More recently, an adaptive dynamic time
warping method [26] using adaptive penalty functions was introduced to compute the
distances between trajectories (e.g., to monitor moving behaviours and traffic patterns
for a selected individual). An unsupervised learning method with a convolutional auto-
encoder (CAE) neural network, motivated by the use of deep learning, was recently
proposed to compute (more robust) trajectory similarities [28].

This paper develops a novel functional distributional algorithm in a hierarchical ag-
glomerative clustering framework to identify spatially contiguous clusters in a graph
network and accommodate temporal characteristics at each vertex. This spatial clus-
tering method for spatio-temporal data is specifically motivated by data generated
from static sources. This non-parametric clustering method generates clusters that
are distinguished by the nature and shape of curves rather than individual temporal
observations at different vertices through the grid-style graph network. To the best
of our knowledge, an algorithm that is both functional and distributional within a
hierarchical clustering framework has not been introduced before. This simultaneous
framework enables complex dependencies to be adequately modelled, which is not ac-
commodated by existing methodologies. Further, by using the hierarchical clustering
framework, this method retains its associated advantages (e.g., ease in interpretation
and few assumptions).

The examples in this paper come from traffic modelling, where we assume that the
urban road network is made up of junctions and road segments that link relevant
junctions. For our analysis, we assume that the sensors are arranged in a network
in a way that one can define a neighbourhood structure, or to be more precise, an
adjacency matrix. More formally, we assume that the network of sensors can be repre-
sented as an undirected graph with sensors as vertices and edges linking neighbouring
sensors. Occupancy is the percentage of time that a location on the road is occupied
by vehicles and a measurement of occupancy that describes congestion is available
for each junction and unit of time. Junctions which are joined directly by a road seg-
ment are considered to be adjacent and our objective is to identify contiguous areas
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of similar traffic patterns. For example, Figure 1 presents the distribution of occu-
pancy observations aggregated over incoming links for an individual junction. This
plot represents a bi-modal distribution for aggregated occupancy data, where levels of
occupancy range between 0% and 100%. Successive jumps in occupancy levels over a
period of time would be lost by clustering methods that fail to accommodate the dis-
tribution of occupancy levels and only include summary values. Instead, the distance
measure incorporates multi-modal distributions by accounting for functions defined to
accommodate temporal patterns.

The rest of the paper is organised as follows. Section 2 proposes the functional
distributional clustering algorithm and describes methods to choose the optimal num-
ber of clusters and a measure of clustering similarity between identified clusters and a
given set of ‘true’ clusters. The functional distributional clustering algorithm described
in this paper is available for implementation in the R package FdiClust1. Section 3
presents an application of this algorithm to pre-defined data generated from an accu-
rate micro-simulator for a 2.5 square miles network area in downtown San Francisco,
CA. The simulation study evaluates the performance of the algorithm by comparing
similarities between pairs of clusters. In Section 4, we illustrate the application of this
algorithm to real data for the same traffic network and duration, but with no knowl-
edge of underlying ‘true’ clusters. Finally, Section 5 summarises the algorithm and
highlights its advantages and disadvantages.
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Figure 1. Occupancy measurements with bi-modal characteristics recorded over six hours for an individual

junction.

2. Functional distributional clustering model

This section proceeds in two stages to develop the proposed clustering method that
identifies spatially contiguous clusters across the network and incorporates temporal
patterns of recorded observations. The first stage utilises a hierarchical agglomerative
clustering algorithm and generates a series of cluster configurations. The clustering

1https://github.com/AshwiniKV/FdiClust
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algorithm is built on a measure of distance that is defined using estimated conditional
cumulative distribution functions (CDFs) for each cluster and determined utilising
functions calculated over individual observations rather than aggregated observations.
In the second stage, we use a clearly defined criterion to determine the optimal number
of clusters and generate a distinct partition structure of the network. We also describe
a measure of clustering similarity to examine the accuracy of identified clusters.

