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Abstract 

Transport phenomena in a hybrid or single-particle nanofluid over a conical body embedded inside a 

porous medium are investigated. The fluid contains homogenously mixed nanoparticles and alive cells 

that are able to migrate, collectively sculpturing a thermo-bio-solutal system. Transport processes 

including mixed convection as well as species and cell transfer are simulated using a similarity 

technique. As the problem involves a large number of parameters with complicated interactions, 

machine learning is applied to predict a wide range of parametric variations. The simulation data are 

used to build an intelligent tool based on artificial neural network to predict the behaviour of the system. 

This also aids development of precise correlations for non-dimensional parameters dominating the 

transport phenomena. The results indicate that the lower values of motile Lewis number and higher 

mixed convection parameter enhance the Nusselt number. However, it is contained respectively by 

Peclet number increment and increases in the bio Rayleigh number. It is further shown that an increase 
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in Prandtl number enhances Sherwood number and makes the motile microorganisms more uniform. 

Peclet number directly influences the transport of heat, mass, and microorganisms. The study clearly 

demonstrates the abilities of combining numerical simulations with machine learning to significantly 

extend and enrich analysis of problems with large number of variables. The findings also pave the way 

for predicting behaviors of complex thermo-bio-solutal systems without resorting to computationally 

demanding simulations.     

Keywords: Bio-thermal convection; Motile microorganisms; Hybrid nanofluid; Artificial Neural 

Networks; Machine learning 

 

Nomenclature  

𝑎 Constants 𝑞! Mass flux on the wall 

𝐴", 𝐴#, 𝐴$, 𝐴%, 𝐴& Constants 𝑞' 
Motile Microorganisms flux 

on the wall 

𝑎() Interfacial area per unit volume of porous media 𝑞* Heat flux on the wall 

𝐴𝐼 Artificial intelligence 𝑟(𝑥) Cone radius 

𝐴𝑁𝑁 Artificial Neural Networks 𝑅𝑒 Freestream Reynolds number 

𝑏 Chemotaxic constant 𝑆 Shape factor 

𝐵𝑖 Biot number 𝑆𝑐 Schmidt number 

𝑐 Concentration of nanoparticles 𝑆ℎ Sherwood number 

𝐶 Non-dimensional concentration of nanoparticles 𝑆ℎ! Average Sherwood number 

𝐶+ Specific heat at constant pressure 𝑇 temperature 

𝐷! Brownian diffusion coefficient 𝑢, 𝑣 velocity in x and y directions 

𝐷' Microorganisms diffusion 𝑉,,. 

weights between the bias and 

the i-th neuron of the hidden 

layer 

𝑓 velocity function in y direction 𝑉.,/ 

weights between the j-th 

neuron of the hidden layer 

with i-th neuron of the output 

layer 

𝑓	́ velocity function in x direction 𝑊0 
Maximum cell swimming 

speed 

𝑓. output of i-th neuron of the hidden layer 𝑊,,. 

weight between the bias and 

the i-th neuron of the hidden 

layer 
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𝑓/ output of j-th neuron of the hidden layer 𝑊.,/ 

weight between the j-th 

neuron of the input layer and 

i-th neuron of the hidden layer 

𝐹𝐶𝐷 F-test correlation difference 𝑥, 𝑦 Coordinate axes 

𝑔 Gravitational acceleration 𝑥/ 
j-th input of the neural 

network 

𝐺𝑟 Grashof number Greek symbols 

ℎ Heat transfer coefficient α Thermal diffusivity 

ℎ() Interstitial heat transfer coefficient β 
Thermal expansion 

Coefficient 

𝐼(𝑥, 𝑦) MI between two features of x and y 𝛽∗ Solutal expansion Coefficient 

𝑘 Thermal conductivity 𝛾 
Average volume of a 

microorganism 

𝑘" Permeability of the porous medium 𝛾∗ 
the modified conductivity 

ratio 

𝑘! Mass transfer coefficient 𝛾" The half cone angle 

𝑘' Motile Microorganisms coefficient 𝛿 the bio-convection constant 

𝐿 Cone length 𝜀 Porosity 

𝐿2 the bio-convection Lewis number 𝜂 Similarity variable 

𝑀𝐿𝑃 Multi-Layer Perceptron 𝜃 Non-dimensional temperature 

𝑀𝐼𝐷 Mutual Information Difference 𝜆 Permeability parameter 

𝑛 density Motile of Microorganisms 𝜆" 
Dimensionless mixed 

convection parameter 

𝑁 
Non-dimensional density Motile of 

Microorganisms 
𝜇 Dynamic viscosity 

𝑁2 the bio-mix convection Rayleigh number 𝜈 Kinematic viscosity 

𝑁0 
the ratio of concentration to thermal buoyancy 

forces 
𝜌 Fluid density 

𝑁𝑢 Nusselt number 𝜌! Microorganism density 

𝑁𝑛 Density number of Motile Microorganisms 𝜙", 𝜙# 
Solid volume fraction of 

nanoparticles 1 and 2. 

𝑁𝑢! Average Nusselt number Subscripts 

𝑂. 
weighted output for each neuron of the output 

layer 
𝑓 Fluid 
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𝑃(𝑥, 𝑦) 
probability density functions based on the 

variables x, y 
ℎ𝑛𝑓 Hybrid nanofluid 

𝑃𝑒 the bio-convection Peclet number 𝑠 Solid 

𝑃𝑟 Prandtl number 𝑤 
Related to the external wall 

of the cone 

𝑃𝑆𝑂 Particle Swarm Optimization ∞ Far field 

 

1. Introduction 

Biological thermal convection plays a central role in many natural and bio-engineered systems 1-

3. In general, transport of heat and mass in such systems is more complex than that in non-biological 

systems as the existence of microorganisms can significantly complicate the problem 4-5. This stems 

from changing thermo-physical properties of the base fluid by blending nanoparticles as well as 

reconfiguring the general sculpture of diffusion and convection of the nanofluid by adding 

microorganisms. 6-7. Most importantly, exploring such complicated physics is central to the control of 

the biological systems for reaching high levels of bio-efficiency. Similar to mass conservation for the 

nanofluid, the cells require their own transport equation 8-9. In many biological applications, such fluid 

passes through porous media 10-11. The resultant problem ends up having a large number of influencing 

parameters. Given the high sensitivity of biological systems to variations in temperature, heat transfer 

analysis becomes an essential task. Here, we show that machine learning can be effectively incorporated 

into an, otherwise, classical study to significantly enhance the predictability of a heat transfer model. 

In the followings, first the state of the art in the modelling of heat convection and bio-convection 

with nanofluids is briefly reviewed and then the use of machine learning in heat transfer analysis is 

discussed. Devi and Devi 12-13 scrutinized the advantages of the application of hybrid Alumina-copper-

water nanofluids over the stretching surface. The rate of heat transfer increased in the presence of hybrid 

nanofluids. A higher heat transfer rate was achieved by applying hybrid nanofluid in comparison to that 

of single-particle nanofluid. Lund et al. 14 solved the governing equations for fluid flow and heat transfer 

of Cu-Fe3O4-H2O hybrid nanofluid in porous media using a similarity transformation method. It was 

reported that the rate of heat transfer was reduced by applying more copper nanoparticles and plate 

suction. 

