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Abstract: The occurrence of Cryptococcus neoformans, the human fungal pathogen that primarily
infects immunocompromised individuals, has been progressing at an alarming rate. The increased
incidence of infection of C. neoformans with antifungal drugs resistance has become a global concern.
Potential antifungal agents with extremely low toxicity are urgently needed. Herein, the biological
activities of recombinant javanicin (r-javanicin) against C. neoformans were evaluated. A time-killing
assay was performed and both concentration- and time-dependent antifungal activity of r-javanicin
were indicated. The inhibitory effect of the peptide was initially observed at 4 h post-treatment and
ultimately eradicated within 36 to 48 h. Fungal outer surface alteration was characterized by the
scanning electron microscope (SEM) whereas a negligible change with slight shrinkage of external
morphology was observed in r-javanicin treated cells. Confocal laser scanning microscopic analysis
implied that the target(s) of r-javanicin is conceivably resided in the cell thereby allowing the peptide
to penetrate across the membrane and accumulate throughout the fungal body. Finally, cryptococcal
cells coped with r-javanicin were preliminarily investigated using label-free mass spectrometry-based
proteomics. Combined with microscopic and proteomics analysis, it was clearly elucidated the
peptide localized in the intracellular compartment where carbohydrate metabolism and energy
production associated with glycolysis pathway and mitochondrial respiration, respectively, were
principally interfered. Overall, r-javanicin would be an alternative candidate for further development
of antifungal agents.

Keywords: plant defensin; javanicin; Cryptococcus neoformans; antifungal action; proteomics

1. Introduction

The number of immunocompromised individuals including patients with organ
transplantations, AIDS, as well as people living with cancer and receiving chemotherapy is
increasing worldwide [1]. These individuals are at risk of being infected with opportunistic
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fungal pathogens, resulting in the increase of morbidity and mortality rates [2]. The
systemic mycoses linked with meningitis caused by Cryptococcus neoformans are being
recognized as a major threat for immunocompromised patients, particularly those with
HIV [3]. Treatment of cryptococcal meningitis relies on the use of three classes of anti-
fungal drugs, amphotericin B, flucytosine, and fluconazole [4]. However, these agents
are limited due to their adverse effects in which are sometimes lethal to humans [5,6]. In
addition, the emergence of secondary resistance has become more difficult for treatment [7].
Hence, novel antifungal agents to control cryptococcosis are urgently needed.

Recently, antimicrobial peptides (AMPs) are considered as potential candidates for the
treatment of infectious diseases [8]. Defensins, one of a diverse class of natural AMPs found
in mammalian and plant cells, are small cysteine-rich peptides with multifaceted actions
including host defense against microbial infection and immunomodulatory activity [9]. In
humans, various defensins are identified whereas three β-defensins, termed β-defensin-1
(hBD-1), hBD-2, and hBD-3 exhibited fungicidal activity have been extensively elucidated
and play a significant role in acute mucosal defense against Candida albicans [10].

In plants, defensins are one of several classes of antimicrobial peptides and most
abundant in stomata and peripheral cells, where pathogens usually attack [11,12]. Plant
defensins display remarkable broad-spectrum antimicrobial activity against bacteria, fungi,
and viruses, albeit antifungal activity is commonly reported [11,13]. The common fea-
tures of plant defensins including amphipathicity and cationicity enable them to perme-
abilize through biological membranes and pore-forming eventually caused of microbial
cell death. Apart from direct action on the membrane, some plant defensins act as cell-
penetrating peptides that exert their antimicrobial activity targeting specific intracellular
compartments [14]. Javanicin is a small (approximately 6 kDa) defensin-type of antimi-
crobial peptide isolated from Sesbania javanica seeds. The peptide comprises of 47 amino
acids with four disulfide bonds and is predicted to adopt a single alpha-helix and triple-
stranded antiparallel beta-sheet structure. From our previous study, recombinant javanicin
(r-javanicin) was produced using E. coli expression system [15]. The purified peptide was ex-
amined and exhibited potent antifungal activity against human fungal pathogens including
C. neoformans. However, the mechanism of action of this anticryptococcal peptide is still
unknown. Understanding the mode of action by which this molecule inhibits fungal
growth is essential for the development of an antifungal therapeutic drug.

In this study, the antifungal effects of r-javanicin against C. neoformans were evaluated.
The assessment of killing kinetics of the peptide was performed using a time-kill assay.
The action of peptides on the fungal membrane was observed using a scanning electron
microscope (SEM). The localization of r-javanicin was studied using both fluorescent
and confocal laser scanning microscope (CLSM). Finally, cellular metabolic processes of
C. neoformans after r-javanicin treatment were explored using proteomics analysis.