2.1. Hierarchical agglomerative clustering algorithm

Let G = (V,E) be an undirected graph, where V is a set of vertices and E is a
collection of edges linking neighbouring vertices. Assume that V = {v1, . . . , vN} and
the adjacency matrix of graph G is a square matrix W with elements Wij = 1 if
{vi, vj} ∈ E (i.e., if there is an edge between vertices vi and vj) and Wij = 0 otherwise.
Let observations for vertex j at time ti be denoted by xij , where i = 1, . . . , n and
j = 1, . . . , N and Table 1 describes the recorded observations. For example, at times
t1, . . . , tn, the observations at vertex j = 1 are recorded as x11, x21, . . . , xn1 and at
vertex j = N are recorded as x1N , . . . xnN .

Table 1. Representation of the observations xij recorded over time ti = t1 . . . tn for j = 1 . . . N vertices.

i 1 2 3 . . . n
times (ti) t1 t2 t3 . . . tn

Vertex (j = 1) x11 x21 x31 . . . xn1
...

...
...

...
...

...
Vertex (j = N) x1N x2N x3N . . . xnN

The probability density function (PDF) for observations relevant to vertex j is
defined by,

f̂ (j)(x0) =
1

nhx

n∑
i=1

ϕ

(
xij − x0

hx

)
,

while the estimated conditional probability density function (PDF) is defined as [17,
19, 27],

f̂
(j)
ti (x0) =

1

hx

n∑
i=1

ϕ

(
xij − x0

hx

)
wt0(ti), (1)

where

wt0(ti) =

ϕ

(
t0 − ti
ht

)
n∑

η=1

ϕ

(
tη − ti
ht

) ,

ϕ(.) is a standard normal PDF, ht is a bandwidth defined for time and hx is a band-
width which corresponds to recorded observations. Let a set of clusters Cl=1 be ini-
tially represented by C1 = {C1, . . . , Ck} = {{1}, {2}, . . . , {N}}, where each cluster is
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composed of a single vertex. At subsequent levels of the algorithm, clusters are con-
solidated to eventually form a single larger cluster composed of all N vertices in the
network. The conditional probability density function for a cluster C is determined
over observations recorded for relevant vertices and is defined as,

f̂
(C)
ti (x0) =

1

|C|
∑
j∈C

f̂
(j)
ti (x0). (2)

The estimator of the conditional cumulative distribution function (CDF) is defined as

F̂
(j)
ti (x0) =

n∑
i=1

Φ

(
xij − x0

hx

)
wt0(ti), (3)

where Φ(·) is a standard normal CDF, and

F̂
(C)
ti (x0) =

1

|C|
∑
j∈C

F̂
(j)
ti (x0). (4)

A single observation provides less information about temporal patterns for each vertex

compared to a single value in F̂
(j)
ti (x0). A pair of clusters C1 and C2 are merged if they

have the lowest distance compared to distances calculated for all other pairs of clusters.
The distance d is built using a L1 norm, rather than the more commonly used L2 norm
or squared L2 norm and distance d is determined over estimated conditional CDFs
rather than individual observations. Let the distance d between cluster C1 and cluster
C2 at time ti be defined as the area between the two CDFs, i.e.,

d
(
F̂

(C1)
ti (·), F̂ (C2)

ti (·)
)
=

∫ ∣∣∣F̂ (C1)
ti (x0)− F̂

(C2)
ti (x0)

∣∣∣dx0 ≈ ∆

S∑
s=1

∣∣∣F̂ (C1)
ti (ξs)− F̂

(C2)
ti (ξs)

∣∣∣
(5)

for a regular grid ξ1, . . . , ξS with ξs+1 − ξs = ∆.
Accordingly, let D be a distance matrix, where distance between cluster C1 and C2

in the matrix is defined as the sum of the above distance over time t1, . . . , tn,