Emami et al. 15 numerically investigated the laminar heat convection of Cu-water nanofluid in a 

porous cavity affected by the inclination angle and heater configuration. It was shown that the 

application of nanofluid and porous media was beneficial for heat transfer only in the low to moderate 

natural convection regimes and the strong natural convection was inversely affected by them. The 

corner positioning of the heater was found to be more influential. El-Shorbagy et al. 16 numerically 

investigated the convective heat transfer of a nanofluid in a trapezoidal porous channel. Permeability 

and Darcy number showed a non-conventional trend. The Nusselt number depicted increasing-
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decreasing variation by the height of the channel. The heat transfer and fluid flow in a V-shaped cavity 

of heterogeneous, partially layered porous material was numerically investigated by Raizah et al. 17. 

The horizontal positioning of the porous layer was identified as the optimal thermal case. 

Chao 18 investigated the effects of combining porous media with nanofluid on natural convection 

in a wavy wall cavity. By intensifying the volume fraction of the nanoparticles and amplitude of the 

wave, Bejan and Nusselt number rose and entropy generation was mitigated. Increasing the porosity, 

Nusselt number, volume fraction of nanoparticles, and Rayleigh number made a significant 

augmentation of heat transfer. The mixed convection of the hybrid Cu-Alumina-water nanofluid was 

assessed in a trapezoidal cavity by Cimpean et al. 19. Reynolds and Darcy number increment led to heat 

transfer enhancement. Kadhim et al. 20 conducted a parametric study of natural convection heat transfer 

in an inclined cavity configured with two opposing wavy walls and saturated with layered porous 

medium and hybrid nanofluid of Cu-Alumina-water. The aiding or destroying contribution of porous 

media in heat transfer depended on the inclination angle. Golamalipour et al. 21 investigated the effects 

of eccentricity of an annular heat source in a porous cavity contained Cu-water nanofluid and concluded 

that the downward settling of the heat source made the heat transfer to be the most enhanced and entropy 

generation negligible. 

Khademi et al. 22 studied mixed convection of a nanofluid on a plate in a porous medium and 

reported that Richardson number affected the nanoparticles dispersion level. The laminar forced 

convection in a U-turned pipe filled with hybrid nanofluid and the porous medium was investigated by 

Moghadasi et al. 23. Increasing Darcy number provoked the performance evaluation criteria to increase 

while thickening the porous media intensified the pressure drop. Waini et al. 24 considered mixed 

convection over a flat plate that emerged in a porous media, while a hybrid nanofluid of Cu-Alumina-

water was passed on. The similarity solution showed applying hybrid nanoparticles was beneficial to 

postpone the boundary layer separation. The same hybrid nanofluid was used by Ahmed 25 in the 

analysis of mixed convection of an inclined porous cavity using the fractional derivative method. The 

parameters were divided into two main categories, as those made opposing or aiding flow pattern. Bari 
26 evaluated nanofluid free convection in a porous medium, aiming to cool an electrical device. A 

general correlation for the Nusselt number was introduced. The volume ratio of porous material matrix 

to that of the base fluid was found an outstanding parameter affecting heat transfer. Sheikholeslami 27 

numerically simulated a 3D porous cavity filled with a nanofluid and showed the straight relation 

between heat transfer and non-dimensional numbers of Reynolds and Darcy number. A similar relation 

was introduced for the kinetic energy of the nanofluid. 

Chamkha et al.28-30 studied free convection and mass transfer from a vertical cone with magnetic 

field and heat generation and radiation effects. They are found that the local tangential and skin-friction 

coefficients and local Nusselt and Sherwood numbers increase with the time when the angular velocity 

of the cone increases, but the reverse trend is observed for decreasing angular velocity. The mixed 

convection flow and mass transfer with a magnetic field was investigated by Takhar et al.31-32. The 
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results indicate that the magnetic field significantly affects the velocity components and these, in 

general, decrease with an increasing magnetic field, whereas the temperature increases. 

The bio-convection heat transfer using nanomaterials has been repeatedly found in the literature 

more than ever since firstly introduced by Platt 33. The bio-convection heat transfer involves many 

applications in systems involving alive cells where heat transfer enhancement and high mass mixing 

are sought. It can be triggered by floating the low-density microorganisms in a liquid, specified by 

patterns in the cell mitigation 2, due to inherent fluctuations 34. 

Kuznetsov 35 depicted patterns of the bio-convection forming in nanofluid suspension. He sought 

to solve the stability problem using the Galerkin method to model geophysical and sedimentary 

applications. In other studies, this author 36-37 conducted the convection of a nanofluid including 

nanoparticles and motile microorganisms. The model considers Brownian motion and thermophoresis 

effects. The results showed that the heated zone location on the boundaries and the Rayleigh number of 

the nanofluid without microorganisms could considerably destabilize the suspension 36. Saini and 

Sharma 38 stepped forward by considering more realistic boundary conditions in the bio-thermal 

convection problem. The combined presence of thermophoresis, Brownian motion, and microorganisms 

made a decreasing effect on the thermal Rayleigh number and destabilizing the flow. However, heart 

transfer was on the enhancement for microorganisms’ convection. They also performed a linear and 

non-linear stability analysis of bio-thermal convection 39. The effect of bio-convection on the thermal 

convection was found as a function of Peclet number 39. Lewis number and nanoparticles Rayleigh 

number induced larger-scale cells 40. 

Bio-convection over a flat surface was analyzed using a similarity method by Xu 41. Zaimi et al. 
42 analytically assessed the bio-convection of stagnation flow over a stretching-sucking plate. The 

suction resulted in a higher local Nusselt number and microorganism density. Xu and Pop 43 investigated 

the mixed convection in a fluid flow suspended by both nanoparticles and microorganisms. The 

application of the passive method to solve the problem was broadly discussed. Using a similarity 

solution, the bio-convection on a horizontal flat plate surrounded by porous material and submerged in 

the nanofluid and microorganisms was investigated by Beg et al. 44. Lewis number led to enhanced 

nanoparticle concentration and elevate density function of the microorganisms. Kumar et al. 45 studied 

the Stagnation point problem under slip conditions of velocity and heat transfer considering a mixed-

convection. By conducting an unsteady solution, Peclet number augmentation diminished 

microorganisms’ concentration. Increment of the mixed convection parameter had a suppressing effect 

on heat transfer and motile microorganism transfer. 

Application of machine learning (ML) for prediction purpose is growing rapidly in many areas 

leaving a profound impact on various engineering and scientific fields 46. This method has been shown 

to be most useful for the analysis of computationally expensive problems, see for example 47-48. By 

developing hard and soft reservoirs of computing machines, ML has become a vital complement for 

experimental, computational, and theoretical fluid dynamics 49- 50. In recent years, some research have 
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been performed on using machine learning together with computational fluid dynamics (CFD) problems 
51-55. This predictive tool can significantly push the boundaries of classical approaches and allows 

conduction of more sophisticated analysis. 