2. Results
2.1. Recombinant Avanicin Exhibited a Fungicidal Activity against C. neoformans

The antifungal properties of r-javanicin were examined using MIC assay. The results
indicated that C. neoformans adjusted 106 CFU/mL was completely killed at a peptide
concentration of 25 µg/mL whereas it needed a two-fold increase (50 µg/mL) while
107 CFU/mL yeast cells prepared for proteomic analysis, were examined. A time-kill of
cryptococcal cells was conducted for 48 h and the substantial reductions of viable cells
after treatment with various concentrations of peptide (25 (1 ×MIC), 50 (2 ×MIC) and
100 (4 × MIC) µg/mL) were observed (Figure 1). The growth inhibition of r-javanicin
antimicrobial peptide against C. neoformans was initiated at 4 h post-treatment. Viable
yeast cells gradually decreased after incubation with 1 × MIC concentration of peptide
whereas C. neoformans were more rapidly killed when higher concentrations of peptide
were examined. As a result, the killing activity of r-javanicin was mediated in a dose-
and time-dependent manner (Figure 1a). At the MIC value, the growth inhibition of
cryptococcal cells was reduced over 50% within 24 h and completely eradicated in 48 h
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(Figure 1b). Therefore, r-javanicin at 0.5 ×MIC could not reduce cryptococcal cells and
represented a log increase (2.75± 0.1656) comparable to the untreated group (2.71± 0.3100).
The log reduction of cryptococcal cells after being treated with various concentrations of
r-javanicin were shown in Table 1.
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Figure 1. Time-killing profiles of r-javanicin against C. neoformans. (a) cell viability was determined
by colony count and expressed in log 10 CFU/mL versus time. The error bars and standard deviation
were represented in three independent experiments and performed in triplicate. (b) the percent
inhibition calculated during fungal cells growth in the presence of various concentrations of r-
javanicin compared with untreated cells was illustrated.

Table 1. Antimicrobial effectiveness of r-javanicin against C. neoformans expressed in log CFU/mL
reduction values.

MIC Values Log Reduction (Average ± SD)

1 ×MIC 4.78 ± 0.1601
2 ×MIC 4.98 ± 0.0871
4 ×MIC 4.93 ± 0.0455
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2.2. Javanicin Intracellularly Translocated into the Yeast Cell

Initially, SEM was employed for outer surface morphological observation of fungal
cells after treatment with r-javanicin. C. neoformans incubated with a peptide suspension
buffer was performed in parallel as a control group. The results indicated cells with a
bright, spherical shape with a smooth surface and spiky protuberances in both control and
r-javanicin treated samples. These results implied that the fungal membrane might not be
a target of the peptide (Figure 2).
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Figure 2. The illustration of SEM image segmentation of C. neoformans H99 strain in either untreated or r-javanicin treated.
Panel (a) represented untreated cells control. Panel (b) indicated the yeast cells incubated with r-javanicin at its MIC value.
Photographs were taken at 4 and 8 h after treatment. Bars at 4 and 8 h indicated 5 and 1 µm, respectively. There is negligible
difference with slight shrinkage was observed in r-javanicin treated groups when compared to the untreated control.

To investigate the localization of the peptide in cryptococcal cells, r-javanicin tagged
with Flu-P1 was utilized for monitoring its subcellular localization by fluorescence micro-
scope. Anti-GXM mAb and CFW specific for capsule and cell wall staining, respectively,
were included in this study. The results showed that fungal capsule and cell wall could
be located in both control and test groups whereas r-javanicin-Flu-P1 staining was only
observed in fungal bodies of yeast cells treated with peptide (Figure 3). Additionally, CLSM
was conducted and images defined the accumulation of the peptide in the cytoplasmic
compartment (Figure 4). Overall, the data implied that r-javanicin is translocated across
the membrane, targeting an intracellular compartment of C. neoformans.
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In this study, label-free quantitative shotgun proteomics analysis was employed for 

the determination of proteome of C. neoformans in response to r-javanicin. Cryptococcus 

