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Abstract: Achieving accurate single snapshot direction of arrival (DOA) information significantly
improves communication performance. This paper investigates an accurate and high-resolution DOA
estimation technique by enabling single snapshot data collection and enhancing DOA estimation
results compared to multiple snapshot methods. This is carried out by manipulating the incoming
signal covariance matrix while suppressing undesired additive white Gaussian noise (AWGN) by
actively updating and estimating the antenna array manifold vector. We demonstrated the estimation
performance in simulation that our proposed technique supersedes the estimation performance
of existing state-of-the-art techniques in various signal-to-noise ratio (SNR) scenarios and single
snapshot sampling environments. Our proposed covariance-based single snapshot (CbSS) technique
yields the lowest root-mean-squared error (RMSE) against the true DOA compared to root-MUSIC and
the partial relaxation (PR) approach for multiple snapshots and a single signal source environment. In
addition, our proposed technique presents the lowest DOA estimation performance degradation in a
multiple uncorrelated and coherent signal source environment by up to 25.5% with nearly negligible
bias. Lastly, our proposed CbSS technique presents the best DOA estimation results for a single
snapshot and single-source scenario with an RMSE of 0.05◦ against the true DOA compared to
root-MUSIC and the PR approach with nearly negligible bias as well. A potential application for
CbSS would be in a scenario where accurate DOA estimation with a small antenna array form factor
is a limitation, such as in the intelligent transportation system industry and wireless communication.

Keywords: antenna array; direction-of-arrival; DOA; single snapshot; uniform linear array; ULA

1. Introduction

Direction of arrival (DOA) estimation techniques as part of array signal processing
have been intensively studied over the past few decades for a variety of applications such
as wireless communications [1], radar [2], and vehicular systems [3,4]. A large number of
high-resolution methods have been proposed [5–13]. The classical subspace-based methods
such as the multiple signal classification (MUSIC) [14] and their variants [10,15,16] exploit
the covariance matrix of the array output to determine the DOA estimation, which is
known to be among the best type of DOA estimators. However, these techniques tend
to be computationally expensive and are difficult to implement in real-world scenarios
where cost is a concern [17,18]. In addition, there have also been attempts at implementing
machine-learning (ML) algorithms to DOA estimation techniques as a state-of-the-art
system [11]. In addition, many array input data snapshots are required to construct a
sufficiently data-rich covariance matrix. This leads to a long overall computational time as
more data snapshots are collected for accurate covariance matrix formulation and DOA
estimation. Also, it is known that these techniques are severely degraded when signals are
coherent. Thus, developing a single snapshot-based DOA estimator is an ongoing research
challenge that must be fulfilled for fast and accurate DOA estimation.

Sensors 2022, 22, 3096. https://doi.org/10.3390/s22083096 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22083096
https://doi.org/10.3390/s22083096
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0481-7942
https://orcid.org/0000-0002-7097-9969
https://orcid.org/0000-0003-4743-9136
https://doi.org/10.3390/s22083096
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22083096?type=check_update&version=2


Sensors 2022, 22, 3096 2 of 19

Most of the proposed techniques suitable for real-time implementation have aimed at
reducing the computational load of subspace decomposition per update but not the number
of array snapshots necessary to attain a certain level of estimation performance [18,19].
Using a single snapshot has been challenging, as one of the major drawbacks is that the
DOA estimator’s performance gets degraded for a reduced number of snapshots. Single
snapshot DOA estimation techniques for efficient DOA computation have been researched
in the literature but only perform well when the signal-to-noise ratio (SNR) is high [15,20,21].
The computational complexities have also been an active talking point when developing
new DOA estimation methods. One of the simplest methods of reducing the computational
load is the usage of a single instead of multiple snapshots to formulate the covariance
matrix for DOA estimation.

Nevertheless, there have been multiple attempts at using a single snapshot that has
provided comparable results compared to an estimator that utilizes multiple snapshots. In [20],
a novel approach for recursively estimating the DOA using a single snapshot was proposed.
A deterministic identification algorithm was used as a performance criterion which renders
the DOA estimator robust against modeling error and additive noise via trial and error. A key
drawback to this technique is that it is computationally expensive due to the algorithm’s high
snapshot sampling requirements and recursive nature. In addition, the physical structural
information of the array is required as part of the initialization parameters. It is highly
susceptible to estimation errors when multiple signal sources of interest need a significantly
large antenna array aperture. In [22], a low complexity single snapshot DOA estimation
algorithm was proposed. It is first found that the conventional low-resolution discrete Fourier
transform (DFT) spectrum effectively provides an initial estimation performance. Then, the
proposed algorithm narrows down the search region for the angle of interest. However,
this technique is effective in a massive uniformed linear array (ULA) geometry where the
number of array elements is more than 128 to achieve the desired results. Therefore, the
critical drawback of past proposed DOA estimation techniques is either an antenna geometry
limitation that performs well at high SNR or is highly complex computationally. This limits
the application in reality, with implementations only in high-budget cost applications such as
military or large-scale aerospace industries [2,17].

Recently, there have been innovative methods that utilize ML with DOA estimation—
colloquially dubbed as an ML-based class of DOA estimation. Reference [23] presents a
good feasibility study of the recent progress and work of ML-based DOA estimators in
automotive applications. Several deep learning models were compared and investigated
for their suitability for automotive angle estimation, such as the deep convolutional neural
network (CNN) and deep multi-layer perceptron (MLP) [11]. The models were trained
with model and data-based approaches for data generation, including simulated scenarios
and real-world measurements from 400 automotive radar sensors. These ML techniques
were compared against several baseline angle estimation algorithms such as Bartlett, root-
MUSIC, and the deterministic maximum likelihood (DML) DOA algorithms. Based on
the study in [23], their analysis proved the viability of ML-based super-resolution DOA
estimation for automotive radar with a single snapshot sample. However, it does come
with significant drawbacks and limitations [23,24]. Large datasets for training these ML
models for DOA estimation are required for all possible real-world scenarios. Training
based only on synthetic data will result in poor estimation performance when testing
with actual sensor data [25]. Second, the computational complexity of implementing ML-
based DOA estimators is still highly complex, with the limited availability of public RF
datasets for ML training [23]. Furthermore, even though ML training with datasets can
be done offline, real-world scenarios are still unpredictable with multiple factors, such as
weather, noise, and varying operating frequency [24,25]. Therefore, the ML model will
require additional training to update and adapt to the new environment, which will impact
operational efficiency.

