Supplementary Material

Worsening renal function in acute heart failure in the context of diuretic response

Johanna E. Emmens^{a*}, MD, PhD, Jozine M. ter Maaten^{a*}, MD, PhD, Yuya Matsue^{b,c}, MD, PhD, Sylwia M. Figarska^a, PhD, Iziah E. Sama^a, PhD, Gad Cotter^d, MD, John G.F. Cleland^e, MD, Beth A. Davison^d, PhD, G Michael Felker^f, MD, Michael M. Givertz^g, MD, Barry Greenberg^h, MD, Peter S. Pangⁱ, MD, Thomas Severin^j, MD, Claudio Gimpelewicz^j, MD, Marco Metra^k, MD, PhD, Adriaan A. Voors^a, MD, PhD, John R. Teerlink^l, MD

^a University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands

^b Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan

^c Cardiovascular Respiratory Sleep Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan

^d Momentum Research and Inserm U942 MASCOT, Paris, France

^e Robertson Centre for Biostatistics and Clinical Trials, Institute of Health and Well-Being, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK; National Heart & Lung Institute, Imperial College, London, United Kingdom

^f Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina, USA; Duke Clinical Research Institute, Durham, North Carolina, USA

^g Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA

^h University of California San Diego Health, Sulpizio Cardiovascular Institute, La Jolla, California, USA

ⁱ Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA

^j Novartis Pharma, Basel, Switzerland.

^k Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Italy

¹ Section of Cardiology, San Francisco Veterans Affairs Medical Center and School of Medicine, University of California, San Francisco, CA, USA.

*Shared first author

Key words: acute heart failure; worsening renal function; diuretic response; decongestion; outcomes

Corresponding author:

Adriaan A. Voors

Department of Cardiology

University Medical Center Groningen

Hanzeplein 1, 9713 GZ, Groningen, The Netherlands

Tel: +31 (0)50 3616161 Fax: +31 (0)50 3618062 a.a.voors@umcg.nl

Supplementary Table 1. Differences between in- and excluded patients in the current study subsets

	RELAX-AHF-2			PROTECT		
	Study subset	Patients without P-value		Study subset	Patients without	P-value
	N=5,586	available measurements		N=1,698	available	
		N=959			measurements	
					N= 335	
Age	73 ± 11	72 ± 13	<0.001	72 (62 – 78)	73 (63 – 80)	0.191
Sex (female), n (%)	2280 (40.8)	357 (37.2)	0.040	563 (33.2)	106 (31.6)	0.634
Race (white), n (%)	5265 (94.3)	751 (78.3)	<0.001	1628 (95.9)	296 (88.4)	<0.001
BMI	29 (25 – 33)	29 (25 – 33)	0.034	28 (24 – 32)	28 (25 – 32)	0.220
NYHA classification III/IV, n	2307 (56.9)	384 (55.3)	0.007	1338 (82.8)	243 (78.4)	<0.001
(%)*						
Systolic blood pressure	139 (130 – 150)	140 (130 – 153)	0.279	125 (110 – 140)	121 (110 – 135)	0.066
(mmHg)						
Diastolic blood pressure	80 (70 – 89)	78 (69 – 88)	0.015	75 (67 – 80)	70 (62 – 80)	<0.001
(mmHg)						

Heart rate (bpm)	80 (70 – 92)	78 (68 – 90)	0.004	80 (70 – 90)	76 (67 – 85)	<0.001
LVEF (%)	40 (30 – 50)	35 (27 – 50)	0.005	30 (23 – 40)	30 (20 – 40)	1
- <40%	2726 (51.5)	454 (54.1)	0.178	584 (72.2)	114 (68.7)	0.412
- ≥50%	1362 (25.8)	233 (27.8)	0.232	104 (12.9)	26 (15.7)	0.399
HF aetiology, n (%)			1			
Ischemic	2221 (53.8)	386 (53.8)				
Non-Ischemic	1908 (46.2)	332 (46.2)				
History of ischaemic heart				1187 (70.0)	230 (68.7)	0.664
disease, n (%)						
Previous hospitalisation for	2821 (54.1)	517 (57.2)	0.096	854 (50.3)	148 (44.2)	0.047
heart failure, n (%)**						
No. of hospitalisations for			0.001			0.415
heart failure within						
previous year, n (%)						
≥3 Hospitalisations	255 (9.2)	73 (14.4)		166 (19.5)	38 (28.1)	