Figure 3. Fluorescence microscopic analysis of r-javanicin-Flu-P1 treated C. neoformans. Cryptococcal cells were incubated
with peptide suspension buffer (untreated control) (a). C. neoformans was incubated with r-javanicin-Flu-P1 peptide at 2
(b) and 8 h (c), respectively. Photographs were taken at the same parameter settings. Red fluorescence represented the
polysaccharide capsule staining with anti-GXM mAb followed by Alexa 568-conjugated goat anti-mouse IgG. Blue color
showed the boundary of fungal cell wall stained by specific cellulose and chitin-binding dye, calcofluor white (CFW). Green
fluorescence indicated the localization of antimicrobial peptide inside the yeast cells (scale bar = 10 µm).
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Figure 4. Fluorescent staining for r-javanicin localization in C. neoformans H99 using confocal laser scanning microscope
(CLSM). A budding yeast cell was stained with three fluorescent stainings, red color of anti-GXM mAb specific for
polysaccharide capsule followed by Alexa 568-conjugated goat anti-mouse Ig G (a), blue color of calcofluor white (CFW)
specific for cellulose and chitin in fungal cell wall (b) and green color of Flu-P1 labeled r-javanicin (c). Merge of triple-
fluorescent staining was represented (d). It was implied that r-javanicin localized in cytoplasm of C. neoformans. All photos
were taken at the same magnification (scale bar = 2 µm).

2.3. Javanicin Interacts with Cellular Metabolic Pathways of C. neoformans

In this study, label-free quantitative shotgun proteomics analysis was employed for
the determination of proteome of C. neoformans in response to r-javanicin. Cryptococcus
neoformans at inoculum of 107 cells/mL were incubated with 50 µg/mL (MIC value) of
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r-javanicin for 0, 4, 8, 6 and 24 h. After analysis, a total of 2325 proteins were identified and a
heat map of fungal proteins hits in various time points during peptide treatment compared
to untreated control was picked off (Supplementary Figure S1). Of these, 688 proteins
were identified in the untreated control, 124 were individually identified in peptide treated
group, and 1513 were expressed in overlap (Figure 5). One hundred and twenty-four
proteins of C. neoformans in response to r-javanicin at various time points from 0–24 h
were further analyzed and represented in the Venn diagram (Figure 6). It was found that
22 proteins were individually observed at the basal level (0-h incubation), therefore, these
identified proteins were disappeared after peptide exposure. An upsurge of a total of
70 proteins consisting of 15, 22, 12, and 21 proteins were exclusively induced at 4, 8, 16, and
24 h posttreatment, respectively (Figure 6a). The proteins identified in each time point were
further characterized using gene ontology analysis (Figure 6b, Supplementary Figure S1,
Supplementary Table S1). It was also observed that various fungal proteins expressions
were typically induced at 4 h after peptide treatment in which a total of 15 proteins played
role in 14 functions (Figure 6b) associated with DNA binding activity and catalytic activities
that are responsible for cellular metabolic processes, including carbohydrate metabolism.
Additionally, acetate kinase enzyme (A0A225XDF3) expression was commonly found in all
conditions.
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Figure 5. Venn diagram showing the number of C. neoformans proteins identified from untreated control group and
r-javanicin treated group (0, 4, 8, 16, and 24 h), analyzed by LC-MS/MS. Left part shows the protein counts of shared
(1513 proteins) and un-shared regions between yeast cell control (Control; 688 proteins) and javanicin treated C. neoformans
(JAVA; 124 proteins). Charts on the top right show the size of protein clusters in control (green) and peptide treated group
(blue) while the lower right is the cumulative numbers of shared (light purple) and un-shared proteins (purple) based on
Venn diagram.
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Figure 6. Venn diagram showing the proteins identified from C. neoformans in different time points after r-javanicin
treatment in three biological replicates. The distribution of identified proteins in each condition (a) and the number of
proteins classification based on protein function (b) are shown. Top part shows the protein counts of shared and un-shared
regions of javanicin treated C. neoformans (JAVA) at 0, 4, 8, 16 and 24 h. Charts on the lower left and right show the size of
protein clusters in each time point from 0 (green), 4 (blue), 8 (pink), 16 (yellow) and 24 h (orange), respectively. The bottom
part is the cumulative numbers of specific (purple) and shared proteins (light purple) based on Venn diagram.