Alternatively, the emerging field of sparse representation DOA estimation has aroused
enormous attention. Based on the observation that signals impinging on an array are
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intrinsically sparse in the spatial domain, the DOA estimation problem can be formulated
as a basis selection problem, where the basis entries are the discretized manifolds of
a sensor array according to the angle of interest. In [26], a novel DOA estimator was
proposed based on a novel data model using the concept of a sparse representation of
array covariance vectors. DOA estimation was achieved by jointly finding the sparsest
coefficients of the array covariance vectors on an overcomplete basis. Although simulation
experiments have validated the high resolution and the capability to estimate coherent
signals, the technique proposed in [24] is computationally complex and requires many
snapshot samples to achieve good results. In [27], a novel Sparse Iterative Covariance-
based Estimation (SPICE) DOA estimator was proposed to combat the need for multiple
snapshots to reduce the computational complexity. The proposed approach was obtained
by minimizing a covariance matrix fitting criterion and is particularly useful in multiple
and single snapshot cases. Although their experiments show promising results, a key
drawback is the need for a complex minimization solver to achieve reasonable estimates.
In addition, a specific geometry of the antenna array is required to achieve the best DOA
estimates. This results in a computationally complex DOA estimation technique and would
require expensive hardware for real-world implementation.

Furthermore, as the covariance matrix plays an integral part in DOA estimation,
the geometric-based class of estimators has been an active research field to improve DOA
estimation accuracy further. The geometric class of DOA estimators is based on information
geometry (IG), which constitutes a framework that measures the parameters’ closeness
between different possible DOAs via the Fisher Information Matrix (FIM). The usage of
IG for DOA estimation was proposed in [28]. The proposed method in [28] uses geodesic
distances in the statistical manifold of probability distributions parametrized by their
covariance matrix to estimate the DOA of several sources. Simulation results have shown
that the proposed method provides an equivalent performance at high SNR against MUSIC
and MVDR, lacking DOA estimation robustness and improved resolution capabilities
at low SNR. In [29], an IG-based method called the string transform based information
geometry (STRING) technique was proposed for DOA estimation and considered the
relationship between the optimum scalar with unknown signal DOAs and powers and its
linear relationship to tackle the problems faced in [28,29]. Based on the simulation results
in [29], the STRING method achieved the best DOA estimation performance compared to
MUSIC and MVDR. One drawback is that the best DOA estimation performance occurs
when two sources are spaced close to each other. In addition, although it presents high
DOA estimation accuracy, it lacks statistical bias and, therefore, lacks the predictability of
its estimates.

This paper aims at developing a computationally efficient and accurate 1-D DOA
estimation algorithm with a ULA antenna array geometry by exploiting the steering vector
feedback and covariance matrix structure into the estimation and assuming the relationship
between the number of sensors M and signal source, L is L < M. The fundamental
characteristic of our proposed technique enables DOA estimation in many applications with
cost, size, and hardware limitations, such as but not limited to the field of transportation
and vehicular signal localization and high-bandwidth connectivity, especially in the current
uprising of wireless communication [30]. We propose a simple approach consisting of a
pre-processing covariance matrix reconstruction to determine a comparative steering vector
by manipulating the structural information of the covariance matrix to improve DOA
estimation performance. The computational efficiency is achieved using a single snapshot
instead of multiple snapshots in our proposed algorithm to reduce data collection time
while improving DOA estimation accuracy in a full range of SNR environments. Efficiency
is achieved by using a predetermined DOA estimation stage using a root-MUSIC-like
algorithm [8]. The derived DOA from the first stage is then used to determine the DOA
initial estimates. This value is then used as feedback to determine the new steering vector.
Finally, the final DOA estimation is then computationally retrieved via the reformulated
covariance matrix. With a focus on lightweight design philosophy, our proposed method
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presents key features that compact single snapshot and high DOA estimation accuracy with
low computational complexity in a wide SNR range. To that end, the critical advantage
of our proposed method presents efficient covariance matrix data collection with a single
snapshot coupled with good DOA estimation performance.

We provide extensive experiments to show the superiority of our proposed method
compared with root-MUSIC and the state-of-the-art eigenvalue-based partial relaxation
approach [13] in adverse scenarios. The scenarios demonstrated in this paper are in a low
SNR environment ranging from 0 dB to 5 dB across all simulations. The simulation section
presents the stable performance across a wide range of SNR environments, multiple signal
source DOA estimation, and an exhausted single snapshot sample situation to showcase
our proposed DOA algorithm performing higher estimation accuracy and statistical bias
deviations. According to our simulation study in a static environment, it has been shown
that our proposed technique supersedes the root-MUSIC and PR approach by up to 80.6% in
multiple snapshots with a single signal source, 180% in multiple uncorrelated and coherent
signal sources with multiple snapshots, all in terms of RMSE DOA estimation reduction.
Furthermore, our proposed technique presents a 92.6% DOA estimation performance gain
for single snapshot scenarios. We also provide the computational time and compare how
this affects the DOA estimation application in a real-world setting.

The remainder of this paper is organized as follows. Section 2 presents the sys-
tem model for an antenna array and the derivation of the crucial antenna array’s signal
covariance matrix. Section 3 offers our proposed DOA estimation technique called the
covariance-based single snapshot (CbSS) DOA estimator. Section 4 presents the simulation
results and discussion demonstrating the performance of our proposed method in multiple
and single signal sources and snapshot data under varying SNR. In addition, the effect of
the parameters chosen is demonstrated. Finally, Section 5 concludes the paper.

2. Data Model and Problem Formulation

Consider a uniformed linear array (ULA) with M isotropic sensor elements receiving
the incoming signals emitted by L narrowband far-field sources with unknown and distinct
DOAs

{
θ1, . . . , θL

}
. Assuming that the number of signal sources, L is known and,

L < M, the kth observation vector of the received signal is expressed as [17]:

x(k) = As(k) + n(k) , k = 1, . . . , K, (1)

where A = [a(θ1), a(θ2), · · · , a(θL)] is the steering matrix of size M × L, s(k) =[
s1(k) . . . sL(k)

]T is the source signal vector with (·)T being the transpose, K is the
total number of snapshots, and a(θL) is the steering vector of the Lth signal source, which
can be expressed as

a(θL) =
[

1 ej 2π
λ sin d2(θL) . . . ej 2π

λ sin dM(θL)
]T

(2)

where λ = c/ f is the wavelength of the carrier frequency, dM is the inter-element spacing
distance being no greater than half the carrier frequency’s wavelength, λ/2, f is the signal
carrier frequency, and c is the speed of light.