1-2 Hospitalisations	1714 (61.5)	285 (56.1)		684 (80.5)	97 (71.9)	
No hospitalisations	816 (29.3)	150 (29.5)				
Length of hospital stay	7 (6 – 11)	3 (3 – 6)	<0.001	8 (6 – 14)	3 (3 – 8)	<0.001
(days)						
ACE/ARB, n (%)	3664 (69.2)	620 (68.4)	0.651	1284 (75.6)	250 (74.6)	1
Beta blocker, n (%)	3952 (74.7)	689 (76.0)	0.408	1289 (75.9)	257 (76.7)	0.019
MRA, n (%)	1630 (30.8)	226 (24.9)	<0.001	1071 (63.1)	185 (55.2)	0.019
Haematocrit (%)	39 (35 – 43)	38 (34 – 42)	0.002	40 (36 – 44)	39 (35 – 43)	0.008
Haemoglobin (mmol/L)	7.9 (7.0 – 8.8)	7.8 (6.8 – 8.6)	<0.001	12.7 (11.3 – 14.1)	12.1 (10.8 – 13.5)	<0.001
Sodium (mmol/L)	140 (137 – 142)	140 (137 – 142)	0.047	140 (137 – 142)	139 (136 – 141)	<0.001
Potassium (mmol/L)	4.3 (3.9 – 4.7)	4.2 (3.9 – 4.7)	<0.001	4.2 (3.9 – 4.6)	4.2 (3.8 – 4.6)	0.277
Creatinine (mg/dL)	1.3 (1.1 – 1.6)	1.3 (1.1 – 1.6)	0.266	1.4 (1.1 – 1.8)	1.4 (1.2 – 1.9)	0.081
eGFR (mL/min/1.73m²)	50 (38 – 62)	51 (40 – 63)	0.018	46 (34 – 62)	44 (32 – 57)	0.011
BUN (mg/dL)	24 (19 – 32)	24 (18 – 31)	0.033	29 (22 – 41)	31 (23 – 45)	0.087
ALAT (U/L)	23 (16 – 36)	25 (17 – 38)	0.003	21 (15 – 32)	21 (15 – 31)	0.708
ASAT (U/L)	26 (20 – 36)	27 (21 – 38)	0.027	25 (19 – 33)	25 (19 – 33)	0.983

NT-proBNP (ng/L)	5116 (2909 – 9509)	5906 (3247 – 9788)	0.336			
BNP (ng/L)				452 (258 – 814)	407 (237 – 756)	0.364

^{*}Available in 3,438 patients in RELAX-AHF-2 and 1,615 in PROTECT

Abbreviations: ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; ALAT, alanine transaminase; ASAT, aspartate aminotransferase; BMI, body mass index; BNP, brain natriuretic peptide; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; ΔePV, delta estimated plasma volume; Hb, haemoglobin; LVEF, left ventricular ejection fraction; MRA, mineralocorticoid receptor antagonist; NT-proBNP, N terminal pro brain natriuretic peptide; NYHA, New York Heart Association; WRF, worsening renal function

^{**} Ever in RELAX-AHF-2, in the past year for PROTECT

Supplementary Table 2. Cox regression analysis for presence/absence of WRF and good/poor diuretic response with regards to the combined endpoints*

	Univariable		Adjusted for age	e, sex, and	Adjusted model**	
			baseline crea	atinine		
	HR (95% CI)	P-value	HR (95% CI)	P-value	HR (95% CI)	P-value
			RELAX-AHF-2	I		
No WRF +	1.0 (Reference)	Ref	1.0 (Reference)	Ref	1.0 (Reference)	Ref
good DR						
WRF +	0.99 (0.80 –	0.945	0.86 (0.71 –	0.289	0.88 (0.68 –	0.332
good DR	1.24)		1.11)		1.14)	
No WRF +	1.55 (1.37 –	<0.001	1.43 (1.27 –	<0.001	1.33 (1.16 –	<0.001
poor DR	1.76)		1.63)		1.53)	
WRF +	1.99 (1.66 –	<0.001	1.74 (1.45 –	<0.001	1.48 (1.20 –	<0.001
poor DR	2.38)		2.09)		1.81)	
			PROTECT	l		
No WRF +	1.0 (Reference)	Ref	1.0 (Reference)	Ref	1.0 (Reference)	Ref
good DR						
WRF +	1.02 (0.66 –	0.927	1.02 (0.66 –	0.930	1.15 (0.74 –	0.548
good DR	1.58)		1.52)		1.78)	
No WRF +	1.81 (1.46 –	<0.001	1.74 (1.41 –	<0.001	1.50 (1.20 –	<0.001
poor DR	2.23)		2.15)		1.86)	
WRF +	2.45 (1.83 –	<0.001	2.19 (1.63 –	<0.001	2.00 (1.48 –	<0.001
poor DR	3.28)		2.95)		2.71)	