DC1,C2
=


n∑

i=1

d
(
F̂

(C1)
ti (·), F̂ (C2)

ti (·)
)
, if C1 ∼ C2,

∞, otherwise,

(6)

where C1 ∼ C2 indicates that calculating the distance between clusters is feasible only
if an edge exists between any two vertices in the clusters. This condition helps enforce
spatial contiguity in the formation of clusters and two clusters are merged at each
iteration such that they correspond to the lowest computed distance d. The CDFs
corresponding to the clusters C1 and C2 are also merged as,

F̂
(C1∪C2)
ti (x0) =

|C1|
|C1|+ |C2|

F̂
(C1)
ti (x0) +

|C1|
|C1|+ |C2|

F̂
(C2)
ti (x0). (7)

Updated CDFs are then utilised to calculate the distance d at each subsequent iteration
and this process continues until a single larger cluster containing every vertex in the
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network is obtained. In a hierarchical clustering approach, a partition then occurs at
each iteration to determine non-overlapping clusters.

Algorithm 1: Functional distributional clustering

Input : Initialize Cl=1, where C1 = {C1 . . . , Ck} = {{1}, . . . , {N}}.
Output: Hierarchical set of clusters, ζ.

1 if |Cl| > 1 then
(1) For all pairs of clusters, compute distance d as defined in Equation (6).
(2) Set {C1, C2} = argmin

C1,C2∈Cl

(DC1,C2
) to identify the pair of clusters that

correspond to the minimum distance.
(3) Merge the pair of clusters C1 and C2 as C1 ∪ C2.

(4) Update Cl to Cl\{C1, C2} ∪ {C1 ∪ C2} and F̂
(C1)
ti (x0) and F̂

(C2)
ti (x0) using

Equation (7).

2 else
3 return ζ;
4 end

2.2. Bandwidth selection

This section addresses the selection of smoothing parameters or bandwidths to esti-

mate the conditional PDF f̂
(j)
ti (x0) defined in Equation (1). A data driven method such

as cross-validation [3, 18, 37] selects the bandwidth that corresponds to the minimum
of the expected loss function and avoids the arbitrary selection of bandwidths that
can lead to under smoothing or over smoothing. We use an extended cross-validation
method [14] to select optimal bandwidths hx and ht and denote an estimated condi-

tional PDF for a cluster C dependent on the bandwidths as f̂
(C)h
ti (x0). The integrated

squared error (ISE) is defined as,

ISE =
1

|Cl|
∑
C∈Cl

(
1

n

n∑
i=1

∫
{f̂ (C)h

ti (x0)− f
(C)
ti (x0)}2 dx0

)

=
1

|Cl|
∑
C∈Cl

(
1

n

n∑
i=1

∫
f̂
(C)h
ti (x0)

2 dx0 −
2

n

n∑
i=1

∫
f̂
(C)h
ti (x0)f

(C)
ti (x0) dx0

+
1

n

n∑
i=1

∫
f
(C)
ti (x0)

2 dx0

)
. (8)

The last term is not dependent on bandwidth h and accordingly can be ignored in the
bandwidth selection process. A reasonable estimator of the ISE is,

CV (h) =
1

|Cl|
∑
C∈Cl

(
1

n

n∑
i=1

∫
f̂
(C)h
ti (x0)

2 dx0 −
2

n|C|

n∑
i=1

∑
j∈C

f̂
(C)h
ti,−ij(xij)

)
. (9)

The optimal bandwidth parameter corresponds to the minimum cross validation error
ĥ = argminh∗ CV (h∗). In practice, an initial estimate of hx = 10 is utilised to deter-
mine optimal bandwidths, i.e., hx and ht through a grid search. One could argue that
the bandwidth should be re-tuned for each update in the cluster structure; however, to
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reduce the computational footprint we determine the optimal bandwidth only at the
beginning of the algorithm. Towards the end of the algorithm clusters are substantially
bigger and there could be scope to further reduce the bandwidths. We have found that
using the same bandwidth throughout the algorithm usually gives similar clusterings.