It is assumed that the noise vector n(k) is a spatially and temporally white Gaussian
process with zero mean and covariance σ2

nIM where σ2
n is the power and IM is the M×M

identity matrix. Moreover, for this data model, it is assumed that the noise is uncorrelated
with the signal sources, s(k). The main objective of our study is to estimate the L DOAs
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from the observations {x(k)}K
k=1. Therefore, the theoretical covariance matrix of x(k), in

matrix form, is given as [10]

Rxx = E
{

X(k)XH(k)
}

= E
{
(As + n)

(
sHAH + nH

)}
= AE

{
s·sH}AH +E

{
n·nH}

= AESAH + EN
= AESAH + σ2

nIM,

(3)

where E{·} and (·)H represent the mathematical expectation expression and the Hermitian
transpose, EN = E

{
n·nH} and ES = E

{
s·sH} are the M×M noise and L× L signal source

matrix subspaces, respectively.
However, the theoretical covariance matrix is unavailable in a real-world application,

and an estimation is required. If we do not know the exact statistics for the signals and
noise independently, we can assume that the process is ergodic. Therefore, Rxx is replaced

by the sample covariance matrix
^
Rxx, which is defined as [10]

Rxx ≈
^
Rxx =

1
K

K

∑
k=1

x(k)xH(k) =
1
K

XXH (4)

The key issues we face are the overall computational load time and the DOA es-
timation accuracy, which are yet to be addressed clearly, particularly in varying SNR
environments [31]. The problem faced in a low SNR environment is challenging to distin-
guish the different subspaces and signal information. Our proposal in this paper addresses
this issue, especially when faced with an array size limitation without sacrificing DOA
estimation accuracy. In addition, we will also address the single snapshot limitations of
DOA estimation by introducing our robust, high-resolution DOA estimator called the CbSS
technique. The CbSS estimator is an all-encompassing DOA estimation algorithm robust in
performance across a wide range of SNR with good functionality in estimation performance
and computational time.

3. Covariance-Based Single Snapshot DOA Estimator

This section introduces the covariance-based single snapshot (CbSS) DOA estimator.
We first provide a detailed theoretical estimation model based on the theoretical covariance
matrix to identify the root cause of estimation error. Then, we determine the lower and
upper bound of an optimum diagonal-loading factor value for error minimization. Lastly,
based on the theoretical model estimation, we show how to minimize the error and noise
suppression for practical single snapshot DOA estimation implementation.

3.1. Defining the Error Terms in Covariance Matrices

First, we want to highlight an apparent disparity in data information between the
theoretical covariance matrix in (3) and the sample covariance matrix in (4) that eventually
leads to DOA estimation performance degradation. As the number of snapshot samples is
limited, the sample covariance matrix in (4) has inherent errors. Thus, (3) and (4) have a
simple additive error mathematical relationship that can be written as

^
Rxx = Rxx + µD (5)

where Rxx is the theoretical covariance matrix in (3), D, is a zero-mean random matrix
with unit variance, and µ is a constant that indicates the estimation error of the estimated
covariance matrix.

In (5), the term µD represents the additive inherent error by the sample covariance
matrix. The errors are the numerical differences between the theoretical and sample co-
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variance matrices. Evidently, the larger the estimation error, the worst the DOA estimation

performance will be as
^
Rxx is numerically further away from the theoretical covariance

matrix, Rxx. Clearly, µD is the leading cause of estimation performance degradation in the
sample covariance matrix relative to the theoretical covariance matrix.

In past research studies, the diagonal loading method is a simple and efficient method
for improving the robustness of an estimator that conducts matrix decomposition [32].
Thus, we introduce a data-dependent approach to determine an optimal diagonal loading
factor. From (5), we can combine the sample covariance matrix with a diagonal loading
value and the estimation error. Therefore, we include the diagonal loading parameter onto
the sample covariance matrix in (5), which is defined as

RDL = Rxx + µD + εDLI (6)

where εDL is the additive diagonal loading factor of interest to improve the DOA
estimation accuracy.

3.2. Determining the Lower & Upper Bounds of the Diagonal-Loading Factor for
Error Minimization

Assuming that, at sufficiently high SNR values or a high number of snapshot samples,
the theoretical covariance matrix and diagonal loading term combined are much larger than
the inherent error, ‖ Rxx + εDLI ‖ � µ ‖ D ‖, then we can exploit the orthogonal properties
of (3) and (6) and identify the cause of error by taking the inverse of the diagonally loaded
covariance matrix in (6). Taking into account the inverse matrix approximation properties,
the inverse of (6) can be expressed as

RDL
−1 = (Rxx + εDLI)−1

[
I + µD(Rxx + εDLI)−1

]−1
≈ (Rxx + εDLI)−1

[
I + µD(Rxx + εDLI)−1

]
= (Rxx + εDLI)−1

{
I− µ

εDL+σ2
n

D
[

I−A
[
AHA + (Rxx + εDLI)Es

−1
]−1

AH
]}

.
(7)

The sample covariance matrix and theoretical covariance matrix are equal in a perfect
scenario. However, due to the existing error terms in real-world scenarios where the
sample covariance matrix is used, it is impractical to achieve zero error. Thus, the diagonal-
loading factor is introduced to minimize error and noise terms. However, it is crucial to
determine the lower and upper boundary values to not statistically skew the covariance
matrix estimation, which is directly linked to the estimation of the DOAs of interest. If the
diagonal loading factor lies beyond the boundary, it will result in poor estimation results,
which is undesirable.