3. Discussion

New peptide discovery is increasing following the study of their diverse array of
biological activities. Peptides with potent antimicrobial activity and limited toxicity to
human cells enter into clinical research and development pipelines. Along the way, the
study of the mechanism of actions of these candidate peptides has become one of the
indispensable processes for further development for therapeutic potential. Javanicin,
a class of defensin derived from the seed of S. javanica, was previously identified and
heterologous expressed in E. coli [15]. The peptide exhibited potent anti-proliferative
activity against breast cancer cells and antifungal activities in both human pathogenic yeast
and mold, including fluconazole sensitive and fluconazole-resistant Candida albicans, C.
neoformans, and Trichophyton rubrum [15]. However, the mode of action by which javanicin
exerts its antifungal effect is still unknown. C. neoformans, a major causative agent of
meningoencephalitis in patients with advanced AIDS was selected as a candidate for
preliminary evaluating the mechanism of action of the antimicrobial peptide in this study.
Regarding plant defensins, antifungal activity targeting the membrane surface followed by
its permeabilization and/or intracellular biomolecules were previously described [16,17].
In our study, the time-kill of r-javanicin against C. neoformans was initially examined.
Unlike the fungicidal activity of other defensins even completely killed yeast appears in
minutes to a few hours [18,19], the activity of r-javanicin was dramatically low starting
from 4 h to over 24 h. Based on the morphological change of cells, SEM is a primary tool
for analyzing distinctive membrane morphology after peptide exposure [20,21]. SEM was
conducted to study the morphology of the cryptococcal outer surface, therefore, negligible
differences in outer surface with slight shrinkage was observed in r-javanicin treated
cells. In fact, the internal cells alteration could not be seen when SEM was analyzed. The
degree of cryptococcal cells damage after antimicrobial peptide exposure would be further
investigated under transmission electron microscope (TEM). This technique has previously
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been applied for revealing more detail throughout the cells [22]. Whether r-javanicin
renders the internal compartment(s) alteration of yeast cells would be evaluated.

Utilizing of fluorescent microscopy for the determination of the cellular localization of
antimicrobial peptides has been effectively illustrated thus far [23]. Fluorescent labeled r-
javanicin was prepared using the IPL system for peptide localization in C. neoformans. Anti-
GXM-mAb and CFW specific for capsule and cell wall staining, respectively, were included
in this experiment. The results indicated that the fluorescent intensity of antimicrobial
peptides was detected intracellularly of yeast cells. The number of fungal cells incorporated
with peptide was significantly increased when the incubation period was increased from
2 to 8 h (data not shown). The combination of SEM and CLSM analysis revealed that
r-javanicin displayed fungicidal activity against C. neoformans through the intracellular
target(s). Nevertheless, it is noted that the specific localization of peptides including
cytoplasmic staining or colocalization study of existing cytosolic proteins in fungal cells
would be further investigated to determine the exact location of peptides.

To better understand the intracellular interaction of peptides in yeast cells, time-
course proteome analysis of C. neoformans in response to recombinant peptides was further
undertaken. After incubation with its MIC (50 µg/mL) for 0, 4, 8, 16, and 24 h, the
C. neoformans proteome was investigated by label-free based quantitative proteomics.
Twenty-two proteins observed at basal level (0 h of incubation) were found and those were
associated with catalytic activity, hydrolase activity, transporter activity, and transferase
activity. Interestingly, a few of those were identified as virulence-associated proteins
including ferric-chelate reductase (A0A225Y17) and antiphagocytic protein 1 (App1). Ferric-
chelate reductase is an enzyme that catalyzes the reduction of bound ferric iron in iron
chelators (siderophores). It is a key enzyme of the iron acquisition pathway, and thus
critical for C. neoformans survival during iron-dependent growth [24]. Loss of this enzyme
resulting in a defect of virulence factor production and the pathogenicity attenuation of
C. neoformans has been mentioned [25]. App1 has been identified as a virulence factor
by inhibiting the phagocytosis of host macrophages through complement receptors CR2
and CR3 [26]. However, these fungal proteins were disappeared when C. neoformans was
incubated with r-javanicin for at least 4 h.

Treatment with r-javanicin for 4, 8, 16, and 24 h caused 70 unique proteins alteration
in C. neoformans. They were responsible for 20, 16, 4, and 13 functions, respectively
(Figure 6b). Those proteins were mainly associated with catalytic and nucleic acid binding
activity (Supplementary Figure S2). Noteworthy, 14 proteins induced by r-javanicin at
4 h were involved in 14 exclusive functions including nucleic acid binding (A0A225YTG2
and A0A225X7V2), transcriptional regulatory network (A0A225YAJ2), and the cellular
response for surviving against r-javanicin [27,28]. Interestingly, it revealed that the majority
of those upsurged proteins involved in catalytic activity were mostly responsible for
variable metabolic processes. Many fungal intracellular proteins reflect the regulation
of carbohydrate catabolism, such as glyceraldehyde-3-phosphate dehydrogenase (GPD)
(A0A1Y0JXL3), pyruvate decarboxylase (PDC) (A0A225XTP6), 3-hydroxybutyryl-CoA
dehydrogenase (HBD) (A0A225Y9Q8), and inositol oxygenase (IOX) (A0A225Y7C6). These
enzymes are associated with either breaking down of some carbohydrates and energy
production in the cell. The function of PDC has previously been described and plays
a role in the fermentative process of yeast cells, especially in Saccharomyces, to produce
ethanol [29].