2.3. Optimal number of clusters

A major challenge in clustering is the identification of the optimal number of clus-
ters. In hierarchical clustering algorithms, the assignment of parameters to determine
clusters often relies on the number of ‘true’ clusters, which may not necessarily be
available or easily defined. Methods of cluster validation to determine the ‘true’ num-
ber of clusters include the CH index [5], Dunn index [13], Davies-Bouldin index [12],
and the Silhouette index [36] and these methods seek to identify compact and well
separated clusters, where clusters are deemed to be more distinct for smaller values
of the index. In comparison to other methods, the time complexity for computation
of the Davies-Bouldin index was found to be far lower than for the Silhouette method
[32]. Alternatively, the gap statistic [38] compares within-cluster errors in the observed
data to within-cluster errors calculated for data from an appropriate null reference dis-
tribution and removes the need for calculating validation scores. However, the need
to bootstrap samples in the gap statistic approach leads to the method being rather
computationally expensive and inefficient for calculating the number of clusters.

We modify the clustering balance criterion [24], a method similar to the Davies-
Bouldin index, to compare the inter-cluster distances and intra-cluster distances in
a computationally efficient manner for larger datasets. Let the aggregated CDF over

all sensors in a cluster C be defined as F
(C)
ti (·) = 1

|C|
∑

j∈C F
(j)
ti (·). Using this defi-

nition, let Λ =
∑

C∈Cl

∑
j∈C d

(
F

(j)
ti (·), F (C)

ti (·)
)
be the intra-cluster distance sum cal-

culated for all k identified clusters in Cl. The inter-cluster distance sum is defined

by Γ =
∑

C∈Cl
d
(
F

(C)
ti (·), F (C0)

ti (·)
)
, where F

(C0)
ti (·) = 1

|Cl|
∑

C∈Cl
F

(C)
ti (·). Within an

agglomerative hierarchical clustering framework, the intra-cluster sum Λ has zero dis-
tance for singleton clusters and this value is maximised when all sensors in the network
belong to a single cluster. On the other hand, the inter-cluster sum Γ is minimised
when all sensors belong to a single cluster and maximised when each sensor is a sin-
gleton cluster. Accordingly, the clustering balance is defined as ϵ = αΛ + (1 − α)Γ,
where weights α and 1 − α are assigned to Λ and Γ. In the examples, we used an α
value of 0.5.

The hierarchical clustering algorithm described above yields a sequence of nested
partitions. We then retain the partition minimising the above modification of the
clustering balance criterion, which is deemed to have optimal number of clusters.

2.4. Measure of clustering similarity

The optimal number of clusters determines objects within each cluster by utilising the
constructed hierarchy of clusters. This set of defined clusters and their elements are
compared against external criteria such as a pre-defined cluster structure or known
set of labels. Let a set of vertices in the network be defined as J = {1, 2, 3, . . . N}
and U and V are two partitions of J , where U = {U1, . . . , Uu} is defined as the set
of u true clusters and V = {V1, . . . , Vv} represents a clustering result composed of v
clusters. Let a be the number of pairs of vertices in J that are in the same cluster
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within U and the same cluster within V, b be the number of pairs of vertices in J that
are in the same cluster in U but not the same cluster in V, c be the number of pairs of
vertices in J that are not in the same cluster in U but in the same cluster in V, and
d be the number of pairs of vertices in J that are in different clusters for both U and
V. Similarity measures between clustering results and ‘true’ clusters can be calculated
using a method called the Rand index (RI) [34]. The Rand index is then defined as

RI =
a+ d

a+ b+ c+ d
, (10)

where a+d refers to the number of agreements between the clustering output of the
developed algorithm and the given truth and a + b + c + d includes both agreements
and disagreements. Values of the RI lie between 0 and 1, where 0 represents little
agreement and 1 represents strong agreement. However, the expected value of the
RI for two random partitions does not necessarily take a constant value and the RI
approaches an upper limit of unity as the number of clusters increases.