Therefore, based on the hypothesis, from (7), the terms inside the first brackets should
ideally be a close non-zero value to the theoretical covariance matrix, which can be given as
Rxx + εDLI ∼= Rxx. If εDLI is set to zero, then no diagonal loading factor is used, particularly
inside the curly brackets, and would result in the exact error-prone covariance matrix
estimation. Due to the existing εDLI and other error terms in the curly brackets, only a
close value would be achievable for either a sufficiently high SNR or snapshots samples.
Therefore, the diagonal loading value should be much smaller than the diagonal element
value of the theoretical covariance matrix. This ideal assumption and a diagonal loading
factor upper bound can be expressed as

εDL � Rxx(i, i), εDL 6= 0. (8)

where i represents values from 1 to M.
Next, we want to determine the lower bound in deciding the optimal diagonal loading

factor. It can be observed that the leading cause of performance degradation by the second
term is in the curly brackets in (7). Optimal performance is achieved if the second term
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equates to zero, which would minimize the estimation error in an ideal scenario. Therefore,
to achieve minimal error, it is ideal to have the following hypothetical constraint,

µ

εDL + σ2
n
� 1. (9)

Then, we rearrange the parameters of (9), which should then result in the following inequality,

εDL + σ2
n � µ, (10)

where (10) effectively limits the sample covariance matrix to within the theoretical covari-
ance matrix by minimizing the error terms while effectively reducing the dependency on
snapshot values and noise level variability.

3.3. Practical Implementation for DOA Estimation Error Minimization Using Sample
Covariance Matrix

Therefore, the diagonal element values of the theoretical covariance matrix can be
estimated by the average of the estimated covariance matrix diagonal elements denoted as
~
Rxx(i, i) and is defined as

~
Rxx(i, i) =

tr
(

^
Rxx

)
M

, (11)

where tr(
^
Rxx) denotes the trace of the sample covariance matrix,

^
Rxx.

Note that the trace of the matrix
^
Rxx is the sum of its complex eigenvalues, and it

is invariant to a change of basis. Note that, unlike standard diagonal-loading utilization,
where the factor is always generalized and static, our proposed method in (11) is adaptive
to its application needs and environmental scenarios such as the SNR, the number of
snapshots used, and antenna array geometry.

Using the same observation, the standard deviation of the diagonal elements can also
indicate the covariance matrix estimation error. The method of using standard deviation to
approximate the estimation error has been used in many past covariance matrix reformula-
tions, such as in [33,34]. In an error-induced scenario, the higher the standard deviation,
the higher the variability along the matrix diagonal within that estimated sample, leading
to a higher DOA estimation error. Therefore, this assumption can be expressed as

∅ = SD
(

diag
(

^
Rxx

))
, (12)

where SD(·) means the standard deviation and diag(·) is the diagonal elements of the matrix.
Therefore, we can replace the error term, µ, which is an unknown value, with the

standard deviation error identifier, ∅. From (12), an ideal and optimal diagonal loading
value to improve DOA estimation via the modified sample covariance matrix should satisfy
the following constraint

∅ ≥ εDL �
~
Rxx(i, i), (13)

where we can set εDL = ∅ as an initialization value.
Finally, we combine the constraints in (13) onto the sample covariance matrix equation

in (6), taking into account the assumption in (7), which is presented as

^
RDL =

^
Rxx + εDLI. (14)

To that end, as the steering vector,
^
a(θ) is embedded into the received signal matrix,

there is a need to extrapolate
^
a(θ) before applying (14). Therefore, we propose to use a
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broad initial DOA estimate to obtain
^
a(θ). This can be done by initiating a rough estimation

of the DOA using well-known subspace-based techniques such as root-MUSIC [35]. Then,

we can approximate the first steering matrix,
^
a(θ), as our initial bound estimates. A benefit

of extrapolating the steering vector is enabling sufficient system robustness from undesired
noise, assuming that the DOA does not deviate and remain static at an instantaneous
snapshot that amplifies the steering vector parameter [36]. Furthermore, in a real-world
application, the only prior information required to perform good DOA estimation is the
knowledge of the antenna array geometry and the angular sector in which the actual
steering vector lies [36]. If the incident angle of the signal remains static, then the last
(M− L) eigenvalues and their corresponding eigenvectors of the new covariance matrix
are invariant. Given the hypothesis, (14) is expanded further with the inclusion of the
steering vector estimates, which can be represented as

^
RDL =

(
^
Rxx + εDLI

)
+ a(θ)a(θ)H. (15)

Next, we predefine a set tolerance value, δ, where the expected DOA does not deviate
between +/−5 degrees. However, this can be scenario-dependent based on the application
and the effective beamwidth of the antenna used. For example, a wide beamwidth antenna
may have a high tolerance for DOA estimation, whereas a narrow beamwidth-based an-
tenna requires a small tolerance for practical DOA estimation. Then, we set a mathematical
constraint between the initial DOA, θinit, and estimated DOA, θest with the tolerance value,
δ, which can be interpreted as

‖ θest − θinit ‖ < δ. (16)

Algorithm 1 presents a flowchart summary of our proposed algorithm, the CbSS DOA
estimation technique. We first obtain the signal, X, as in (1) in matrix form. Next, we form
the initial sample-based covariance matrix as in (4). We then use root-MUSIC as our initial
DOA estimation method for the steering vector to be used in (15). In parallel, we define
a predetermined tolerance range that does not overflow the angular expectation of our
expected DOA with reference to the initial estimates determined in the previous stage.

Moreover, the tolerance factor plays a crucial role in the final DOA output because it
determines the initial and estimated DOAs. The tolerance factor is vital as it governs the
final DOA estimates. For example, the delta has a linear relationship between estimation
accuracy and computational time. When delta is low, it leads to higher estimation accuracy
but the computational time expense of determining the final DOA. Alternatively, when the
delta value is high, it leads to a significantly faster computational time while sacrificing
the DOA estimation accuracy. This will be studied further in the simulation section.
Depending on the use-case of our proposed algorithm, the end-user can set the appropriate
delta values that suit the environment and criticality of the different factors. We conduct
the DOA estimation as presented in [21] to determine the estimated steering vector. DOA
estimation is then calculated using a modified polynomial root-solving technique that
is efficient and with high estimation accuracy. A preliminary analysis of this technique
has been demonstrated in [21] for reference. In addition, our CbSS technique allows the
flexibility of both multiple and single snapshot scenarios by adapting and manipulating
the snapshot variable, K. The following section will present the estimation performance of
varying the snapshots and SNR.
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Algorithm 1 Compute DOA using CbSS Algorithm

Require: Incoming Data Matrix, X, δ

1: procedure CbSS(θ)

2: Determine
^
Rxx = 1

K XXH from X

3: Obtain Initial DOA Estimate, θinit from
^
Rxx

4: while θest is being determined do
5: Estimate â (θ) from θinit

6: Calculate
~
Rxx = tr(

^
Rxx))/M

7: Calculate ’ = Std(diag(
^
Rxx))

8: Set Initial DL value, εDL= ϕ

9: Calculate Modified Covariance Matrix,
^
RDL = (

^
Rxx + εDL + â(θ)â(θ)H

10: Obtain Estimated DOA `estfrom
^
RDL.