Thus, concurrent induction of PDC indicated that carbohydrate flux may proceed
through glycolysis into fermentation-like pyruvate. Likewise, IOX enzyme expression is
required for inositol catabolism in response to low energy conditions of organisms [30].
In addition, a previous report indicated that inositol can be exploited as a carbon source
in some fungal species, including C. neoformans [31]. Similarly, some catalytic enzymes
are important for metabolic processes including nucleic acid binding (A0A225YK20 and
A0A225YLC6), membrane transporter activity (A0A225YSN4), and transferase activity
(A0A225YAB0), were identified at 8 h post-incubation. Although the activity of bis
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(5′-adenosyl)-triphosphatase (A0A225X9K2) in C. neoformans is still unknown, this enzyme-
mediated apoptosis in human cancer cells has been reported [32]. Few potentially func-
tional proteins were observed at the late stage (16 and 24 h post-incubation). Additionally,
several expressed proteins with little known function were also observed at these time
points. In this study, the presence of acetate kinase (AK) was found in each period of inves-
tigation time. AK enzyme also facilitates the generation of ATP from acetate through the
central metabolic intermediate acetyl-CoA [33]. These pathways may include redundant
proteins as a regulatory network to compensate themselves for existence during r-javanicin
attack. The proteomic results of some fungal proteins alteration during r-javanicin activa-
tion were summarized in Figure 7.
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Figure 7. Proposed diagram of unique proteins involved in carbohydrate metabolism of C. neoformans in response
to r-javanicin. Based on the proteomics analysis, many of fungal enzymes associated with carbohydrate catabolism
after r-javanicin treated are identified (red letters) such as glyceraldehyde-3-phosphate dehydrogenase (GPD), pyru-
vate decarboxylase (PDC), 3-hydroxybutyryl-CoA dehydrogenase (HBD), inositol oxygenase (IOX), and acetated kinase
(AK). Purple letters are the intermediate molecules. Some enzymes in the pathway including alcohol dehydrogenase
(ADH), acetaldehyde dehydrogenase (ALD), citrate synthase (CS) and pyruvate dehydrogenase (PDH) are also indicated.
TCA = Tricarboxylic acid cycle; GYC = Glyoxylate cycle.

C. neoformans is classified to be obligate aerobe [34]. The oxidative phosphorylation in
mitochondria is the major source of ATP and essential for the survival of the fungal yeast
cells [35]. Currently, it has been revealed that both AK and PDC are upregulated to convert
pyruvate to acetaldehyde for acetate production under hypoxic condition [36,37]. The
proteomics analysis of C. neoformans after javanicin exposure indicated the unique proteins
expression for acetate production similar to that of oxygen-depleted. It is implied that
javanicin might be involved in mitochondria’s function. Compared to the aforementioned
peptides, few AMPs have been identified as a metabolic inhibitor thereby interfering with
any enzymes related to cellular processes or effector molecules. Tu et al., (2011) reported
that lactoferricin B inhibited bacterial growth affecting a number of metabolic pathways,
and one action was highly related to pyruvate metabolism [38]. Whereas Bac-7 peptide
caused a decrease in proteins involving in E. coli nucleic acid metabolism [39].
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Overall, we hypothesized that r-javanicin affected a number of proteins involved in
carbohydrate metabolism and impaired energy production. Interference of carbohydrate
metabolism of C. neoformans would be related with polysaccharide-associated virulence fac-
tors alteration including fungal capsule [40]. So that the measurement of capsule thickness
or determination of antifungal activity in capsular and acapsular strains in the presence of
r-javanicin might be further performed for supporting the effect of peptide. In addition, our
previous study revealed that r-javanicin induced the death of breast cancer cells (MCF-7)
via apoptotic pathway [15]. Although it is still unclear about the correlation between
the antifungal and anticancer activity of this novel peptide, it is possible that r-javanicin
might directly target mitochondria where the induction of apoptosis is originated. loss of
antibacterial activity of r-javanicin against both E. coli and Staphylococcus aureus, a candidate
bacteria for gram-negative and gram-positive bacteria, respectively, was observed [15].
The bactericidal activity of the peptide can conceivably be abolished due to the lack of any
intracellular target (mitochondria). Therefore, additional evidence is strongly needed to
support this hypothesis. The final destination of r-javanicin following translocation across
the biological membrane of eukaryotic cells needs further elucidation. The selective cellular
compartment labeling is a powerful tool for determining cellular events such as mitochon-
drial staining. Together with the study on energy-relevant metabolic processes would be
allocated for measuring the complexity of carbohydrate metabolism, including glycolysis,
TCA cycle, as well as electron transport chain [41]. Ultimately, affinity proteomics based on
the use of protein-specific detection has been currently introduced as a promising study
of the endogenous complex. The particular strengths of this method including protein
localization, functional characterization, and target identification are the impacts for the
discovery of new therapeutic agents [42].