A modified version of the RI was introduced by [20] to account for problems within
the RI method and is called the Adjusted Rand index (ARI). In general, a larger ARI
indicates a higher agreement between two partitions and the ARI has a maximum
value of 1 but can also take negative values. This index is typically recommended as
the choice for measuring agreement between any two clustering results even when the
number of clusters are different [30] and is computed using:

(a+ b+ c+ d)(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)]

(a+ b+ c+ d)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
. (11)

3. Simulated occupancy data

In this section, the group of sensors arranged as a network correspond to junctions
within an urban road network, where adjacent junctions are linked by road segments.
An urban road network constitutes a network which can be represented as an undi-
rected graph with junctions as vertices and road segments that link relevant junctions
as edges.

3.1. Data

We simulate occupancy data over a 2.5 square miles network area in downtown San
Francisco, California composed of N = 158 junctions and 316 links to reflect a het-
erogeneous network composed of homogeneous clusters. Correlated occupancy data is
generated in R version 3.4.2 [33] using a spatio-temporal precision matrix to define
three distinct clusters in the network, where within each cluster in Cl, a given state
space model generates zero and one values corresponding to defined occupancy levels.
We assume that each junction within an urban road network has a maximum of four
links to adjacent junctions. The presence of a limited number of road segments between
junctions in the network leads to a sparse spatial precision matrix modelled as a type
of conditional auto-regressive (CAR) model [25]. The temporal precision structure is
defined as a first order auto-regressive model (AR-1) and occupancy observations for
each junction are recorded over a period of six hours (21600 seconds) with a sampling
rate of 60 seconds.
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Figure 2. Occupancy measurements generated for three distinct clusters.

Figure 2 illustrates the simulated occupancy data to represent distinct clusters.
Occupancy values (20 – 50%) displayed in purple for cluster A are typically lower
and variations in jumps between successive observations reduce over time. The values
(40 – 100%) plotted in yellow for cluster C are composed of both higher and lower
values, with differences between successive observations reducing marginally over time.
Occupancy values (70 – 100%) in green for cluster B are typically higher in the first
three hours and display greater variation (50 – 90%) over the next three hours.

3.2. Results

The proposed algorithm introduced in Section 2.1 is applied to simulated occupancy
observations generated within the urban network as described in Section 3.1. Each
junction is initially treated as a singleton within the agglomerative clustering frame-

work. The conditional CDF F
(C)
ti (x0) for a cluster C is estimated over a sample of

360 observations, where bandwidths hx = 10 (occupancies recorded in %) and ht = 6
(time in seconds) are selected using the extended cross validation method described in
Section 2.2. Conditional CDFs are estimated for each cluster and stored outside indi-
vidual iterations of the algorithm to improve the proposed algorithm’s computational
efficiency. The distance d is calculated between adjacent clusters using Equation (5)
and (6) and individual clusters are merged at each iteration of the algorithm corre-
sponding to the minimum distance. This process stops when all junctions belong to
a single larger cluster and we obtain a series of merged clusters from the hierarchical
clustering algorithm.

Figure 3 displays networks with clusters identified by three different clustering al-
gorithm scenarios and the defined ‘true’ clusters. These ‘true’ clusters in Figure 3(a)
correspond to the simulated occupancy data in Figure 2. Figure 3(b) displays clusters
identified when the distance measure uses (1) and (3) with only observations over time
and without the functions ϕ and Φ. Cluster C is not identified as distinct from clus-
ter B and the distributional only algorithm is unable to determine the ‘true’ clusters.
In particular, the algorithm is unable to identify the cluster C which is composed of

9



●

●● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

● ●

●

●
●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

● ● ●●

●

● ●

●● ●

●

●

●

●

●●

●

●

● ●●

●

●

● ● ●

● ●

●

●

● ● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●●

●●

●

●

● ●

●

● ● ●
●

●

●

●● ●●

●

● ●● ●

●

●

● ●●

●

● ●

●

●

●

●

●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

Cluster

A

B

C

Cluster

A

B

(a) Simulated Truth (b) Distributional only

Cluster

A

B

C

Cluster

A

B

C

(c) Functional Only (d) Functional and Distributional

Figure 3. The FDCA applied to data simulated in the network for a period of six hours.
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Figure 4. Methods to determine the optimal number of clusters.