11: end while
12: if θest − θinit < δ then
13: end procedure
14: else
15: loop

16: Find ∅ ≥ εDL �
~
Rxx

17: Update Steering Vector Estimate, â(θ)
18: repeat
19: ‖ θest − θinit ‖
20: until ‖ θest − θinit ‖ < δ

21: end loop
22: end if
23: end procedure

4. Simulation Results and Discussion

In this section, numerical examples are provided to substantiate the effectiveness of
the proposed method. The comparisons are carried out in different performance metrics
such as estimation accuracy, computational efficiency, and adaptability to various scenar-
ios. As highlighted before, a compacted size antenna array is needed to ease real-world
implementation [30]. Thus, a small-scale ULA with half-wavelength inter-element spacing
is considered [30], and the number of antenna array element sensors is M = 4 unless
otherwise stated. We assume a narrowband signal impinging onto the array from a far-field
source. In addition, for simplicity, we assume that the signal source is static in space and
does not change with time for all simulation scenarios with only an AWGN interference
in the simulation environment within line of sight. The simulation environment is based
on a downlink, line-of-sight (LOS) channel model between the receiver and transmitter.
The noise data were formed using a normally distributed random number generator in
MATLAB that complies with the AWGN model. In our model, the signal matrix, S is
assumed to be of a normalized random power while N is modeled as an additive white
Gaussian noise (AWGN) interference. In summary, only the received data X is known,
whereas the individual parameters A, S, and N are unknown to the DOA estimator because
it is randomized in the simulation. Without loss of generality and simplicity, the impinging
signal source has a plane-wave characteristic.

The SNR which is used in the simulation is defined as

SNR =
1
M

M

∑
m=1

p
qm

, (17)

where p and qm represent the signal and noise power at the mth array element, respectively.
The SNR equation in (17) corresponds to all sensors’ averaged SNRs and generalizes

the definition for uniformed noise levels upon reception at the linear antenna array system.
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To further examine the performance of our proposed estimator, the standard deviation per-
formance is observed against a range of SNR values and the Cramer-Rao Bound (CRB) [37].
The CRB is a useful statistical comparison tool for the accuracy of parametric methods as it
provides a lower bound on the accuracy of any unbiased estimator.

Lastly, all the covariance matrices were simulated using MATLAB 2020b on a Windows
10 PC with a quad-core i7 CPU with 16 GB RAM. A total of 1000 randomized Monte-Carlo
simulation trials were used to determine the simulation results. In addition, as it is beyond
the scope of this paper, we assume that the number of signals is known a priori. Our
proposed CbSS estimator will be evaluated against root-MUSIC [35] and the state-of-the-art
partial relaxation (PR) [13] approach in all simulation scenarios for consistency. Table 1
provides a summary of the crucial parameters used in the simulation. In addition, all root
mean square error (RMSE) is calculated up to two significant figures per simulation cycle to
highlight the high-resolution performance across all demonstrated techniques. The RMSE
equation is defined as:

Root Mean Square Error (RMSE) =

√√√√ 1
Q

Q

∑
i=1

[(
θi1 − θ̂i1

)2
+ · · ·+

(
θiL − θ̂iL

)2

L

]
, (18)

where L is the number of signal sources as before, Q is the number of simulation data
points, θi is the actual DOA, and θ̂i is the estimated DOA.

Table 1. Common simulation parameters.

Carrier Frequency, fc 5500 MHz
Antenna Geometry Uniformed Linear Array

Array Inter-Element Spacing λ/2, where λ is the wavelength of fc in meters
No. of Array Elements, M 4, 8

Simulation Sample 1000

Angle of Interest 35 Degrees (Single Signal Source)
35 ± 10 Degrees (Double Signal Source)

SNR Range −20 dB to 10 dB
Tolerance, δ +/−0.01

4.1. DOA Estimation Accuracy for Single Signal Source and Multiple Finite Snapshots

Figure 1a presents the RMSE of the DOA estimation against varying SNR ranging
from 0 to 5 dB for root-MUSIC, partial relaxation, and our proposed CbSS technique where
the number of snapshot samples, K = 100, and the number of sensor array elements M = 4
and M = 8. It is worth highlighting that we chose to compare our proposed technique
against root-MUSIC due to the likeliness of algorithm steps with improved estimation
performance and the PR approach with its excellent and fast estimation performance.

As depicted in Figure 1a, our proposed CbSS technique exhibits superior performance
than root-MUSIC and PR, particularly in lower SNR threshold due to the noise and error-
suppressing factor in (15) and the array steering vector’s optimal accuracy defined in (16).

To discuss the finding of the current state-of-the-art performance of the PR approach, at
higher SNR (>2 dB), PR outperforms root-MUSIC, albeit slightly insignificant with a small
performance margin difference. Focusing on M = 4, when SNR = 5 dB, the root-MUSIC,
PR, and CbSS presented an absolute RMSE of 0.084◦, 0.079◦, and 0.028◦ respectively. This
yields a relative estimation performance gain of our proposed CbSS technique of 66.7% and
64.6% compared to root-MUSIC and PR, respectively. At the lowest SNR (0 dB), the three
techniques present an RMSE DOA estimation of 0.59◦, 0.62◦, and 0.12◦. These results yield
a 79.7% and 80.6% relative estimation performance difference compared to root-MUSIC
and PR.
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Next, we observe the performance when M = 8. When SNR = 0 dB, the root-MUSIC,
PR, and CbSS have an RMSE performance of 0.21◦, 0.15◦, and 0.042◦, respectively. This
yields a relative estimation performance percentage difference of 80% and 72% when
compared between CbSS and root-MUSIC and PR. When SNR = 5 dB, the RMSE difference
presents 0.034◦, 0.048◦, and 0.011◦ for the three techniques. These results also yield a relative
estimation performance difference of 67.6% and 77.1% between CbSS and root-MUSIC
and PR.

