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Abstract—The combination of deep learning (DL) and com-
puter vision (CV) is shaping the future of wireless commu-
nications by supporting the operations of ultra-dense networks
(UDNs). However, vision-aided wireless communications (VAWC)
are highly dependent on DL algorithms that rely on a wide
range of multimodal data stored at a central location. Although
the performance of the DL model is improved when the model
becomes deeper, the need for a large number of datasets for
model training incurs more computational complexity in terms of
model training time and storage size. Hence, the energy efficiency
of the network will become worse due to the higher energy costs
associated with model training and transmitting a large amount
of data over wireless links. Therefore, a critical challenge is to
reduce the computational complexity and bandwidth utilisation
of DL-based vision-aided UDNs without compromising their
performance. In this paper, we adopt single-channel (SICH) im-
ages, joint photographic expert group (JPEG) image compression
(COMP), and object detection (ODET) to form a hybrid data
manipulation technique. This technique can reduce the model
computation cost and data storage volume, as well as alleviate the
transmission burden on the wireless links to make future wireless
networks more reliable and energy efficient. Specifically, these
techniques are used to manipulate datasets before using them
in model training. Compared to reference datasets, simulation
results show that our hybrid technique that combines SICH,
COMP, and ODET achieves the best performance in reducing the
model computation complexity and network transmission latency
and improving network’s energy efficiency. This results in a
computation time improvement of 34%, a significant reduction of
86% in memory size for data storage, reducing data transmission
time by 83%, and 82.5% more energy efficient networks.

Index Terms—Vision processing, energy efficiency, transmis-
sion latency, deep learning, computer vision, wireless communic-
ations, data compression, 5G and beyond.

I. INTRODUCTION

Fifth-generation (5G) and beyond-5G (B5G) wireless net-
works are characterised by the adoption of high operating
frequencies, i.e., utilising millimetre wave (mmWave) and
terahertz (THz) technologies [1]. The reliance on higher
frequency bands brought advantages in terms of high data
rates, massive device connectivity, and ultra-reliable and low
latency communication. Moreover, the mmWave and THz
bands coupled with beamforming and massive multiple-input
multiple-output (MIMO) technologies shift the paradigm of
wireless networks from large omnidirectional cells to small
directional cells, thus, forming the concept of ultra-dense

networks (UDNs). These networks can serve a tremendous
number of connected devices and realise many revolutionary
applications, such as autonomous driving, augmented reality,
and video surveillance in smart cities. Consequently, enormous
amounts of data will be generated, both at the core and the
edge of the network [2].

Deep learning (DL) has shown its importance in handling
large volumes of datasets to identify hidden trends and patterns
[3]. Hence, the use of DL in UDNs has attracted many re-
search interests to improve their operation, including resource
allocation [4], channel estimation and tracking [5], beam
selection [6], among others. However, due to the dependence
on higher frequency bands, UDNs encounter some critical
challenges that cannot be addressed using traditional network
operation, even when employing DL algorithms. For instance,
mmWave and THz signals suffer from severe attenuation
and penetration losses, and can be easily blocked by objects
located between the transmission points. Beam blockage is
a non-trivial challenge that the UDNs are facing, especially
in dynamic environments. Therefore, an emerging approach
of combining DL with computer vision (CV) has recently
emerged [7].

Vision-aided wireless communications (VAWC) use visual
sensory and wireless channel data to address complex prob-
lems in UDNs [8]. The fusion of DL and CV is expected to
tackle critical challenges, such as beam selection, blockage
prediction, and handover. Moreover, VAWC exploits visual
sensory information like red, green, blue (RGB)/depth images,
videos, light detection and ranging (LiDAR), and 3D point
cloud collected from the target area by cameras/scanners. The
new mobile edge computing (MEC) paradigm introduced by
the European telecommunications standards institute (ETSI)
brings cloud computing capabilities to the edge of the radio
access network. Following the conventional approach of train-
ing machine learning (ML) models in a central location, i.e.,
an edge server, VAWC datasets are sent to the central server
through wireless links to train DL models designed to tackle
challenging problems in UDNs. However, DL models require
large quantities of datasets and training rounds to perform
efficiently. Consequently, transmitting a large amount of data
over the wireless links requires a significant amount of energy
[9], resulting in a substantial network carbon footprint and
a considerable strain on the wireless communication links,



besides incurring high transmission delay and the need for
large storage size. In addition, the underlying mathematical op-
erations of DL algorithms yield heavy computational burdens,
especially for deeper DL models, which consume significant
amounts of energy. These challenges are exacerbated when
handling multimodal information of VAWC systems.