occupancy observations that successively jump between high and low values. Figure
3(c) depicts three clusters identified by the functional only algorithm, where Equation
(3) is determined using observations aggregated over time. In Figure 3(c), the iden-
tified clusters reflect the diminished ability of the algorithm to distinguish between
cluster C and cluster B as compared to the clusters identified in Figure 3(d). The clus-
tered network in Figure 3(d) displays results of the functional distributional clustering

algorithm that calculates F
(C)
ti (x0) using all components in (3). This algorithm is func-

tional and distributional because distance measures are calculated using conditional
CDFs for occupancy observations recorded over time. The clusters identified by the
functional distributional algorithm are nearly equivalent to the three ‘true’ clusters
displayed in Figure 3(a). This indicates the ability of the functional distributional al-
gorithm to recover the true spatially contiguous clusters when each cluster corresponds
to a distinct distribution of occupancy observations.

The optimal number of clusters within the network is determined using both the
commonly used gap statistic and a clustering balance criterion defined in Section 2.3.
For each clustering algorithm, the gap statistic and clustering balance criterion are
calculated for scenarios ranging from when the network has ten clusters to a scenario
when the all the sensors belong to a single cluster. Figure 4(a) and Figure 4(b) display
the clustering balance criterion and gap statistic against the corresponding number of
clusters for results determined by the functional distributional clustering algorithm.
The clustering balance criterion selects k = 3 for α = 0.5 and for higher and lower
values of α. The gap statistic chooses minimum k such that Gap(k) ≥ Gap(k + 1) –
sk+1 and this rule also determines that k = 3. However, determining bootstrap samples
for the gap statistic is computationally expensive and we utilise the clustering balance
criterion to determine the optimal number of clusters in Section 3.3 and Section 4.

To compare the clusters identified by the functional and distributional clustering
algorithm to the ‘true’ clusters displayed in Figure 3(a), we calculate the Adjusted
Rand index discussed in Section 2.4. ARI indicates agreement between a set of clusters
V that is determined by the functional distributional clustering algorithm and a set of
‘true’ clusters U and is equivalent to 0.93. Similarly, V determined by the functional
only algorithm results in an ARI of 0.68 for three clusters and V determined by the
distributional only algorithm leads to an ARI of 0.57 for two identified clusters. The
functional only algorithm is unable to correctly identify all the junctions belonging to
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Figure 5. Three-dimensional density plots for distinct clusters determined using the functional distributional
clustering algorithm.

cluster B and the distributional only algorithm is able to only identify two out of three
distinct clusters.

Figure 5 displays three-dimensional density plots for occupancy observations that
correspond to clusters identified by the functional distributional algorithm in Figure
3(d). These plots describe a relationship for each cluster between 100 occupancy ob-
servations (values between 0% and 100%), a time period of six hours (21600 seconds)
with a sampling rate of sixty seconds and estimates for a Gaussian kernel density (over
occupancy observations within the relevant cluster) with bandwidth equivalent to 15%.
This value of bandwidth enables meaningful comparisons among curves within a clus-
ter; lower values result in ‘choppier’ density curves that inhibit the ability to identify
differences.

In Figure 5, the sub-plot for cluster A represents observations with density levels
between 0.015 and 0.025 but are concentrated at lower occupancy levels between 10%
to 40%. There is also a steady increase in density values over six hours. The sub-plot
for cluster B displays observations with density levels reaching approximately 0.020
and occupancy levels concentrated between 30% to 75%. This sub-plot also reflects
the concentration of occupancy data for cluster B in Figure 3(d) towards higher levels
over the first few hours and a decrease in concentration reflected by lower density
over the latter half of the time period. The sub-plot for cluster C represents varied
density and occupancy levels through the observed time period. This corresponds to
the variation identified within the cluster C in Figure 3(d) and reflects the ability of
the clustering approach to adequately represent the differences in the shapes of curves
and the spread of occupancy values over time described in Figure 2.