The supplement Figure 1a,b presents the statistical bias performance of the three DOA
estimation techniques with the same simulation parameters to observe the underlying
quantitative parameter being investigated. Focusing on M = 4, it can be observed that CbSS
has a minor variation of bias across the SNR range while approaching minimal bias at a
lower SNR of 1.8 dB as compared to root-MUSIC and PR. In a worst-case scenario, when
SNR = 0 dB, root-MUSIC, PR, and CbSS are 0.017◦, −0.014◦, and −0.00014◦, respectively.
Note that when SNR = 5 dB, the bias approaches negligible levels. Looking at the com-
parison when M = 8, and SNR = 0 dB, root-MUSIC, PR, and CbSS present a bias of 0.014◦,
−0.0049◦, and 0.0031◦, respectively. Root-MUSIC presents a significantly lower bias when
the number of sensor array elements doubles. The PR approach still has a considerably
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higher bias when the number of array elements is smaller. In addition, as the PR approach
only prioritizes the signal of interest and does not consider the sensor array number and
noise environment [22], the PR performance in a low SNR environment is sub-optimal
at best but performs significantly better at higher SNR. As the SNR increases, the noise
and signal subspace separation is significant and easily differentiated for each method.
In addition, as the number of sampling snapshot values increases, the bias starts to be
negligible regardless of the methods. Overall, CbSS outperforms the other techniques in
terms of statistical bias, proving that the estimation results are stable and predictable.

Figure 1c,d presents the DOA estimation performance among the three techniques
in terms of its standard deviation against varying snapshots and its statistical bias per-
formance, respectively. The simulation parameters are the same as before; however, the
SNR value remains fixed at 0 dB to observe the DOA estimation performance variation in
different snapshot values. Overall, it can be seen that CbSS outperforms root-MUSIC and
PR in the case of varying snapshots with similar performance as before. In the scenario
depicted in Figure 1c,d, it is evident that the higher the number of snapshots, the lower the
standard deviation and statistical bias.

4.2. DOA Estimation Accuracy for Multiple Uncorrelated and Coherent Signal Sources

In the second experiment, CbSS performance is observed when multiple signal sources
are impinging onto the antenna array to demonstrate high-resolution DOA estimation.
This will explain the robustness of signal source separation and estimation accuracy. The
presented technique has averaged the RMSE and bias between the two signal sources,
and the numerical results are presented. In addition, varying snapshot against standard
deviation is also presented against a varying number of antenna elements. In the first
subsection, we present an uncorrelated signal source scenario where we observe the dif-
ference in performance for varying signal source separation and the number of antenna
elements. Likewise, in the second subsection, we present the same simulation scenario as
demonstrated in the uncorrelated signal environment but with coherent signal sources.

4.2.1. DOA Estimation Accuracy for Multiple Uncorrelated Signal Sources

Figure 2a,b presents the numerical results with multiple degrees of uncorrelated signal
source separation and the statistical bias where the array elements M = 4, respectively.
Our proposed CbSS estimation technique is consistent in performance compared to a
single-source environment in a multiple signal source environment. There is an estimation
performance decrease of two cubic degrees between a single source and multiple signal
source scenarios. It is consistent across all the techniques when the signal source separation
is >10

◦
. It is important to note that while the estimation accuracy is high, the algorithm still

needs to abide by the M > L constraint.
It is noteworthy that our proposed CbSS technique still performs consistently with

10◦ signal source separation. However, there is a performance degradation of 25.5% when
comparing 5◦ and 10◦ signal source separation, respectively. The inconsistent erratic DOA
estimation performance is due to the correlation matrix binding with correlated matrix cell
inputs. Erratic performance suppression presents the critical advantage of our proposed
technique as it can differentiate and solve the two separate signal sources as they approach
each other.

Figure 2c,d present the numerical standard deviation against a varying number of
snapshots. In this scenario, the SNR remains fixed at 0 dB, and the uncorrelated signal
source separation was set at 10

◦
. Figure 2c shows that the higher the number of snapshots,

the lower the standard deviation. From the results, CbSS presented the lowest standard
deviation compared to root-MUSIC and PR, regardless of the number of antenna elements.

4.2.2. DOA Estimation Accuracy for Multiple Coherent Signal Sources

We observe the scenario where the signal sources of equal power are coherent. In
other words, coherent signals of interest have the same phase and frequency and a linear
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relationship. We reenact the same simulation environment in the coherent signal simu-
lation scenario as presented in Figure 3. In addition, we employ the forward-backward
spatial smoothing (FBSS) for the root-MUSIC technique as this technique is well-known
for identifying coherent signals relatively well [38]. In addition, the FBSS application
onto root-MUSIC does not make a difference in performance when applied to a coherent
signal environment.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 19 
 

 

number and noise environment [22], the PR performance in a low SNR environment is 
sub-optimal at best but performs significantly better at higher SNR. As the SNR increases, 
the noise and signal subspace separation is significant and easily differentiated for each 
method. In addition, as the number of sampling snapshot values increases, the bias starts 
to be negligible regardless of the methods. Overall, CbSS outperforms the other tech-
niques in terms of statistical bias, proving that the estimation results are stable and pre-
dictable. 

Figure 1c,d presents the DOA estimation performance among the three techniques in 
terms of its standard deviation against varying snapshots and its statistical bias perfor-
mance, respectively. The simulation parameters are the same as before; however, the SNR 
value remains fixed at 0 dB to observe the DOA estimation performance variation in dif-
ferent snapshot values. Overall, it can be seen that CbSS outperforms root-MUSIC and PR 
in the case of varying snapshots with similar performance as before. In the scenario de-
picted in Figure 1c,d, it is evident that the higher the number of snapshots, the lower the 
standard deviation and statistical bias. 

4.2. DOA Estimation Accuracy for Multiple Uncorrelated and Coherent Signal Sources 
In the second experiment, CbSS performance is observed when multiple signal 

sources are impinging onto the antenna array to demonstrate high-resolution DOA esti-
mation. This will explain the robustness of signal source separation and estimation accu-
racy. The presented technique has averaged the RMSE and bias between the two signal 
sources, and the numerical results are presented. In addition, varying snapshot against 
standard deviation is also presented against a varying number of antenna elements. In the 
first subsection, we present an uncorrelated signal source scenario where we observe the 
difference in performance for varying signal source separation and the number of antenna 
elements. Likewise, in the second subsection, we present the same simulation scenario as 
demonstrated in the uncorrelated signal environment but with coherent signal sources. 