4. Materials and Methods
4.1. Microorganism

Cryptococcus neoformans H99 strain (serotype A) was kindly provided by Assoc. Prof.
Dr. Pojana Sriburee, Department of Microbiology, Faculty of Medicine, Chiang Mai Uni-
versity, Chiang Mai, Thailand. The growth of pathogenic yeast was maintained on the
Sabouraud dextrose agar (Thermo Fisher Scientific, Waltham, MA, USA), and incubated
at 37 ◦C for 72 h. For the liquid culture, an isolated colony was cultivated in RPMI-1640
medium (Thermo Fisher Scientific, Waltham, MA, USA), incubated at 37 ◦C for 24 h with
shaking. Yeast cells were harvested by centrifugation, washed twice with sterile phosphate-
buffered saline; PBS (137 mM NaCl, 2.6 mM KCl, 10 mM NaH2PO4, 1.8 mM KH2PO4;
pH 7.4), and the desired inoculum was quantified using the Neubauer chamber. In general,
cells density at approximately 1 × 106 cells/mL in RPMI-1640 medium supplemented with
2% glucose [43] were prepared in each experiment.

4.2. Recombinant Javanicin Production

In this study, r-javanicin was obtained according to the previous protocol [15]. Briefly,
a mid-log phase culture of E. coli Origami 2 (DE3) strain carrying the pTXB1-javanicin
plasmid was induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and further
incubated at 25 ◦C for 18 h with agitation. Bacterial cells were harvested by centrifugation
at 4000× g at 4 ◦C for 10 min, washed thrice with PBS, and resuspended in B-PERTM

lysis reagent (Thermo Fisher Scientific, Waltham, MA, USA). To pellet insoluble material,
the solution was centrifuged at 10,000× g for 10 min. The supernatant was collected
and the recombinant fusion protein was further purified according to the manufacturer’s
instruction (IMPACT™ kit; New England Bio Labs Inc., Ipswich, MA, USA). Cleavage of the
fusion protein was induced by dithiothreitol (DTT) (Merck KGaA, Darmstadt, Germany).
Finally, r-javanicin was dialyzed with stirred in PBS for 24 h, at 4 ◦C, and concentrated
using NMWL 3 KDa ultracentrifugation (Amicon ultra 15 mL centrifugal filter; Merck
KgaA, Darmstadt, Germany). The peptide concentration was measured, then checked on
SDS-polyacrylamide gel electrophoresis and kept at −20 ◦C until determination.
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4.3. Antifungal Activity of R-Javanicin against C. neoformans

Antifungal activity determination was performed according to the previous
reports [44,45]. Two different inoculums of C. neoformans at 106 and 107 colony-forming
units (CFU)/mL (the latter was provided for proteomic analysis) were prepared in a 96-well
plate format. Fifty microliters of cell suspension in RPMI-1640 medium supplemented with
2% glucose was incubated with 50 µL of two-fold serially diluted peptide ranging from
0–200 µg/mL and further incubated at 37 ◦C for 48 h. The experiment was conducted in
triplicate in three independent experiments, and the average values were determined.

4.4. Time-Kill Assay

The time-kill of r-javanicin against cryptococcal cells was evaluated according to the
previously described protocol [44]. The total volume of 10 mL containing 5 mL of adjusted
cell suspension and 5 mL of either peptide or PBS was set up. At each time point (0, 2, 4, 6,
8, 12, 16, 24, 36, 48 h), one hundred microliters of the reaction mixture were withdrawn
and 10-fold serially diluted in PBS. Approximately 30 µL of diluted culture was spread on
SDA plates and then were incubated at 37 ◦C for 48 h. The total number of yeast cells was
counted, and the percentage of cell viability of C. neoformans versus time was plotted. The
experiment was performed in triplicate independently three times, and the average values
were determined.