3.3. Simulation study

This section provides a quantitative analysis of the proposed functional distributional
clustering algorithms to validate the clustering results in Section 3.2 for varied/various
datasets. To this end, we simulated datasets as described in Section 3.1 with seeds from
one to hundred to evaluate the developed algorithm’s ability to identify clusters. The
determined cluster structure is compared to the ‘true’ number of clusters as described
in Figure 3(a). For a given seed, the optimal number of clusters is determined using
the defined clustering balance criterion. At the selected number of clusters, the ARI
measures its agreement to the ‘true’ number of clusters. We average the ARI over
all simulation results and present a comparison between the functional distributional
algorithm, the functional only algorithm, and the distributional only algorithm. The
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Table 2. Results aggregated over 100 simulations with varied seeds for the functional distributional clustering

algorithm, functional only algorithm, and distributional only algorithm.

ARI Number of Clusters
Algorithm Mean SE 25th Q 50th Q 75th Q

Functional Distributional 0.85 0.174 3 3 4
Functional only 0.69 0.176 2 3 3
Distributional only 0.59 0.070 2 2 2

mean and corresponding standard error of the ARI for all three algorithms are pre-
sented in Table 2. In addition, the 25th quantile, the median, and the 75th quantile
of the determined optimal number of clusters are described for different algorithms.

The functional distributional algorithm generates clusters that are reasonably sim-
ilar to the defined ‘true’ clusters, as indicated by the aggregated ARI value equivalent
to 0.85. The functional only algorithm has a lower mean ARI equivalent to 0.69 while
the distributional only clustering algorithm struggles to identify three clusters with
ARI equivalent to 0.59. This is reflected by the lower ARI and the suggested two
optimal clusters.

In Table 3, the effectiveness of kernel density estimation is compared to coefficients
from a b-spline basis function and principal component scores. Both these modifi-
cations are closer to the performance of the functional only and distributional only
frameworks rather than the superior performance of the functional distributional clus-
tering algorithm. These simulations help highlight the effectiveness of modified kernel
density estimation within the functional distributional framework. A recently devel-
oped model-based clustering method [9] is also used for comparison in Table 3 and
is referred to as the STM model. The STM mixture model (with three mixture com-
ponents) is adapted for application to the simulated network. Each individual com-
ponent (within the mixture model) is an autoregressive polynomial regression with
logistic weights that are based on the space and time dimensions. Parameters are then
estimated using an expectation maximisation algorithm within a maximum likelihood
framework. As displayed in Table 3, the performance of the functional distribution
clustering algorithm within the hierarchical framework is very similar to the STM
method.

Table 3. Results aggregated over 100 simulations with varied seeds for variations of the functional distribu-
tional clustering algorithm and the SpaTimeClus method.

ARI Number of Clusters
Algorithm Mean SE 25th Q 50th Q 75th Q

Coefficients of B-spline basis 0.63 0.143 2 2 2
Principal component scores 0.58 0.258 3 4 8
SpaTimeClus 0.87 0.128 3 3 3

4. Application

4.1. Occupancy data

To illustrate the functional distributional algorithm, we apply the developed clustering
method to occupancy data generated for the 2.5 square miles network area in down-
town San Francisco, CA. High resolution spatio-temporal data for urban road networks
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(a) Distributional only (b) Functional only (c) Functional and Distributional

Figure 6. Clustering results using micro-simulated data over four hours.

are not readily available in open data sources and so we use an AIMSUN microscopic
traffic simulator to mimic relevant origin-destination traffic demand scenarios. These
scenarios are simulated to broadly represent three different clusters. 120 observations
are recorded over six hours (21600 seconds) with a sampling rate of 180 seconds and we
seek to identify the differences in occupancy levels that reflect the spread of congestion
across the network. Since data within the first two hours is limited to very low levels
of occupancy across the network, the functional distributional algorithm is applied to
80 occupancy observations recorded between 10 am to 2 pm (14400 seconds).