- *180-day CV death or heart/renal failure hospitalisation in RELAX-AHF-2 and 60-day death from any cause or cardiovascular or renal hospitalisation in PROTECT.
- **RELAX-AHF-2: adjusted for age, sex, baseline creatinine, actual study treatment, asthma/bronchitis/chronic obstructive pulmonary disease, atrial fibrillation/flutter, blood urea nitrogen, cerebrovascular accident, composite of N terminal pro brain natriuretic peptide or brain natriuretic peptide Z-score, depression, oedema, grouped geographical region, haemoglobin, known history of diabetes mellitus, peripheral arterial occlusive disease, prior heart failure hospitalisation, respiratory rate, sodium, and systolic blood pressure.²⁸

PROTECT: Adjusted for age, sex, baseline creatinine, treatment allocation, previous heart failure hospitalisation, peripheral oedema, SBP, sodium, urea, creatinine, and albumin.²⁷

Abbreviations: CI, confidence interval; DR, diuretic response; HR, hazard ratio; WRF, worsening renal function.

Supplementary Figure 1. Sensitivity analysis STEPP plots of worsening renal function (≥0.3 mg/dL and ≥25% creatinine increase) by diuretic response with regards to combined endpoints*

STEPP plots show the hazard ratio of WRF relative to no WRF across a continuum of subpopulations of diuretic response. A) PROTECT, P=0.269; B) RELAX-AHF-2, P=0.079.

*180-day CV death or heart/renal failure hospitalisation in RELAX-AHF-2 and 60-day death from any cause or cardiovascular or renal hospitalisation in PROTECT.

Supplementary Figure 2. Sensitivity analysis STEPP plots of worsening renal function (≥ 30% eGFR decrease) by diuretic response with regards to combined endpoints*

STEPP plots show the hazard ratio of WRF relative to no WRF across a continuum of subpopulations of diuretic response. A) PROTECT, P=0.421; B) RELAX-AHF-2, P=0.026.

*180-day CV death or heart/renal failure hospitalisation in RELAX-AHF-2 and 60-day death from any cause or cardiovascular or renal hospitalisation in PROTECT.

Supplementary Figure 3. Interaction plots for presence or absence of WRF (≥0.3 mg/dL creatinine increase) by diuretic response with regards to combined endpoints*

^{*180-}day CV death or heart/renal failure hospitalisation in RELAX-AHF-2 and 60-day death from any cause or cardiovascular or renal hospitalisation in PROTECT.

Upper: PROTECT, P=0.128; lower: RELAX-AHF-2, P=0.075

Supplementary Figure 4. STEPP plots of worsening renal function (≥0.3 mg/dL creatinine increase) by crude weight change with regards to combined endpoints*

STEPP plots show the hazard ratio of presence of WRF relative to no WRF across a continuum of overlapping subpopulations of weight change. Each triangle indicates the hazard ratio corresponding with the median weight change of that subpopulation, with the dashed lines representing the 95% confidence interval of the hazard ratio. A) PROTECT, P=0.774; B) RELAX-AHF-2, P=0.006.

*180-day CV death or heart/renal failure hospitalisation in RELAX-AHF-2 and 60-day death from any cause or cardiovascular or renal hospitalisation in PROTECT.

Supplementary Figure 5. STEPP plots of worsening renal function (≥0.3 mg/dL and ≥25% creatinine increase) by crude weight change with regards to combined endpoints*

STEPP plots show the hazard ratio of presence of WRF relative to no WRF across a continuum of overlapping subpopulations of weight change. Each triangle indicates the hazard ratio corresponding with the median weight change of that subpopulation, with the dashed lines representing the 95% confidence interval of the hazard ratio. A) PROTECT, P=0.371; B) RELAX-AHF-2, P=0.044.

*180-day CV death or heart/renal failure hospitalisation in RELAX-AHF-2 and 60-day death from any cause or cardiovascular or renal hospitalisation in PROTECT.