4.2.1. DOA Estimation Accuracy for Multiple Uncorrelated Signal Sources 
Figure 2a,b presents the numerical results with multiple degrees of uncorrelated sig-

nal source separation and the statistical bias where the array elements M = 4, respectively. 
Our proposed CbSS estimation technique is consistent in performance compared to a sin-
gle-source environment in a multiple signal source environment. There is an estimation 
performance decrease of two cubic degrees between a single source and multiple signal 
source scenarios. It is consistent across all the techniques when the signal source separa-
tion is >10°. It is important to note that while the estimation accuracy is high, the algorithm 
still needs to abide by the 𝑀 𝐿 constraint. 

  
(a) (b) 

Sensors 2022, 22, x FOR PEER REVIEW 13 of 19 
 

 

  
(c) (d) 

Figure 2. (a) SNR-RMSE estimation performance for M = 4 with a fixed number of snapshots K = 100 
for uncorrelated signal source separation of 5 and 10 degrees. (b) Bias performance comparison for 
M = 4 with a fixed number of snapshots K = 100 for uncorrelated signal source separation of 5 and 
10 degrees. (c) Standard deviation of DOA estimation comparison against varying snapshots for M 
= 4 and M = 8, fixed SNR = 0 dB with uncorrelated signal source separation of 10 degrees. (d) Bias 
comparison against varying snapshots for M = 4 and M = 8, SNR = 0 dB with uncorrelated signal 
source separation of 10 degrees. 

It is noteworthy that our proposed CbSS technique still performs consistently with 10° signal source separation. However, there is a performance degradation of 25.5% when 
comparing 5° and 10° signal source separation, respectively. The inconsistent erratic 
DOA estimation performance is due to the correlation matrix binding with correlated ma-
trix cell inputs. Erratic performance suppression presents the critical advantage of our 
proposed technique as it can differentiate and solve the two separate signal sources as 
they approach each other. 

Figure 2c,d present the numerical standard deviation against a varying number of 
snapshots. In this scenario, the SNR remains fixed at 0 dB, and the uncorrelated signal 
source separation was set at 10°. Figure 2c shows that the higher the number of snapshots, 
the lower the standard deviation. From the results, CbSS presented the lowest standard 
deviation compared to root-MUSIC and PR, regardless of the number of antenna ele-
ments. 

4.2.2. DOA Estimation Accuracy for Multiple Coherent Signal Sources 
We observe the scenario where the signal sources of equal power are coherent. In 

other words, coherent signals of interest have the same phase and frequency and a linear 
relationship. We reenact the same simulation environment in the coherent signal simula-
tion scenario as presented in Figure 3. In addition, we employ the forward-backward spa-
tial smoothing (FBSS) for the root-MUSIC technique as this technique is well-known for 
identifying coherent signals relatively well [38]. In addition, the FBSS application onto 
root-MUSIC does not make a difference in performance when applied to a coherent signal 
environment. 

10 20 30 40 50 60 70 80 90 100
Snapshots (K)

10-1

100

101
Root MUSIC w/ FBSS (M = 4)
Partial-Relaxation (M = 4)
CbSS (M = 4)

Root MUSIC w/ FBSS (M = 8)
Partial-Relaxation (M = 8)
CbSS (M = 8)

Figure 2. (a) SNR-RMSE estimation performance for M = 4 with a fixed number of snapshots K = 100
for uncorrelated signal source separation of 5 and 10 degrees. (b) Bias performance comparison for
M = 4 with a fixed number of snapshots K = 100 for uncorrelated signal source separation of 5 and
10 degrees. (c) Standard deviation of DOA estimation comparison against varying snapshots for
M = 4 and M = 8, fixed SNR = 0 dB with uncorrelated signal source separation of 10 degrees. (d) Bias
comparison against varying snapshots for M = 4 and M = 8, SNR = 0 dB with uncorrelated signal
source separation of 10 degrees.

Figure 3a presents the SNR-RMSE DOA estimation performance for M = 4 with a fixed
number of snapshots K = 100 for coherent signal source separation of 5 and 10 degrees.
CbSS has the lowest RMSE compared to root-MUSIC and PR, with similar estimation
performance compared to an uncorrelated scenario. However, all techniques have an
estimation performance degradation of approximately 10% while sustaining a higher
RMSE at higher SNR when compared to an uncorrelated signal scenario. This is expected
due to the difficulty of accurately isolating and decomposing the signal and noise subspace.
Figure 3b presents the statistical bias with the same simulation parameters as presented in
Figure 3a. Our proposed CbSS technique has an almost negligible bias DOA estimation



Sensors 2022, 22, 3096 14 of 19

performance compared to root-MUSIC with FBSS and PR techniques. The bias results
support past literature that the root-MUSIC and PR technique, although accurate in terms
of RMSE, are susceptible to a high level of bias.
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Figure 3. (a) SNR-RMSE estimation performance for M = 4 with a fixed number of snapshots K = 100
for coherent signal source separation of 5 and 10 degrees. (b) Bias performance comparison for M = 4
with a fixed number of snapshots K = 100 for coherent signal source separation of 5 and 10 degrees.
(c) Standard deviation of DOA estimation comparison against varying snapshots for M = 4 and
M = 8, fixed SNR = 0 dB with coherent signal source separation of 10 degrees. (d) Bias comparison
against varying snapshots for M = 4 and M = 8, SNR = 0 dB with coherent signal source separation of
10 degrees.

Figure 3c presents the standard deviation of DOA estimation comparison against
varying snapshots for M = 4 and M = 8, with a fixed SNR value of 0 dB and a coherent
signal source separation of 10 degrees. Similar to Figure 2c, it is evident that the higher
the number of snapshots, the more accurate the DOA estimation is. Nevertheless, our
proposed CbSS technique has the lowest standard deviation compared to root-MUSIC and
PR regardless of the number of elements. Figure 3d presents the statistical bias comparison
for the same simulation environment as demonstrated in Figure 3c. Clearly, due to the
coherent signal environment, there is a lot of bias jitter across the three techniques. Based on
the results, CbSS presents almost negligible bias again than root-MUSIC and PR. However,
compared to an uncorrelated scenario, as shown in Figure 2d, it converges toward 0 at a
much higher SNR level. At the same time, the root-MUSIC and PR techniques maintain
undesirably high bias values.
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In summary, the PR method performs the worst in a coherent signal environment.
This is because for the PR approach, instead of enforcing the entire structure on the steering
vector when formulating the DOA estimation problem, only the structure of one source of
interest is preserved while other additional sources are relaxed. In a situation where there
are multiple sources, PR can only be effective when the sources are uncorrelated [13]. This
is evident from Figure 2d, where PR performs the worst compared to CbSS and root-MUSIC
across the wide range of SNR.