From an environmental perspective and given that most
global energy usage nowadays hugely depends on fossil fuels,
the increase in energy consumption means increased levels of
carbon dioxide equivalent (CO2e) emissions, which constitutes
the main reason for global warming and climate change.
Human activities caused 1.0◦C global warming by 2020, and
it is estimated to reach 1.5◦C between 2032 and 2050 if the
increase rate remains the same [10]. Many global endeavors
have been undertaken to prevent such a rise, which can
reach the point of no return and cause catastrophic natural
disasters. Therefore, it is paramount to reconsider the energy
consumption patterns.

Capitalising on the above, the main focus of this paper is to
improve DL-based vision-aided systems in UDNs to be more
energy efficient by reducing the computational complexity of
DL models represented by the time of model training and data
storage. Additionally, the energy efficiency is further improved
by decreasing the energy cost of data transmission over the
wireless links, along with significantly decreasing the network
transmission latency. After surveying the literature, we noticed
that almost all the presented works that are concerned with
energy efficiency problems in DL algorithms focus on modi-
fying the model settings through its structure [11], [12] or
parameters [13], [14]. Although these works have shown an
efficient model computation, they also cause a degradation in
the prediction accuracy.

To the best of our knowledge, no prior works have studied
the energy efficiency of VAWC systems. Also, no studies
alleviate the computation complexity of DL models through
modulating the input datasets in lieu of modifying the model
setting. In this paper, we propose a hybrid data manipulation
approach by combining object detection (ODET), single-
channel (SICH) images, and joint photographic experts group
(JPEG) image compression (COMP) techniques to reduce the
computational complexity of DL-based vision aided systems
by modulating the visual sensory training dataset. Specifically,
we reduce the memory needed to store the massive amount of
visual information by utilising COMP and ODET techniques.
Furthermore, we also reduce the model training and inference
time by eliminating redundant information in input data using
SICH images. The proposed techniques can significantly en-
hance energy efficiency by reducing the computational cost
of DL models without compromising the system’s overall
performance. Data transmission time over wireless links is
also improved, which is essential for realising time-critical
applications. The following points demonstrate our main con-
tributions:

• We present a hybrid data manipulation approach that
minimises the computational complexity of DL models
in vision-aided systems by modulating the input datasets

instead of changing the model structure.
• We improve the energy efficiency of DL-based vision

aided systems in UDNs by reducing the network’s carbon
footprint associated with the high energy cost needed to
perform model training and data transmission.

• The work also alleviates the burden of data transmis-
sion on wireless links and significantly minimises data
transmission latency, which is critical for time-sensitive
applications.

The rest of this paper is organised as follows. Section II
discusses the integration of DL with CV and the impact of
modern DL models on the computation cost. In Section III, we
introduce the proposed techniques that reduce the computation
complexity of DL-based CV models. Simulation results are
shown in Section IV. Finally, Section V gives concluding
remarks.

II. DL-BASED CV-AIDED SYSTEMS

DL is the cutting-edge of artificial intelligence (AI). It
provides systems with the ability to automatically learn how to
give accurate predictions without human intervention. Unlike
basic ML techniques that rely on complex feature engineer-
ing and engineer guidance, DL models can make intelligent
decisions without the need for data analysis. Deeper DL
models that contain multiple hidden layers have proven to be
important through achieving breakthroughs in a wide variety
of fields such as gaming, speech, and vision [15]. Moreover,
the combination of DL and CV has the potential to improve
the operation of wireless communication systems. This fusion
is realised due to the fact that the mmWave and THz frequency
bands will make UDNs highly dependent on line-of-sight
(LoS) communications, which are aligned with the field-of-
view of vision sensors.