Supplementary Figure 6. STEPP plots of worsening renal function (≥30% eGFR decrease) by crude weight change with regards to combined endpoints*

STEPP plots show the hazard ratio of presence of WRF relative to no WRF across a continuum of overlapping subpopulations of weight change. Each triangle indicates the hazard ratio corresponding with the median weight change of that subpopulation, with the dashed lines representing the 95% confidence interval of the hazard ratio. A) PROTECT, P=0.394; B) RELAX-AHF-2, P=0.212.

*180-day CV death or heart/renal failure hospitalisation in RELAX-AHF-2 and 60-day death from any cause or cardiovascular or renal hospitalisation in PROTECT.

Supplementary Figure 7. STEPP plots of worsening renal function (≥ 0.3 mg/dL creatinine increase) by haemoglobin change with regards to combined endpoints*

STEPP plots show the hazard ratio of WRF relative to no WRF across a continuum of subpopulations of haemoglobin change. A) PROTECT, P=0.274; B) RELAX-AHF-2, P=0.186.

*180-day CV death or heart/renal failure hospitalisation in RELAX-AHF-2 and 60-day death from any cause or cardiovascular or renal hospitalisation in PROTECT.

Supplementary Figure 8. STEPP plots of worsening renal function (\geq 0.3 mg/dL creatinine increase) by ΔePV with regards to combined endpoints*

STEPP plots show the hazard ratio of WRF relative to no WRF across a continuum of subpopulations of ΔePV . A) PROTECT, P=0.302; B) RELAX-AHF-2, P=0.456.

*180-day CV death or heart/renal failure hospitalisation in RELAX-AHF-2 and 60-day death from any cause or cardiovascular or renal hospitalisation in PROTECT.

Supplementary Figure 9. STEPP plots of worsening renal function (≥0.3 mg/dL creatinine increase) by (NT-pro)BNP change with regards to combined endpoints*

STEPP plots show the hazard ratio of WRF relative to no WRF across a continuum of subpopulations of (NT-pro)BNP. A) PROTECT, P=0.088; B) RELAX-AHF-2, P=0.741.

*180-day CV death or heart/renal failure hospitalisation in RELAX-AHF-2 and 60-day death from any cause or cardiovascular or renal hospitalisation in PROTECT.

N=1,209 in PROTECT and N=797 in RELAX-AHF-2.

Supplementary Figure 10. Overview of the magnitude of percentage change in creatinine and BUN according to presence/absence of WRF and good/poor diuretic response in RELAX-AHF-2.

Upper panel: percentage change in creatinine between baseline and day 4 in A) patients without WRF and a good diuretic response, B) patients without WRF and a poor diuretic response, C) patients with WRF and a good diuretic response, and D) patients with WRF and a poor diuretic response. Lower panel: percentage change in BUN between baseline and day 4 in E) patients without WRF and a good diuretic response, F) patients without WRF and a poor diuretic response, G) patients with WRF and a good diuretic response, and H) patients with WRF and a poor diuretic response.

Abbreviations: BUN, blood urea nitrogen; WRF, worsening renal function

Supplementary Figure 11. Overview of the magnitude of percentage change in creatinine and BUN according to presence/absence of WRF and good/poor diuretic response in PROTECT

Upper panel: percentage change in creatinine between baseline and day 4 in A) patients without WRF and a good diuretic response, B) patients without WRF and a poor diuretic response, C) patients with WRF and a good diuretic response, and D) patients with WRF and a poor diuretic response. Lower panel: percentage change in BUN between baseline and day 4 in E) patients without WRF and a good diuretic response, F) patients without WRF and a poor diuretic response, G) patients with WRF and a good diuretic response, and H) patients with WRF and a poor diuretic response.

Abbreviations: BUN, blood urea nitrogen; WRF, worsening renal function

Supplementary Figure 12. STEPP plots for good diuretic response by percentage serum creatinine change with regards to combined endpoints*

STEPP plots show the hazard ratio of good diuretic response relative to poor diuretic response across a continuum of subpopulations of percentage change in serum creatinine. A) PROTECT, P=0.449; B) RELAX-AHF-2, P=0.403.

*180-day CV death or heart/renal failure hospitalisation in RELAX-AHF-2 and 60-day death from any cause or cardiovascular or renal hospitalisation in PROTECT.