4.1.1. Results

In the described dataset, the underlying structure in the network for the ‘true’ number
of clusters is unavailable and making assumptions of the partition structure is chal-
lenging. The functional distributional algorithm is implemented using the distance
measure specified in Equation (6) and the bandwidths are calculated using the ex-
tended cross validation method described in Section 2.2. Selected bandwidths for hx
and ht are equivalent to 15 (occupancy in %) and 7.5 (time in seconds) and con-
ditional functions are estimated over the sample of 80 occupancy observations. The
clustering balance criterion suggests optimal number of clusters for the functional and
distributional algorithm, functional only algorithm and distributional only algorithm.
In Figure 6(c), the functional distributional clustering algorithm partitions a network
into nine clusters with three main clusters (green, purple, and orange). This is in con-
trast to the clusters obtained in Figures 6(a) and 6(b), where the clustering balance
criterion suggests a single larger cluster for the distributional only clustering algorithm
and a main larger cluster along with several smaller clusters for the functional only
clustering algorithm.

Figure 7 displays the corresponding density distributions for the clusters determined
by the functional distributional clustering algorithm. Within a sub-plot for an indi-
vidual cluster, Gaussian density curves (bandwidth equivalent to 15%) over relevant
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Figure 7. Three dimensional plots for the identified clusters in Figure 6(c).

occupancy observations are displayed at defined time points (at 30 minute intervals)
over the period of four hours (14400 seconds). This value of the bandwidth enables
density curves to retain differences within each curve and allows for comparisons be-
tween clusters. Individual curves also describe the concentration of occupancy and
their corresponding values between 0% and 100% through the day. The curves in the
three-dimensional sub-plot for the green cluster have a higher magnitude in density
levels as compared to the sub-plots for the orange and purple cluster. The sub-plot for
the green cluster also displays variations in the concentration of occupancies and the
range of occupancy values over four hours. A similar set of variations can be viewed
in the sub-plot for the yellow cluster but far more pronounced. The purple cluster
has occupancy values that are concentrated at higher values in the middle of the day.
On the other hand, the orange cluster has occupancy values that are concentrated far
more equally at lower and higher values and with lower change in the distribution of
density values through the period of four hours. The sub-plots on the third row dis-
play density curves and variations in occupancy levels that correspond to the smaller
distinct clusters in the lower part of the network.

5. Discussion

This paper proposes a functional distributional clustering algorithm within an agglom-
erative hierarchical framework to identify spatially contiguous clusters in a connected
grid style graph network. The algorithm seeks to identify homogeneous regions within
a heterogeneous network such that individual clusters reflect differences corresponding
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to vertices. In a given network, these clusters correspond to distinct temporal patterns
through the network. Within the framework of this clustering approach, the algo-
rithm is both functional such that a distance measure is defined utilising cumulative
distribution functions and distributional to account for temporal patterns present in
the available data rather than aggregating over the relevant data. In this proposed
non-parametric method, conditional CDFs are determined and stored outside individ-
ual iterations of the algorithm in order to improve the computational efficiency for
larger datasets. The simulation study demonstrates the superior ability of the func-
tional distributional clustering algorithm in identifying ‘true’ clusters compared to the
functional only, distributional only algorithms and similar performance to a more com-
plex (i.e., greater number of assumptions) model-based clustering method for spatio-
temporal data. However, this algorithm is built within an agglomerative hierarchical
clustering framework and inherits the associated disadvantages. For example, clusters
identified in each iteration of the algorithm are dependent on the structure constructed
in the previous steps and cannot be undone. This algorithm generates a hierarchy of
clusters and the optimal number of clusters are then determined using well-defined
methods (e.g., the gap statistic). In general, the agglomerative hierarchical clustering
method is better suited to datasets over small graph networks; computing distances
for a large number of cluster pairs can be computationally expensive. Further, the pro-
posed method identifies spatially contiguous clusters that only accommodate temporal
patterns. In future work, we seek to extend the functional distributional clustering al-
gorithm to be capable of identifying clusters that also change over time (i.e., dynamic
clusters).
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