A. VAWC Overview

The reliance on the LoS propagation characteristic of high
frequency signals is consistent with the visual information cap-
tured from cameras/scanners, and the direct view is essential
for both. By allowing wireless systems to have a sense of
the surrounding environment and exploiting the visual sensory
information of the covered area in addition to wireless data,
CV is envisioned to play a major role in future wireless
networks. Few works have been presented in the literature to
demonstrate the efficacy of leveraging CV integrated with DL
in wireless communication systems. For instance, the work in
[16] proposes a camera-assisted predictive handover algorithm.
The depth images taken by the cameras and the measured
network throughput are used to train a DL model for link
quality prediction. The model learns the relationship between
the depth images and measured throughput to estimate future
link quality and guide the network to make optimal decisions
in advance.

In [17], Klautau et al. utilise the DL algorithm in addition to
LiDAR information collected in vehicles for beam prediction.
This work aims to reduce the beam selection overhead by
relying only on LiDAR information and BS location. The



vehicle uses this information to predict the best candidate
beams and sends them to the BS to determine the best
beam for transmission. In order to predict LoS link blockages
in advance, the study in [18] develops a DL model that
utilises RGB images and beamforming vectors to predict
beam blockage in UDNs proactively. While the work in [19]
proposes a deep reinforcement learning (DRL) model that
exploits sequences of RGB images to predict beam block-
age, hence making efficient handover decisions in advance.
According to the aforementioned research studies and their
results, it is clear that utilising visual sensory information will
be a substantial part of designing and realising robust and
reliable wireless communication systems. However, combining
DL with CV is accompanied with huge computation and
energy consumptions that may hinder their wide deployment
in wireless networks. Therefore, this work mainly focuses on
proposing data manipulation techniques that can reduce the
computational complexity of DL-based CV systems, making
them more energy efficient.

B. Energy Concerns of Modern DL Approaches

DL algorithms have undergone a significant shift towards
deeper neural networks that require massive quantities of data
for training. This is attributed to advances in hardware as well
as improved computation techniques. However, the remarkable
performance of large neural networks comes at the expense of
considerable energy consumption accompanied with the under-
lying mathematical computations [20]. Therefore, substantial
financial and environmental costs are incurred. Modern DL
models continue to grow in the number of layers to give better
generalisation by learning all intermediate features at different
levels of abstraction. For instance, the study in [20] shows that
the relationship between DL model size and the amount of
computation needed to train these models until convergence
has an exponential relationship. This relationship is verified
using some of the well-known DL models between 2012 and
2018. Based on this relationship, it is evident that the depth of
the new proposed DL models will continue to grow to the point
of intolerable computation and energy consumption cost. For
this reason, it is imperative to find new approaches that help
address the computation complexity issue of DL networks.

III. PROPOSED DL-BASED CV ENERGY-EFFICIENT
APPROACH

Innovative 5G services and enhanced applications anticip-
ated in sixth-generation (6G) networks render the wireless
networks to be more complex than today’s paradigm. Hence,
the traditional methods used in network design, operation, and
optimisation will be inadequate. To make wireless networks
intelligent, a data-driven AI-based paradigm should be utilised,
so that the network nodes can determine the best policy by
exploiting the knowledge extracted from the collected data
[21]. However, the newly emerging DL algorithms are scaling
rapidly and approaching the computation limit. Continuing
this path will soon become unbearable technically, financially,
and environmentally. Additionally, the modern approach of

SBS3 SBS2 SBS1

Macro BS

Figure 1: UDN consists of a macro BS and three small BSs each
with an attached RGB camera.

exploiting CV in optimising UDNs will further increase the
computation complexity and burden the wireless transmission
links due to the reliance on big multimodal data. In other
words, the ML community will be pushed toward two dir-
ections, either by optimising the current DL algorithms and
reducing their computation cost or by developing new, less
resource-intensive ML technologies. In the following, we will
discuss our wireless communication system model and the
proposed techniques that will reduce the computation cost
of current DL models and make the wireless networks more
energy efficient.