The current study conducts an analytical-numerical investigation of the bio-thermal mixed 

convection of a hybrid nanofluid in a porous medium containing a conical geometry. Such configuration 

has been rarely investigated in the past. As the problem contains the impact of many variables including 

Prandtl number, Peclet number, Rayleigh number, Lewis number, motile density number, mixed 

convection parameter, and others on the heat, mass, and cells transfer, ML is a beneficial computing 

predictor to subside the number of simulations and to generalize the results. The results, therefore, 

dominate the whole range of variations for governing independent parameters. 

2. Problem description, assumptions, and governing equations 

In this study, a mixed bio-convection heat transfer of an embedded cone in a porous medium is 

investigated. Fig. 1 shows the geometry of the current problem that is the nanofluid stagnation flow 

over a conical body embedded in a porous material. The half cone angle is named 𝛾". 

 

 
Fig. 1. The Schematic view of a stationary cone under radial stagnation flow in porous media. 

 

The nanofluid is assumed to be Newtonian and single-phase. The thermo-physical properties of 

the nanofluid are kept at constant values, except by varying the volume fractions of nanoparticles. The 

fluid flow is assumed to be steady, incompressible, laminar, and the viscous heating of the flow is 

ignored. The porous medium is homogenous and isotropic with non-equilibrium thermal conditions. It 
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is further assumed that the porous media cannot absorb the microorganisms and they can easily pass 

through the pores. Besides, Reynolds number values of the porous medium were assumed to be low so 

the non-linear effects can be ignored. The hot surfaces are assumed to be maintain at the thermal 

conditions consistent with requirements of the living microorganisms. The governing equations for the 

current problem are introduced in the followings.  

The continuity equation is  

𝜕(𝑟𝑢)
𝜕𝑥

+
𝜕(𝑟𝑣)
𝜕𝑦

= 0; (1) 

𝑢 and 𝑣 are the velocities in directions 𝑥 and 𝑦 shown in Fig.1. The momentum equation in the axial 

direction takes the form of 56-60 
𝜌3')
𝜀# \𝑢

𝜕𝑢
𝜕𝑥

+ 𝑣
𝜕𝑢
𝜕𝑦]

= 	
𝜇3')
𝜀

^
𝜕#𝑢
𝜕𝑦#

	_

+ `∓𝑔. (𝜌. 𝛽)3')c𝑇) − 𝑇4e − 𝑔. 𝛽∗(𝜌)3')[𝑐 − 𝑐4]

− 𝑔. 𝛾. h𝜌! − 𝜌3')i[𝑛 − 𝑛4]j cos 𝛾" −
𝜇3')
𝑘"

𝑢. 

(2) 

In Eq. (2), the subscript ℎ𝑛𝑓 denotes the hybrid nanofluid, 𝑐 is the mass concentration. 𝑘", 𝜀 and 

𝑛 are respectively permeability of the porous medium, porosity, and density of motile microorganisms. 

Subscripts 𝑓, ∞ and 𝑚 stand for the fluid, far-field, and microorganisms, respectively. In the current 

study, the flow velocity remains low and therefore the non-Darcy effects have been ignored. The two-

equation model is widely employed to model and simulate the LTNE effects. In the two-equation model, 

the fluid energy conservation equation is written as 

𝑢
𝜕𝑇)
𝜕𝑥

+ 𝑣
𝜕𝑇)
𝜕𝑦

= 𝛼3') ^
𝜕#𝑇)
𝜕𝑦#

	_ +
ℎ()	. 𝑎()
h𝜌. 𝐶+i3')

h𝑇( − 𝑇)i, (3) 

where by ℎ() , 𝛼, 	𝑎()  and 𝐶+  show correspondingly the interstitial heat transfer coefficient, thermal 

diffusivity, interfacial area of the porous media, and heat capacity. Further, subscript 𝑠 indicates solid 

media. The thermal energy transport in the solid phase of the porous medium is expressed as 

𝑘( ^
𝜕#𝑇(
𝜕𝑥#

+
𝜕#𝑇(
𝜕𝑦#

	_ − ℎ()	. 𝑎()h𝑇( − 𝑇)i = 0. (4) 

The advective-diffusive model is applied to represent the mass transfer of nanoparticles 13, 61 that 

is 

𝑢
𝜕𝑐
𝜕𝑥

+ 𝑣
𝜕𝑐
𝜕𝑦

= 𝐷! ^
𝜕#𝑐
𝜕𝑦#

	_, (5) 

where 𝐷! is the mass diffusivity coefficient of microorganisms. The cell conservation transport for the 

microorganisms is depicted by36-37  
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𝑢
𝜕𝑛
𝜕𝑥

+ 𝑣
𝜕𝑛
𝜕𝑦

+
𝑏.𝑊0

𝑐* − 𝑐4
𝜕
𝜕𝑦
p𝑛
𝜕𝑐
𝜕𝑦
q = 𝐷' ^

𝜕#𝑛
𝜕𝑦#

	_, (6) 

in which 𝑏  and 𝑊0  illustrates chemotaxis constant and the maximum speed of cells swimming, 

individually. Corresponding to Eq. (6), the cell’s transport can be performed by fluid convection, self-

sustained swimming and diffusion 35. The boundary conditions used for solving the preceding governing 

equations can be written as follows. 

- No-slip condition on the cone wall and far filed velocity function lead to the following 

equations. 

𝑦 = 0:					𝑢 = 0	,			𝑣 = 0, (7) 

𝑦 = ∞:					𝑢 = 𝑎𝑥	,			𝑣 = 𝑎𝑦. (8) 

Eq. (8) illustrates that the potential flow is approached by tending “𝑦” to infinity 33-34.  

- The boundary conditions for the energy equation can be written as: 

𝑦 = 0:					𝑇) = 𝑇* = Constant, 

        								𝑇( = 𝑇* =	Constant, 

𝑦 = ∞:				𝑇) = 𝑇4, 

        								𝑇( = 𝑇4, 

(9) 

where Tw and T∞ show the cone wall and ambient temperature, respectively. 

- Finally, the boundary conditions for solute transport are represented by: 

𝑦 = 0:					𝑐 = 𝑐* ,	 

𝑦 = ∞:					𝑐 → 𝑐4, 
(10) 

in which 𝑐4 stands for the concentration in the free-stream. 

The boundary conditions of cell conservation are also required. These are 

𝑦 = 0:				𝑛 = 𝑛*	 

𝑦 = ∞:					𝑛 → 𝑛4 
(11) 

3. Numerical and theoretical methods 

3.1.  Self-similar solutions 

The following similarity transformations were applied for reducing the governing equations to 

be solved more readily. 

𝑢 = 𝑎. 𝑥. 𝑓5(𝜂),									𝑣 = −√𝑎. 𝜐	. 𝑓(𝜂), (12) 

where 𝜂 = v67 𝑦 is defined as the non-dimensionless radial variable. By applying this transformation, 

the non-dimensional differential equation of momentum is obtained as 

𝜀𝑓′ + 𝐴". 𝐴#[𝑓𝑓5 − (𝑓5)#] + 𝜀#. 𝐴"`±𝐴&. 𝜆". 𝜃) −𝑁0 . 𝐶 − 𝑁2 . 𝑁j + 𝜀#.
𝜆
𝑅𝑒

𝑓′ = 0, (13) 

whereby 𝑅𝑒 = 6.9!

7"
 stands for Reynolds number of free stream and 𝜆 = 9!