4.5. Scanning Electron Microscopic Analysis

SEM was employed as previously described by Datta and colleagues [46]. The desired
inoculum of yeast cells was incubated at 37 ◦C with the MIC value of r-javanicin at a
final concentration of 25 µg/mL. Five hundred microliters of fungal suspension at 4 and
8 h post-treatment was aliquoted and then incubated with 2.5% glutaraldehyde at room
temperature (RT) for 1 h. After fixation, the suspension was centrifuged at 5000× g for
5 min, the cell pellet was collected, washed, and resuspended in 20 µL phosphate buffer
solution (0.0754 M Na2HPO4.7H2O, 0.0246 M NaH2PO4H2O; pH 7.4). Cells were placed on
poly-L-lysine coated slides and air-dried for 1 h. Slides were gently washed with phosphate
buffer solution and treated with 0.1 M of phosphate buffer containing 2% osmium for 1 h.
After incubation, slides were washed once, air-dried for 30 min, and followed by the
dehydration process using a series of ethanol. Untreated controls were assayed using the
same protocol. Finally, the samples were gold-coated and observed under SEM (JEOL Ltd.,
Tokyo, Japan).

4.6. In Vitro Peptide Labeling with Flu-P1

To study the peptide localization in the yeast cell, r-javanicin was labeled with fluo-
rescein dye. Flu-P1, a commercially available fluorescein synthetic peptide consisting of
7 amino acid residues (CDPEK(Fluorescein)DS), was kindly provided by Dr. Inca Ghosh,
New England Biolabs, Inc. r-Javanicin was tagged with Flu-P1 fluorescent peptide through
the intein-mediated protein ligation (IPL) system [47]. Following the manufacturer’s in-
structions, the purified recombinant peptide was diluted with 1×IPL reaction buffer to
achieve the concentration of 1 mM. The peptide suspension was then mixed with 1 mM
Flu-P1 at the ratio of 1:1, and further incubated at 23 ◦C for 4 hr. Fluorescent labeled
r-javanicin was added into dialysis tubing with a 3.5 kDa molecular weight cut-off and
dialyzed in PBS overnight at 4 ◦C. The labeled peptide was concentrated and kept at
−20 ◦C until testing commenced.

4.7. Peptide Localization Using Fluorescence Microscopy

The reaction was modified from elsewhere [48]. An inoculum of C. neoformans was
treated with r-javanicin-Flu-P1 at MIC value (25 µg/mL) and further incubation at 37 ◦C
for 2 h and 8 h. The fungal suspension in each time point was collected and washed three
times with PBS. After centrifugation at 5000× g for 5 min, yeast cells were then fixed
with 4% paraformaldehyde. Fixed cells were blocked with PBS containing 2% human
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AB serum and further incubated on ice for 30 min. Monoclonal antibody (mAb) against
glucoronoxylomannan (GXM) clone 18B7 (1:50) (kindly provided by Assoc. Prof. Dr. Sirida
Youngchim, Department of Microbiology, Faculty of Medicine, Chiang Mai University,
Thailand) was added and incubated on ice for 30 min. After washing, the mixture was
further incubated with a 1:200 dilution of Alexa 568-conjugated goat anti-mouse IgG
(Invitrogen, Carlsbad, CA, USA) followed by 20 µg/mL calcofluor white (CFW) (Merck
KGaA, Darmstadt, Germany) for 30 min. Finally, the cell was pelleted and resuspended
with anti-fade and observed under a fluorescent microscope and CLSM model LSM 980
(Carl Zeiss, Inc., Oberkochen, Germany). Control was done in parallel whereas r-javanicin-
Flu-P1 was replaced by peptide suspension buffer.