A. System Model

In this work, we assume the centralised model training ap-
proach in UDNs. Our system considers the UDN that includes
one macro BS and three small BSs (SBSs) operating at 60
GHz, as illustrated in Fig. 1. Each SBS contains an array of
antennas that enables beamforming technology and serves the
users by selecting the optimum beam that provides the highest
link budget for single-antenna users using LoS communica-
tion. In addition, each SBS has a vision sensor (RGB camera)
to obtain a sense of the surrounding environment and assist
the operation of the wireless network. The captured vision
information is sent to a central server located at the macro
BS through mmWave backhaul links. The role of the central
server is to receive visual and wireless information from SBSs
and employ them in training ML models that can intelligently
predict beam blockages, hence improving the performance
of wireless communication systems. Moreover, the scenario
under study includes a moving user and a stationary block-
ing object, i.e., bus, that can block the LoS communication
between the SBS and the user. For the comparison purpose,
we consider the distributed cameras blocked view scenario of
the ViWi dataset [22] and adopt the beam blockage problem
in [7] as a baseline work. The base work utilises the pretrained
ResNet18, a convolutional neural network (CNN) model with
18 hidden layers, where each layer contains a different number
of neurones. This model was trained using the ImageNet
dataset to classify images based on 1000 classes. The last
layer of the ResNet18 model is changed to fit the blockage
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Figure 2: The RGB image is represented by red, green, and blue
channels, as well as grayscale.

problem.

B. Single Channel (SICH), Image Compression (COMP) Tech-
niques

The base work considers the RGB images of the ViWi
dataset to classify them based on beam blockage status. The
RGB images consist of three channels; each has several pixels
(width × height) with values that reflect the image’s content.
Image pixels indicate the size to be stored in memory and
varies according to the image resolution, which means that
the higher resolution requires more storage space. Therefore,
the large number of images or frames per second in videos
will burden the local storage servers. On the other hand, DL
algorithms outperform when the number of training datasets
rises. In addition, model training is performed in cloud-centric
servers that require dataset transmission through the wireless
network. Accordingly, the massive amount of data transmitted
over wireless links will strain the bandwidth resources of these
links and cause significant delays.

Another important factor that will affect the efficiency of
ML algorithms is the time required to perform model training
until model convergence. Deeper DL models contain many
parameters that can run into hundreds of millions or even
billions, thus significantly increasing model training time,
resulting in more energy consumption. In this section, our core
focus is to reduce the input information and data size while
maintaining the model prediction accuracy, thereby reducing
the computation complexity. Precisely, as Fig. 2 demonstrates,
each RGB image consists of red, green, and blue channels,
and every channel has different pixel values, which means
that every single image contains three folds of redundant
information. Therefore, each RGB image is converted into a
SICH (i.e., grayscale). After that, we shed light on reducing
the storage needed to store the RGB images.

COMP is the typical technique that should be used to reduce
the required storage [23]. It represents an image in fewer bits
without losing the essential content information by perform-
ing data compression on digital images. COMP is generally
categorised as either lossy or lossless compression. In lossless
compression, the image size is reduced without affecting the
quality, but the storage reduction is not significant. Therefore,
our focus is directed toward lossy COMP since the main goal

is to reduce the image size while maintaining image quality
at an acceptable level. The most commonly used lossy COMP
technique is JPEG compression. However, JPEG compression
affects image quality, and a trade-off between the storage size
and the image quality should be considered. Another essential
factor that needs to be studied is the image quality versus the
model prediction accuracy when visual information is used
for model training [24]. A comparative study on the impact of
SICH and COMP techniques on model performance will be
presented in Section IV-B.

C. Object Detection (ODET) Technique

ODET is a CV technique that deals with recognising objects
of certain classes in images or videos [25]. Since the beam
blockage prediction problem in UDNs is concerned with
detecting users and objects that cause signal blockage to
ensure reliable communications, The ODET model can help
extract such information from RGB images and exclude other
insignificant details. With the aim to further alleviate the cent-
ral model computation complexity and wireless transmission
energy costs, this study adopts the ODET algorithm to remove
the insignificant information from data. Instead of processing
the entire image information, this work focuses only on image
parts containing relevant information regarding the problem
that the DL model is trying to solve. In this work, we exploit
the pretrained you only look once (YOLO) version 3 ODET
model to detect the user and the object causing the blockage.
YOLOv3 belongs to the YOLO family, which contains a series
of end-to-end DL models designed to provide fast ODET. The
YOLO model is modified to retain the information inside the
bounding boxes and remove other unnecessary information.
Fig. 3 demonstrates how the modified YOLO model is used
to extract the required information from each RGB image.

Modified

YOLOv3

Figure 3: Using YOLO object detection to extract the required
information.