:#
 is defined as the permeability 

parameter (permeability parameter is the inverse of Darcy number). The dimensionless mixed 
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convection parameter is shown by 𝜆" =
;<
=>!

=
?.@"AB$CB∞D EFG H#

9.6!
 and the ratio of concentration to 

thermal buoyancy forces is depicted by 𝑁0 =
?.@∗.I".A0$C0∞D EFG H#

9.6!
. Further, 𝑁2 =

?.H.∆I.('$C'&) EFG H#
9.6!

 

denotes the bio-mix convection Rayleigh number. The constants 𝐴. are described later. The prime sign 

in Eq. (13) shows the derivative with respect to η. The boundary conditions for the last equation can be 

obtained as 

𝜂 = 0:										𝑓′(0) = 0											𝑓(0) = 0, (14) 

𝜂 → ∞:										𝑓′(∞) = 1 (15) 

Applying the transformation in Eq. (16) to the energy equation results in the following equation 35, 36, 

𝜃)(𝜂) =
𝑇)(𝜂) − 𝑇4
𝑇* − 𝑇4

, (16) 

𝜃′) +
𝐴$
𝐴%
𝑃𝑟. h𝑓. 𝜃′)i +

𝐵𝑖
𝑅𝑒

.
1
𝐴%
h𝜃( − 𝜃)i = 0, (17) 

where 𝑃𝑟 and 𝑅𝑒 represent Prandtl and Reynolds number. Further, Biot number is illustrated by 𝐵𝑖 =
3'"6'".6
%:"

. Reduced thermal boundary conditions read 

𝜂 = 0:										𝜃)(0) = 1, 

𝜂 → ∞:										𝜃)(∞) = 0. 
(18) 

Transformation of energy transport of solid phase and its boundary conditions using Eq. (16) gives 

𝜃′( −
𝐵𝑖. 𝛾∗

𝑅𝑒
h𝜃( − 𝜃)i = 0, (19) 

𝜂 = 0:										𝜃((0) = 1, 

𝜂 → ∞:										𝜃((∞) = 0. 
(20) 

The value of 𝛾∗ = :"
:'

 in Eq. (19) stands for the modified conductivity ratio. 

Similar to temperature in the energy equation, the following transformation forms of mass 

concentration are applied to reduce the mass transport equation. 

𝐶(𝜂) =
𝑐(𝜂) − 𝑐4
𝑐* − 𝑐4

. (21) 

The dimensionless form of the equation sought is written as. 

𝐶′ + 𝑆𝑐[𝑓. 𝐶5] = 0, (22) 

in which, the Schmidt number is depicted as 𝑆𝑐 = 7"
M(

. This equation can be solved by the following 

transformed boundary conditions 

𝜂 = 0:										𝐶(0) = 1, 

𝜂 → ∞:							𝐶(∞) = 1 
(23) 

The dimensionless variable for reducing the cell conservation, Eq. (6), is expressed by 
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𝑁(𝜂) =
𝑛(𝜂) − 𝑛4
𝑛* − 𝑛4

. (24) 

After Substitution of Eqs. (12) and (24) into Eq. (6), the cell conservation equation and its 

boundary conditions are given as 

𝑁′ + 𝑃𝑟. 𝐿2[𝑓. 𝑁5] + 𝑃>c𝑁5. 𝐶5 + 𝐶5(NOP)e = 0, (25) 

𝜂 = 0:									𝑁(0) = 1, 

𝜂 → ∞:						𝑁(∞) = 0, 

(26) 

in which 𝐿2 =
Q"
M)

, 𝛿 = '&
'$C'&

 and 𝑃> =
2.R*
M)

 indicate the bio-convection Lewis number, the bio-

convection constant, and the bio-convection Peclet number, respectively.  

The constants 𝐴", 𝐴#, 𝐴$, 𝐴% and 𝐴& in Eqs. (13) and (17) are defined as 

𝐴" = (1 − 𝜙")#.&(1 − 𝜙#)#.&, 

𝐴# = (1 − 𝜙#) z(1 − 𝜙") + 𝜙" ^
𝜌(#
𝜌)
_{ + 𝜙# ^

𝜌(!
𝜌)
_, 

𝐴$ = (1 − 𝜙#) |(1 − 𝜙") + 𝜙"
h𝜌. 𝐶+i(#
h𝜌. 𝐶+i)

} + 𝜙#
h𝜌. 𝐶+i(!
h𝜌. 𝐶+i)

, 

𝐴% =
:'#O((C"):"C((C")S#T:"C:'#U

:'#O((C"):"OS#T:"C:'#U
.
:'!O((C"):+"C((C")S!T:+"C:'!U

:'!O((C"):+"OS!T:+"C:'!U
,  

𝐴& = (1 − 𝜙#) z(1 − 𝜙") + 𝜙"
(𝜌. 𝛽V)(#
(𝜌. 𝛽V))

{ + 𝜙#
(𝜌. 𝛽V)(!
(𝜌. 𝛽V))

. 

(27) 

An implicit, iterative finite-difference method was applied to solve the above equations along 

with their boundary conditions, as applied in similar studies 37,45. The convergence criterion was set to 

10-7 for all governing equations. Being the difference between two consecutive residuals below 10-7, 

the procedure was terminated and deemed converged. The second-order discretization scheme was 

applied for transformations of equations in this work. 

3.2.  Non-dimensional numbers 

The role of assessing the transport phenomena in the current study was performed by some non-

dimensional variables. Nusselt (𝑁𝑢) and Sherwood (𝑆ℎ) numbers show the extent of heat and mass 

transfer, respectively. 𝑁𝑢 on the surface of the cone is obtained from the local convection heat transfer 

coefficient (h) or the rate of fluid heat transfer (qw) defined by: 

ℎ =
𝑞*

𝑇* − 𝑇4
=
−𝑘3') ~

WB"
WX
�
XYZ

𝑇* − 𝑇4
= −

𝑘3')
𝑥

𝜕𝜃)(0)
𝜕𝜂

, (28) 

𝑞* = −
𝑘3')
𝑥

𝜕𝜃)(0)
𝜕𝜂

𝑇* − 𝑇4. (29) 

Therefore,  

𝑁𝑢 =
ℎ. 𝑥
𝑘)

= −𝑅𝑒
#
!.
𝑘3')
𝑘)

𝜃′)(0) = −𝐴%. 𝜃′)(1) (30) 
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𝑁𝑢. 𝑅𝑒C
#
! = −𝐴%. 𝜃5)(0). (31) 

The mass transfer coefficient and its rate can be similarly calculated by 

𝑘! =
𝑞!

(𝑐* − 𝑐4)
=
−𝐷! ~

W0
WX
�
XYZ

(𝑐* − 𝑐4)
= −

𝐷!
𝑥
𝜕𝐶(0)
𝜕𝜂

, (32) 

𝑞! = −
𝐷!
𝑥
𝜕𝐶(0)
𝜕𝜂

𝐶* − 𝐶4. (33) 

From which 𝑆ℎ is defined as 

𝑆ℎ. 𝑅𝑒C
#
! =

𝑘!. 𝑥
𝐷!