4.8. Protein Preparation for Label Free Quantitative Proteomics

Protein preparation was conducted according to the previous report [49]. Briefly,
adjusted C. neoformans cell suspension to 107 CFU/mL was exposed to an equal volume
of diluted peptide (a final concentration of peptide was 50 µg/mL). The mixture was
incubated at 37 ◦C for 0, 4, 8, 16, and 24 h. Following incubation, the treated cells were
withdrawn and collected by centrifugation at 5000× g for 5 min. The total cellular protein
was extracted, quantified, solubilized with 0.5% SDS solution, and vortexed at RT for 1 h.
The supernatant was collected by centrifugation at 10,000× g for 15 min. Two volumes of
cold acetone was added and subsequently incubated at−20 ◦C overnight. The mixture was
centrifuged, and the pellet was collected, air-dried, and then stored at−80 ◦C. After protein
measurement, 5 µg of protein samples from each biological triplicate were subjected to an
in-solution digestion process. Initially, protein pellets were completely dissolved in 10 mM
ammonium bicarbonate (AMBIC). DTT solution (10 mM DTT in 10 mM AMBIC) was
added into the mixture and further incubated at 60 ◦C for 1 h. The sample was alkylated
using 15 mM iodoacetamide (IAA) in 10 mM AMBIC solution. The treated samples were
gently mixed and further incubated in the dark at room temperature for 45 min. After
removing the aIAA solution, protein samples were digested with sequencing grade trypsin
(ratio 1:20) and incubated at 37 ◦C for overnight. Afterwards, digested peptides were dried
using a speed vacuum concentrator, resuspended in 0.1% formic acid, and subjected for
proteome analysis. The protein preparation was done in three independent experiments.

4.9. Liquid Chromatography-Tandem Mass Spectrometry (LC/MS) and Data Analysis

The processed samples were injected into a Hybrid Quadrupole Q-TOF Impact II LC-
MS system (Bruker Daltonics Ltd.; Hamburg, Germany) coupled with a nanoLC system:
UltiMate 3000 LC System (Thermo Fisher Scientific; Madison, WI, USA). Briefly, one
microliter of digested proteins was enriched on a µ-Precolumn 300 µm i.d. × 5 mm
C18 Pepmap 100, 5 µm, 100 A (Thermo Scientific, Nottingham, UK), separated on a
75 µm i.d. × 15 cm and packed with Acclaim PepMap RSLC, 2 µm C18, 100 Å, nanoViper
(Thermo Scientific, UK). Chromatography was performed with solvent A (0.1% formic
acid in water) and solvent B (0.1% formic acid in 80% acetonitrile). A gradient of 5–55%
solvent B was used to elute peptides by a constant flow into a nanocolumn at flow rate of
300 nL/min. Electrospray ionization was carried out at 1.6 kV using the Captive Spray and
nitrogen was used as a drying gas (flow rate about 50 L/h). Collision-induced dissociation
(CID) product ion mass spectra were obtained using nitrogen gas for collision. Mass spectra
(MS) and MS/MS spectra were obtained in positive-ion mode at 2 Hz over the range (m/z)
150–2200. The collision energy was adjusted to 10 eV as a function of the m/z value [50].
The LC-MS analysis of each sample was done in triplicate. For quantitative analysis, raw
LC-MS data were analyzed by MaxQuant 1.6.6.0. with the Andromeda search engine to
correlate MS/MS spectra to the Uniprot C. neoformans database [51]. The MaxQuant’s
standard setting was as followed: maximum of two miss cleavages, a mass tolerance of
0.6 dalton for the main search, trypsin as a digesting enzyme, carbamidomethylation of
cysteine as fixed modification, and the oxidation of methionine and acetylation of the
protein N-terminus as variable modifications. Only peptides with a minimum of 7 amino
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acids, as well as at least one unique peptide, were required for protein identification. Only
proteins with at least two peptides, and at least one unique peptide, were considered
as being identified and used for further data analysis. Protein FDR was set at 1% and
estimated by using the reversed search sequences. The maximal number of modifications
per peptide was set to 5. Mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the jPOSTrepo [52] partner repository with the dataset
identifier JPST001153 and PXD025806.

5. Conclusions

In summary, the mechanism of action for r-javanicin against C. neoformans was pre-
liminarily studied and likely implicated in intracellular target(s). The slow-killing kinetic
represented by the peptide also strongly supported the role of the intracellular targeting
mechanism and was involved in carbohydrate metabolism and energy production impair-
ment. However, fundamental aspects of the specific pathways attacked by r-javanicin and
the unique features on the cellular level remain a mystery. To what extent intracellular
translocation of r-javanicin into cryptococcal cells to mediate fungal death for further
development of fungal therapeutic drugs remains to be seen.

Supplementary Materials: The following are available online, Figure S1: Heat map of fungal protein
hits in various time points between untreated control and r-javanicin treated group with a significant
difference (p < 0.05). Figure S2: Pie chart showing gene ontology (GO) classification of Cryptococcus
neoformans responses to r-javanicin in each time point (0–24 h), Table S1: The identified proteins of
r-javanicin treated with C. neoformans at various times of incubations.
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