Second, the root-MUSIC with FBSS performs relatively well in terms of bias perfor-
mance due to the spatial averaging. The difference between the estimated and actual DOA
is much smaller in a coherent signal environment when FBSS is employed for root-MUSIC.
Based on the results illustrated in Figure 2c, our proposed CbSS technique outperforms the
spatially smoothed root-MUSIC approach by presenting a significantly lower bias, espe-
cially at high SNR. When the coherent signal source separation is at its worst of 5 degrees
where SNR is −20 dB, our proposed CbSS technique has a bias of −2.2 degrees. Our pro-
posed method approaches near 0 bias when SNR is >0 dB in both signal source separation
environments. The ability to resolve coherent signal here is possible due to the highly
recursive updates and diagonal loading factor applied to the steering vector as shown in
(15) and (16).

4.3. Estimation Accuracy for Single Signal Source and Single Snapshot

The proposed technique estimation performance is observed in the third experiment
under a single snapshot scenario where M = 4 and K = 1 as worst-case scenarios. All
other parameters are the same and can be referred to in Table 1. Like the performance of a
multiple finite snapshot sample scenario, our proposed CbSS technique outperforms the
root-MUSIC and PR approach. With reference to Figure 4a, when SNR = 0 dB, the RMSE
difference relative to the CRB in a single snapshot scenario is 7.7◦, 19◦, and 1.4◦ for the
root-MUSIC, PR approach, and our proposed CbSS techniques, respectively. This yielded
a performance percentage difference of 81.9% and 92.6% between CbSS and compared
against root-MUSIC and PR. When the SNR = 5 dB, the RMSE difference is 0.87◦, 0.88◦,
and 0.32◦ for the three estimation techniques, respectively. This yields a performance
percentage difference of 63.2% and 63.6%, respectively. The simulation results prove that
the CbSS technique is robust even in a single snapshot scenario providing satisfactory DOA
estimation accuracy with the help of the accurate array steering vector estimation and the
noise and estimation error suppressing factor in (10).
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Figure 4b presents the statistical and focused biased plots for our proposed CbSS
technique for K = 1 and M = 4. CbSS trumps the bias difference comparison and
performance in a single snapshot scenario compared to the root-MUSIC and PR approach
with an absolute maximum bias estimation of 0.0018◦ at the lowest SNR of 0 dB. We want
to highlight that our proposed CbSS technique approaches an unbiased-like performance
at a lower SNR of 3.5 dB under a single snapshot environment. An essential factor to note
about the PR approach is that although it has a very high bias at low SNR compared to the
other techniques overall, the computational time of the PR approach is deficient, which
will be addressed in the next section. In addition, since the PR approach does not fully
consider the entire signal and noise subspaces at low SNR, this technique does not perform
as well as CbSS and the root-MUSIC method to prioritize computational complexity and
calculation time of the final DOA estimates.

4.4. Parametric Performance Impact

Table 2 presents the performance comparison between peak DOA estimation accuracy
and computational time for the CbSS technique. The simulation is based on a single source
and single snapshot scenario with the same parameters in Table 1 based on the delta value in
(16). As demonstrated in Table 2, the higher the delta value, the faster the DOA estimation
sequence is completed, but this is at the expense of peak accuracy. Likewise, a lower delta
value results in higher peak estimation accuracy but at the cost of computational time
to completion. Depending on the application environment and priority, the end-user of
CbSS has the flexibility to select the appropriate delta. For example, in a transportation
application where high-speed targets are of concern, the user may choose delta values of
0.5 where there is a need for quick DOA estimation. Alternatively, in a scenario where there
are slow speed targets, such as in congested traffic, the user may select delta values of 0.1
for higher DOA estimation accuracy.

Table 2. Comparison of varying delta values.

Delta, δ 0.01 0.1 1 10

Peak Accuracy 98.7% 91.2% 79.2% 60.5%
Computational Time/cycle

(millisecond) 0.23 0.19 0.12 0.08

5. Conclusions

This paper investigates the problem with DOA estimators in low SNR scenarios
with uniformed linear arrays in the presence of noise and the practicality of using a
single snapshot to reduce computational complexity and time. Our proposed algorithm’s
simulation results are consistent and perform well in low SNR scenarios by utilizing a well-
approximated steering vector to modify the input covariance matrix. Our proposed method
is robust in estimation stability and can offer satisfactory DOA estimation performance.
The simulation results have demonstrated that our proposed CbSS technique performs best
among the three presented methods (root-MUSIC, PR, CbSS). The simulation work has been
shown for multiple and single snapshot scenarios with adequate overall computational
time compared to an existing state-of-the-art method like the partial relaxation approach. In
addition, our proposed CbSS technique presented good estimation performance in a multi-
signal scenario even with signal separation of 5◦. The essential advantage of our proposed
CbSS technique is efficient covariance matrix data collection coupled with accurate DOA
estimation. Our results present improved DOA estimation accuracy at lower SNR than the
geometric-based DOA estimators with lower statistical bias. However, at higher SNR, the
geometric-based approach still presents an improved signal resolution for multiple sources
compared to our subspace-based technique.

Nevertheless, our proposed method is applicable in scenarios where SNR is low and
needs a small-scale and lightweight antenna array localization application and systems.
One industry that urgently requires accurate DOA estimation is the intelligent transporta-
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tion system (ITS) network. Our proposed CbSS technique enables fast and precise network
connectivity from stationary base stations and dynamically moving vehicular systems
as required in ITS applications. As part of future work, practical experiments will be
conducted to validate our proposed CbSS technique in line with past DOA-based exper-
iment validation studies, as demonstrated in [39,40]. Based on [39,40], the validation of
the proposed CbSS technique can be carried out using field programmable gate array
(FPGA) prototyping platforms. In past DOA estimation literature, such as [39,41], practical
experiments have demonstrated that it can meet real-world applications with sufficient
computational complexities of the same subspace-based class of DOA estimators. In ad-
dition, a comprehensive comparison and performance analysis against geometric-based
DOA estimators can be carried out to compare the estimation robustness and accuracy.
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