= −𝐶5(0). (34) 

Similarly, the local cell conservation coefficient and rate of cell conservation are indicated as 

𝑘' =
𝑞'

(𝑛* − 𝑛4)
=
−𝐷' ~

W'
WX
�
XYZ

(𝑛* − 𝑛4)
= −

𝐷'
𝑥
𝜕𝑁(0)
𝜕𝜂

, (35) 

and 

𝑞' = −
𝐷'
𝑥
𝜕𝑁(0)
𝜕𝜂

𝑁* −𝑁4. (36) 

Hence, similar to Nusselt number, the density number of motile microorganisms can be expressed as  

𝑁𝑛. 𝑅𝑒C
#
! =

𝑘'. 𝑥
𝐷'

= −𝑁	́(0). (37) 

3.3.  Nanofluid properties 

In this study, hybrid nanofluid containing CuO nanoparticles and carbon nanotubes (CNTs) in 

water base fluid is used. Different volume fractions of CuO (𝜙") were mixed into the constant 0.1% 

volume fraction of CNTs (𝜙#). The thermophysical characteristics of the single-type nanoparticle (Cu) 

nanofluid and the hybrid Cu-CNTs-water nanofluid can be calculated through the equations represented 

in Table 1. 

Table 1. Thermo-physical properties of the single-type nanoparticle and hybrid nanofluid53. 

Property Single-type nanoparticle nanofluid Hybrid nanofluid 

Density 𝜌') = 𝜌) z(1 − 𝜙) + 𝜙^
𝜌(
𝜌)
_{ 

𝜌3') = 𝜌)(1 − 𝜙#) z(1 − 𝜙") + 𝜙" ^
𝜌(#
𝜌)
_{

+ 𝜙#𝜌(! 

Heat capacity 

h𝜌. 𝐶+i') = h𝜌. 𝐶+i) �(1 − 𝜙)

+ 𝜙
h𝜌. 𝐶+i(
h𝜌. 𝐶+i)

� 

h𝜌. 𝐶+i3') = h𝜌. 𝐶+i)(1 − 𝜙#) |(1 − 𝜙")

+ 𝜙"
h𝜌. 𝐶+i(#
h𝜌. 𝐶+i)

} + 𝜙#h𝜌. 𝐶+i(! 

Viscosity 𝜇') =
𝜇)

(1 − 𝜙)#.&
 𝜇3') =

𝜇)
(1 − 𝜙")#.&(1 − 𝜙#)#.&
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Thermal 

conductivity 

𝑘')
𝑘)

=
𝑘( + (𝑠 − 1)𝑘) − (𝑠 − 1)𝜙h𝑘) − 𝑘(i

𝑘( + (𝑠 − 1)𝑘) + 𝜙h𝑘) − 𝑘(i
 

𝑘3')
𝑘2)

=
𝑘(! + (𝑚 − 1)𝑘2) − (𝑚 − 1)𝜙#h𝑘2) − 𝑘(!i

𝑘(! + (𝑚 − 1)𝑘2) + 𝜙#h𝑘2) − 𝑘(!i
 

𝑘2)
𝑘)

=
𝑘(# + (𝑠 − 1)𝑘) − (𝑠 − 1)𝜙"h𝑘) − 𝑘(#i

𝑘(# + (𝑠 − 1)𝑘) + 𝜙"h𝑘) − 𝑘(#i
 

 

The parameters 𝑠	and 𝑚 are called correspondingly shape factor and sphericity that become 

different for various nanoparticles. 𝑠"  and 𝑠#  indicate CNT nanotubes and Cu nanoparticles, 

individually. More details of the values for different shapes of nanoparticles can be found in Ref.53. 

Table 2 expresses the thermo-physical properties of water, CNT nanotubes, and Cu nanoparticles. 

Table 2. Properties of water, CNTs, and Cu nanoparticles53 

Property Water  CNTs Cu 

𝜌			(
𝑘𝑔
𝑚$) 997 2600 8933 

𝐶+			(
𝐽

𝑘𝑔. 𝐾
) 4180 425 385 

𝑘			(
𝑊
𝑚.𝐾

) 0.6071 6600 400 

4. Grid independency and model validation 

To obtain trustworthy results from the modelling, the solution independency from the grid size 

should be investigated. For this reason, 𝑁𝑢 and 𝑆ℎ were calculated for various mesh sizes of 51×18, 

102×36, 204×72, 408×144 and 816×288, as tabulated in Table 3. The variations of the preceding 

numbers showed that the difference is not observable between the two last grids. Thus, the final mesh 

size selected for the modelling procedure was 408×144 to assure a precise simulation. To capture the 

sharp gradients around the external surface of the cone, a non-uniform grid was used in 𝜂-direction. 

Further, validation was performed by comparing the present derivative of transformation function 

values and those of Ref. 63, 64 for two nanotube types charted in Table 4. The average disparity for 𝑓	́	́(0) 

and 𝜃	́(0) are respectively 1 and 0.1 percent, on average. The present analytical-numerical approach 

could predict the results of similar work with high values of permeability and porosity, with an average 

error lower than one percent, shown in Table 5. These comparisons confirm the ability of the present 

approach to capture the underlying physics. 

Table 3. Grid independency study at 	𝐵𝑖 = 0.1, 𝑅𝑒 = 5.0	, 𝜆 = 10. 

Mesh size 𝑁𝑢! 𝑆ℎ! 

51×18 1.540873 0.588014 

102×36 1.499256 0.555648 
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204×72 1.479155 0.527381 

408×144 1.465920 0.467275 

816×288 1.465773 0.468014 

 

Table 4. Comparison between the present work and the results of Khan et al 63. 

−𝜃	́(0) 𝑓	́	́(0)  

𝝓𝟏 Present work Khan et al. 63 Present work Khan et al 63 

𝑴𝑾𝑪𝑵𝑻 𝑺𝑾𝑪𝑵𝑻 𝑴𝑾𝑪𝑵𝑻 𝑺𝑾𝑪𝑵𝑻 𝑴𝑾𝑪𝑵𝑻 𝑺𝑾𝑪𝑵𝑻 𝑴𝑾𝑪𝑵𝑻 𝑺𝑾𝑪𝑵𝑻 

1.07811 1.10432 1.07905 1.10553 0.33689 0.33871 0.33727 0.33894 0.01 

4.80112 4.80356 4.27718 4.80627 0.38988 0.40778 0.39008 0.40811 0.1 

10.15468 12.29854 10.56783 12.30317 0.46327 0.50349 0.46466 0.50452 0.2 

 

Table 5. Comparison between the present work and the results of Gorla 64 in the limit of very large 

porosity and permeability. 

𝜽 𝒇 𝑹𝒆 

 

Present work Gorla 64 Present work Gorla 64  

0.84557 0.84549 0.12051 0.12075 0.01 

0.73701 0.73715 0.22659 0.22652 0.1 

0.46045 0.46070 0.46683 0.46647 1.0 

0.02983 0.02970 0.78725 0.78731 10 

 

5. Estimator and optimizer algorithms 

5.1. Multi-Layer Perceptron (MLP) 

Artificial Neural Networks (ANN) are a set of algorithms and computational models, organized 

based on what is done by the human brain. They can be applied for voice, image and pattern recognition, 

robotics, clustering, and classification 65-66. The output parameters of this study were estimated using 

MLP neural network. Generally, three layers including input, hidden and output layers make the 

structure of MLP. 

