Fungicidal activity of recombinant javanicin against Cryptococcus neoformans is associated with intracellular target(s) involved in carbohydrate and energy metabolic processes

Orrapin, S., Roytrakul, S., Phaonakrop, N., Thaisakun, S., Tragoolpua, K., Intorasoot, A., McGill, S., Burchmore, R. and Intorasoot, S. (2021) Fungicidal activity of recombinant javanicin against Cryptococcus neoformans is associated with intracellular target(s) involved in carbohydrate and energy metabolic processes. Molecules, 26(22), 7011. (doi: 10.3390/molecules26227011)

[img] Text
259324.pdf - Published Version
Available under License Creative Commons Attribution.

2MB

Abstract

The occurrence of Cryptococcus neoformans, the human fungal pathogen that primarily infects immunocompromised individuals, has been progressing at an alarming rate. The increased incidence of infection of C. neoformans with antifungal drugs resistance has become a global concern. Potential antifungal agents with extremely low toxicity are urgently needed. Herein, the biological activities of recombinant javanicin (r-javanicin) against C. neoformans were evaluated. A time-killing assay was performed and both concentration- and time-dependent antifungal activity of r-javanicin were indicated. The inhibitory effect of the peptide was initially observed at 4 h post-treatment and ultimately eradicated within 36 to 48 h. Fungal outer surface alteration was characterized by the scanning electron microscope (SEM) whereas a negligible change with slight shrinkage of external morphology was observed in r-javanicin treated cells. Confocal laser scanning microscopic analysis implied that the target(s) of r-javanicin is conceivably resided in the cell thereby allowing the peptide to penetrate across the membrane and accumulate throughout the fungal body. Finally, cryptococcal cells coped with r-javanicin were preliminarily investigated using label-free mass spectrometry-based proteomics. Combined with microscopic and proteomics analysis, it was clearly elucidated the peptide localized in the intracellular compartment where carbohydrate metabolism and energy production associated with glycolysis pathway and mitochondrial respiration, respectively, were principally interfered. Overall, r-javanicin would be an alternative candidate for further development of antifungal agents.

Item Type:Articles
Keywords:Plant defensin, javanicin, Cryptococcus neoformans, antifungal action, proteomics.
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:McGill, Mrs Suzanne and Burchmore, Dr Richard
Authors: Orrapin, S., Roytrakul, S., Phaonakrop, N., Thaisakun, S., Tragoolpua, K., Intorasoot, A., McGill, S., Burchmore, R., and Intorasoot, S.
College/School:College of Medical Veterinary and Life Sciences > School of Infection & Immunity
Journal Name:Molecules
Publisher:MDPI
ISSN:1420-3049
ISSN (Online):1420-3049
Copyright Holders:Copyright © 2021 The Authors
First Published:First published in Molecules 26(22):7011
Publisher Policy:Reproduced under a Creative Commons licence

University Staff: Request a correction | Enlighten Editors: Update this record