For m inputs in a model, m+1 neurons exist in the input layer. The neurons other than the first 

one, with the value of unity characterizing the bias role, have the responsibility of receiving input data. 

The n+1 neurons form the hidden layer. Often, multiple steps could be carried out to calculate the 

appropriate value for n. The first neuron is again biased similar to that at the first layer. The sum of the 

weighted output of the previous layer is activated by other neurons of this layer through the following 

equation 51-52: 
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𝑓. = 𝑔�𝑤Z,. +�𝑤/,. 	𝑥/

!

/Y"

�, (38) 

where, wj,i is used to represent the weight between neuron 𝑗 of the input layer and neuron 𝑖 of the hidden 

layer. Also, 𝑤Z,. is the weight between the bias and the neuron i of the hidden layer. In addition, xj 

presents the input 𝑗 of the network. fi is the output of neuron 𝑖 of the hidden layer. Different function 

forms, such as logarithmic, hyperbolic, and exponential could be applied for the activation function of 

g. This is also is applied to each neuron of the output layer similar to the hidden layer 51-52. 

𝑂. = ℎ�𝑣Z,. +�𝑣/,. 	𝑓/

'

/Y"

�, (39) 

in which the ν0,i is the weight between bias and neuron 𝑖 of the output layer. νj,i depicts the weight 

between the neuron 𝑗 of the hidden layer and neuron 𝑖 of the output layer. 

The error back propagation algorithm is used to train the network. In training process, the 

appropriate weights are calculated according to difference between the network output and actual value. 

In this step, a known data set in which the target value is determined for each input record is used in a 

supervised learning process. Proper determination of the appropriate network configuration could 

remarkably influence its performance. 

5.1.1. Feature selection based on mutual information 

Feature selection is one of the important steps in designing the model in machine learning. It has 

a great influence on the performance of the model. A method should be selected for feature selection to 

show the most contribution to the output variables. The minimum-Redundancy Maximum-Relevance 

(mRMR) algorithm is an appropriate method which can be used for features prioritization. Mutual 

Information (MI) is one statistical dependency criterion used in this method. In each step of algorithm, 

mRMR tries to choose the proper feature which has maximum MI with the model output, while has 

minimum MI with the set of selected features before that 51-53. The MI between two features of x and y 

is calculated by following equation: 

𝐼(𝑥; 𝑦) = �𝑝(𝑥, 𝑦) log
𝑝(𝑥)

𝑝(𝑥)𝑝(𝑦)
𝑑𝑥𝑑𝑦 (40) 

where, 𝑝(𝑥) and 𝑝(𝑦)	are the probability density functions of features 𝑥 and 𝑦, respectively. 𝑝(𝑥, 𝑦) 

shows the simultaneous occurrence of both variables . 

For the problem with many features and records, the execution time of the algorithm is too long. 

To overcome the time complexity, Mutual Information Difference (MID) or F-test correlation 

difference (FCD) methods could be applied to estimate it. As the MID approach is more appropriate for 

non-linear problems, it has attracted more attention recently. It is calculated from the following equation 
51-53. 
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𝑀𝐼𝐷 = 𝑚𝑎𝑥.∈](^)[𝐼(𝑖, ℎ) −
1
�𝑆)�

�𝐼(𝑖, 𝑗)
/∈^

] (41) 

In Eq. (41), 𝑆)  indicates the set of selected features. Application of MID scheme in feature 

selection results in both advantages of mRMR method (acceptable estimation) and lowering the 

computational complexity, higher speed, and reliability. 

5.2. Particle Swarm Optimization (PSO) 

The PSO algorithm is one of the suitable approaches for intelligent optimization based on the 

swarm intelligence concept. In fact, this algorithm was proposed by inspiration from the groups of fishes 

and birds sharing information with each other. The first contribution to the movement of a particle in 

an iteration is called 𝑝𝑏𝑒𝑠𝑡 which relates to the best position of the particle during its movement. The 

second one, namely 𝑔𝑏𝑒𝑠𝑡 indicates the best position earned by the particles swarm, regardless of which 

one had achieved it. 

The velocity of each particle in each iteration can be calculated as follows 51-53. 

𝑣.(𝑡 + 1) = 𝑤𝑣.(𝑡) + 𝑐"𝑟"[𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑥.(𝑡)] + 𝑐#𝑟#[𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥.(𝑡)]. (42) 

The parameters i and t denote the particle index and the iteration number, respectively. The 

particles' position and velocity are shown by x and ν. The random values of r1 and r2 are generated in 

each step of algorithm. The values of acceleration coefficients, c1 and c2 are between zero and two. 

Although their values usually are close to two. Finally, the value of 𝑤 called the inertia coefficient of 

velocity is specified between 0.8 and 1.2 65-66. 

The particle position, x, is determined from its velocity, 𝑣 from the following equation, 

𝑥.(𝑡 + 1) = 𝑥.(𝑡) + 𝑣.(𝑡 + 1). (43) 

The number of repetitions of the PSO algorithm in an iterative loop depends on the findings with 

particular conditions. 

6. Results and discussion 

In this section, the effects of volume fraction of nanoparticles, Biot, Peclet, Lewis, and Rayleigh 

number on the heat, mass, and microorganism transport are discussed. The results are obtained by 

resorting to machine learning technique as explained in Section 5. The default values for different 

parameters involved are presented in Table 6. Further, the predictor correlations for Nusselt, Sherwood, 

and density of motile microorganisms are provided later.  

Table 6. The default value of the parameters chosen to draw the figures. 

Parameter 𝑅𝑒 𝜆" 𝜙# 𝑃𝑟 𝛾∗ 𝑃𝑒 𝛿 𝜙" 𝑆 𝜆 𝑁0 𝐵𝑖 𝐿2 𝑆𝑐 𝑁2 

Values 10.0 1.0 0.1 1.0 1.5 0.1 0.1 0.1 3.7 10 0.1 0.1 0.1 0.1 10 

 

Fig. 2 shows the variation of Nusselt number versus various parameters. Fig. 2a depicts that the 

convection heat transfer can be augmented by decreasing the value of Lewis number for motile cells 

(𝐿2), indicating higher cells’ diffusion. It may result from the negative effect of the cells piling up near 
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the walls on the temperature gradient. The Nusselt number is also boosted by raising the Peclet number 

and cells’ concentration parameter (𝛿). Increasing Peclet number makes a change similar to what occurs 

by cell’s Lewis number in microorganism’s diffusion. By intensifying	𝛿, the difference in the cells 

concentration through the medium declines, and therefore, the cells migration subsides. It enhances 

transport phenomena and therefore more heat is transferred 62. The extent of relative influences of the 

aforementioned parameters on heat transfer is not comparable. Fig. 2b portrays that the Nusselt number 

rises as the mixed convection parameter (𝜆") increases, indicating Reynolds number strengthening, 

which is physically anticipated. The Nusselt number increment is aggravated in the higher value of bio-

mixed Rayleigh number (𝑁2); the parameter that provides higher heat transfer by relaxing the difference 

between the cells’ concentration all over the domain. In contrast, an increment in 𝑁0 makes the Nusselt 

number lower, as it diminishes the concentration difference across the medium and hinders mass 

transfer and the subsequent heat transfer. Increasing the shape factor by applying nanoparticles with 

various geometries can lead to a higher Nusselt number, as depicted in Fig. 2c. Further, the volume 

fraction of both types of nanoparticles leads to the higher value of heat transfer gradually. Alumina 

concentration seems to intake more improvement in heat transfer than the CNT nanotubes.  

 
(a) 
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(b) 

 
(c) 

Fig. 2. Variation of 𝑁𝑢 with respect to (a) δ and Pe at two values of bio-convection Lewis number, (b) Nc 

and Nb at two values of dimensionless mixed convection parameter, and (c) ϕ1 and ϕ2 at two values of 

shape factor. 

 

The Sherwood number variation is plotted in Fig. 3. Subfigure “a” illustrates that a mass transfer 

drops in a mixture more concentrated with CNT nanoparticles where higher viscosity of nanofluid can 

harden convective mass transfer. Increasing Prandtl number also has similar impacts. However, the Biot 

number appears to set a different trend. It is worth noting that the impact of volume fractions on mass 

transfer may undergo a turning trend in the Prandtl number threshold, which is about 4.5. Decreasing 

cells’ Lewis number boosts the microorganisms’ diffusion, which in turn invokes the mass transfer, see 

Fig. 3b. Increasing the Peclet number increases the swimming velocity of the cells that leads to a higher 

rates of mass transfer. However, a higher value of 𝛿, which equals to the lower cells’ concentration 

difference through the medium, enhances the transport of mass 45,62. Subfigure “c” highlights that the 

mass transfer enhances with strengthening the natural convection or 𝜆" . The difference between 

Sherwood number of 𝜆" = 1 and 50 drops if the difference between the cells’ concentration (𝑁2) on the 

domain becomes larger. Migration of the cells by increasing 𝑁2 aids mass transfer, while 𝑁0 shows not 

a remarkable change with variations in Sherwood number. 
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(a) 

 
(b) 

 
(c) 

Fig. 3. Variation of 𝑆ℎ with respect to (a) Bi and Pr at two values of solid volume fraction of 

nanoparticles, (b) δ and Pe at two values of bio-convection Lewis number, (c) Nc and Nb at two values 

of dimensionless mixed convection parameter. 
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The density number of motile microorganisms is shown in Fig. 4. Despite no considerable 

variation, the cells transport is enhanced by increasing the volume fraction of nanotubes, Biot number, 

or diminishing Prandtl number, shown in Fig. 4a. Lower values of viscosity by dropping Prandtl number 

aids cells transport. It is found that heat transfer in a concentrated nanofluid pushes more cells to 

transport, despite increasing the viscosity. However, this trend is contained for lower Prandtl numbers. 

High values of Biot number overrule the effects of density number by changing 𝜙#. Fig. 4b shows that 

formation of natural convection recirculation near the body pushes more particles to migrate. This trend 

turns in 𝑁2 = 70. Increasing 𝑁2  and 𝑁0 , delineating a higher difference in cells’ concentration and 

mass concentration, respectively, elevating the level of cells transportation, as expected. Ranging lower 

than unity, the value of density number indicates the diffusion regime is dominantly determined by the 

cells motion.  

 
(a) 

 
(b)  

Fig. 4. Variation of 𝑁𝑛 with respect to (a) Bi and Pr at two values of solid volume fraction of 

nanoparticles, (b) Nc and Nb at two values of dimensionless mixed convection parameter. 

Mass concentration variations are demonstrated in Fig. 5. The mass concentration is approached 

that at the infinity boundary by increasing the momentum diffusivity when Schmidt number is 
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increased. This stems from boosting momentum forces, as increasing Reynolds number shows a similar 

effect on the mass concentration. Fig. 5a further expresses that concentration is not affected by changes 

in Prandtl number. Fig. 5b elucidates that the mass transport is intensified at lower cells’ Lewis number; 

however, its influence is not momentous. Decreasing Peclet number and 𝛿  makes higher mass 

concentration. Therefore, the motile cells migration can drastically affect the mass distribution in the 

domain.   

 
(a) 

 
(b) 

Fig. 5. Variation of 𝐶 with respect to (a) Pr and Re at two values of Schmidt number, (b) Pe and δ at two 

values of bio-convection Lewis number. 

 

The cells concentration is depicted in Fig. 6. Subfigure “a” shows that the higher Reynolds 

number motivates cells concertation for being close to its value at infinity. It indicates that momentum 

inertia is a determining parameter to become the cells’ density forum uniform. It is accented with 

considering the trend that makes by the Prandtl number, which its increment weights the momentum 

diffusivity. A higher volume fraction of nanoparticles also aids higher cells concentration. Fig. 6b 

indicates cells’ Lewis number cannot affect the cells’ concentration. However, decreasing Peclet 
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number, arising from increasing cells’ diffusion, invokes the motile concentration being closer to its 

value at the far boundary. Cell concentration difference (𝑛 − 𝑛4) undergoes a decreasing pattern by 

decreasing 𝛿, as expected. 

 
(a) 

 
(b) 

Fig. 6. Variation of 𝑁 with respect to (a) Re and Pr at two values of volume fraction of nanoparticles, (b) 

δ and Pe at two values of bio-convection Lewis number. 

 

As Fig. 7a shows, strengthening the natural convection compared to forced convection helps to 

be more uniform temperature through the thermal domain. However, the Reynolds number increment, 

meaning higher forced convection level, can solely upraise the extent of thermal uniformity. Porosity 

variation through 𝜆 seems unlikely to change the temperature distribution. Fig. 7b exhibits that blending 

more CNT nanotubes in the base fluid turns the temperature to be closer to that at the infinity boundary. 

Interestingly, the volume fraction of Alumina nanoparticles shows an infinitesimal effect on the 

temperature domain. Increasing Prandtl number also aids the uniform temperature resulting from 

increasing thermal conductivity; the way that the nanoparticles create a uniform temperature field.     
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(a) 

 
(b) 

Fig. 7. Variation of 𝜃) with respect to (a) 𝜆 and Re at two values of dimensionless mixed convection 

parameter, (b) Pr and 𝜙" at two values of volume fraction of nanoparticles. 

 

From Fig. 8a, it is perceived that 𝑁0 has not influenced the axial velocity. However, increases in 

the cells’ concentration or cone angle through variations in 𝑁2 produces larger velocity. It is concluded 

that the migration of the microorganism cells can be considerably involved in velocity changing. 

Increasing the cone angle makes more contraction in the fluid passage, resulting in higher velocity. As 

anticipated, increasing Reynolds number can make a drastic change in the velocity field, following 

decreasing 𝜆". It is confined at low values of 𝑁2. The consequence of increasing the volume fraction of 

CNT nanotubes is a decrement in axial velocity by boosting the viscosity, portraying by Fig. 8b. The 

velocity is also an increasing function of porosity, considering 𝜆.   
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(a) 

 
(b) 

Fig. 8. Variation of 𝑓	́ with respect to (a) Nc and Nb at two values of dimensionless mixed convection 

parameter, (b) 𝜆 and Re at two values of solid volume fraction of CNT nanotubes. 

 

As visualized by Fig. 9, the solid temperature approaches its infinite boundary value if the thermal 

conductivity of the solid or fluid mitigates or rises, respectively. Biot number manipulates the solid 

temperature by making a single-minimum trend, as its complexly contributes to the hydrodynamic and 

thermal field. This is not the case for Reynolds number that its influence is somewhat negligible.   
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Fig. 9. Variation of 𝜃( with respect to Bi and Re at two values of modified conductivity ratio. 

 

Tables 7-9 show the predictors for non-dimensional numbers of Nusselt, Sherwood, and 

microorganism density number that are the measure for evaluating the relative strength of convective 

to the diffusive mechanism for respectively heat, mass, and cells. Therefore, it is a convenient way to 

predict the level of the heat, mass and cells transfer in the domain through these relations. The mean 

absolute error for each relation is presented in the last column. The correlations are captured by the PSO 

algorithm. The priority for the pertinent parameters is also obtained by the Machin learning method. 

Table 7. The predictor correlations for Nusselt number with the effective range of parameters. 

Effective range of parameters Parameters 

involved 

Mean 

absolute 

error 
0.1 ≤ 𝑁2
≤ 100 

0.1 ≤ 𝜆"
≤ 100 

0 ≤ 𝜙# ≤ 0.2 0.1 ≤ 𝑃𝑟

≤ 7.0 

0 ≤ 𝜙" ≤ 0.2 

𝑁𝑢 =	−6.668 + 9.531 × 𝑁2Z.Z#$ 𝑁2 0.4680 

𝑁𝑢 = 	3.38 + 0.934 × 𝑁2_."`% × 𝑅𝑒_.$a_ 𝑁2 , 𝑅𝑒	 0.4644 

𝑁𝑢 = 	3.38 + 0.934 × 𝑁2".a`$ × 𝑅𝑒"._a` × 𝑃𝑟$.`b_ 𝑁2 , 𝑅𝑒	, 𝑃𝑟 0.4480 

𝑁𝑢 = 	3.38 + 5.853 × 𝑁2Z.$aa × 𝑅𝑒&.`_% × 𝑃𝑟".Z#" × 𝜙"b.`a% 𝑁2 , 𝑅𝑒	, 𝑃𝑟, 𝜙", 0.4423 

𝑁𝑢 = 	4.809 + 14.665 × 𝑁2#._$` × 𝑅𝑒$.%&_ × 𝑃𝑟$.a#" × 𝜙"&."& × 𝜙#$.$a` 𝑁2 , 𝑅𝑒	, 𝑃𝑟, 𝜙", 𝜙# 0.3715 

 

Table 8. The predictor correlations for Sherwood number with the effective range of parameters. 

Effective range of parameters 

Parameters 

involved 
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0.1 ≤ 𝑆𝑐 ≤ 5.0 0.1 ≤ 𝛾∗ ≤ 7.0 0.1 ≤ 𝑁2 ≤ 100 0.1 ≤ 𝑅𝑒 ≤ 100 Mean 

absolute 

error 

𝑆ℎ = 	0.074 + 1.806 × 𝑆𝑐Z.## 𝑆𝑐 0.1009 

𝑆ℎ = 	3.202 + 1.185 × 𝑆𝑐Z.#$b × 𝑃𝑟Z.Z`" 𝑆𝑐	, 𝑃𝑟 0.0951 

𝑆ℎ = 	1.162 + 0.146 × 𝑆𝑐b.&%& × 𝑃𝑟".%&# × 𝑁2$.&ba 𝑆𝑐	, 𝑃𝑟	, 𝑁2 0.0812 

𝑆ℎ = 	1.160 + 0.825 × 𝑆𝑐".a$" × 𝑃𝑟#.`a% × 𝑁2Z.$`b × 𝑅𝑒Z.&b` 𝑆𝑐	, 𝑃𝑟	, 𝑁2 , 𝑅𝑒 0.0578 

 

Table 9. The predictor correlations for density number of motile microorganisms number with the 

effective range of parameters. 

Effective range of parameters Parameters 

involved 

Mean 

absolute 

error 
0.1 ≤ 𝑆𝑐 ≤ 5.0 0.1 ≤ 𝛾∗ ≤ 7.0 0.1 ≤ 𝑁2 ≤ 100 0.1 ≤ 𝑅𝑒 ≤ 100 

𝑁𝑛 = 	1.383 − 0.955 × 𝐿2CZ.""& 𝐿2 0.0613 

𝑁𝑛 = 	1.042 + 0.0583 × 𝐿2Z."_ × 𝑃𝑟Z.Za% 𝐿2	, 𝑃𝑟 0.0573 

𝑁𝑛 = 	0.154 + 0.725 × 𝐿2Z.#Za × 𝑃𝑟Z.#Zb × 𝛿Z."`_ 𝐿2	, 𝑃𝑟	, 𝛿 0.0341 

𝑁𝑛 = 	0.137 + 1.169 × 𝐿2".aa_ × 𝑃𝑟%.&%& × 𝛿".`"b × 𝑅𝑒".aa" 𝐿2	, 𝑃𝑟	, 𝛿, 𝑅𝑒 0.0227 

 

7. Conclusions 

The transport processes in a hybrid nanofluid flow (Alumina-CNT nanotubes-water) over a cone 

merged in a porous medium were evaluated through an analytical-numerical investigation. The working 

fluid included motile alive cells to capture along with nanoparticles in a heat transferring medium. A 

large number of physical mechanisms including those of transport in porous media, nanofluid, mass 

transfer and bio-convection we present in the problem. This highly complicates the application of 

conventional approaches to simulation and analysis of the investigated system. As a remedy, machine 

learning was utilised to develop an intelligent predictor of the results and significantly broaden the 

parametric space. Further, machine learning was employed to derive correlations for the most dominant 

parameters, such as Nusselt and Sherwood number as well as density number of motile microorganisms. 

The key results are summarised as follows.  

- Nusselt number increased for lower motile Lewis number, higher mixed convection parameter, 

bio Rayleigh number, Peclet number, and shape factor. However, the Nusselt number response 

to the motile Lewis number and mixed convection parameter were confined respectively by 

Peclet number increment and bio Rayleigh number increment. 
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- Sherwood number depicted a rising trend by decreasing volume fraction of nanotubes, Prandtl 

number, motile Lewis number, and intensifying mixed convection parameter and bio Rayleigh 

number. The effects of the mixed convection parameter was limited to high values for higher 

bio Rayleigh number.  

- The density number of motile microorganisms was escalated as the volume fraction of the 

nanotubes rose.  

- The mass concentration uniformity improved by increasing Reynolds number or mitigating 

Peclet number. Schmidt number and motile Lewis number variations elucidated no 

considerable change in the local mass content. 

- Higher Prandtl number and lower Peclet number made a uniform motile microorganism 

distribution.  

- The fluid temperature approached uniformity by degrading the mixed convection parameter, 

Reynolds number, and increasing Prandtl number. This was contributed by the negligible share 

of the volume fraction of Alumina and porosity.  

- The non-dimensional solid temperature made a single-minimum distribution versus Biot 

number. Reynolds number while the ratio of fluid to solid thermal conductivity had no effect.  

Finally, this work serves as a demonstrator of intelligent predictors built based on numerical 

simulations to massively reduce the computational burden of analyzing complex thermo-solutal 

problems. 
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