IV. PERFORMANCE EVALUATION AND RESULTS

We evaluate the effectiveness of our proposed techniques by
generating five new datasets from the original ViWi (ORIG)
using simulations. Fig. 4 demonstrates these datasets, which
are classified as, first, the SICH dataset that contains grayscale
images. Second, the COMP dataset, which is compressed
based on 20 as the quality level1. Third, the SICH COMP
dataset contains compressed grayscale images. The fourth
dataset is generated using the ODET technique. Finally, the
fifth dataset is the compressed and grayscale version of the
fifth dataset (ODET SICH COMP).

1Fig. 5 demonstrates that the quality level will not affect the prediction
accuracy; hence the work can use any quality level.
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Figure 4: Different forms of ViWi dataset are generated based on
our proposed techniques. Every dataset is tagged with the required
memory storage size in the SBS.

A. Simulation Setup

We consider an UDN operating at a frequency of 60 GHz
and contains a central server located at a macro BS and
three SBSs, each with an RGB camera. In our network, the
cameras capture videos, and the corresponding SBS transmit
them to the central server located at the macro BS through
10Gbps mmWave backhaul links [26]. We begin our study by
collecting several RGB images to train the modified ResNet18
model for the beam blockage prediction problem. We assume
the cameras attached to the SBSs capture videos at 26 frames
per second [27]. Therefore, to match the number of images in
the ViWi dataset, which equals 5000 images, we allow each
SBS to send the RGB images in 64 seconds of recording to
the central server to perform initial model training. Moreover,
model training hyperparameters such as number of epochs,
batch size, learning rate (LR), LR schedule, LR reduction
factor, data split are set to E = 14, B = 150, LR = 1× 10-4,
epochs 4 and 8, α = 0.1, and 70%-30%, respectively.
Our simulation experiments are based on Python programs
installed on a Windows operating system with Intel Xeon CPU
E5-2620 @ 2GHz and 16GB RAM. The performance of our
proposed techniques is compared among the six types of ViWi
datasets.

B. Simulation Results

We first investigate the effect of performing different image
compression levels on the required storage and beam blockage
prediction accuracy using the ORIG dataset. Fig. 5 illustrates
the model prediction accuracy and the amounts of storage
reduction as a function of the compression quality level. This
figure reveals that regardless of the compression level used on
the ORIG dataset, the prediction accuracy will remain high.
Besides, it demonstrates the considerable storage reduction,
which is attributed to the high compression rates that can
be used. A higher compression rate means more discarded
information, and hence less memory storage needed. The
percentage of memory storage reduction reaches to 86% when
the value 2 is used as the compression quality level.

Next, we demonstrate how this work can reduce the compu-
tational complexity of the DL model in terms of model training
time while maintaining the prediction accuracy at high levels.

Figure 5: The effect of different compression levels on prediction
accuracy and storage reduction.

Fig. 6 shows the time needed to train the ResNet18 model
using the different forms of ViWi datasets. In addition, Fig.
7 illustrates the prediction accuracy achieved as a function of
these datasets after 14 training epochs. It can be observed from
Fig. 6 that applying JPEG COMP and ODET on the training
dataset has a small impact on the training time, but the best
training time reduction is achieved when we use the SICH
technique. This is attributed to using single-channel images
instead of three channels which means that less information
needs to be processed. Therefore, fewer mathematical compu-
tations are performed within the hidden layers of the model,
resulting in less time and energy consumption required to
train the model until convergence. Fig. 6 also indicates that
a 34% training time reduction is achieved when we use the
hybrid technique that manipulates the ORIG dataset using
ODET, SICH, and COMP techniques. On the other hand, Fig.
7 reveals that our proposed techniques do not affect the final
prediction accuracy since all the generated datasets were able
to achieve the optimal prediction accuracy.

After that, we evaluate the performance of our proposed
work in the context of energy efficiency and network carbon
footprint. Here, we use an average energy consumption rate of
0.0075 kWh/GB for network data transmission in 2021. This
value is estimated given that the average energy intensity in
the UK in 2015 was 0.06 kWh/GB, and following the same
finding that the electricity intensity of data transmission is
halved every two years [28]. Also, we quantify the amounts
of CO2e emissions using a conversion factor 0.23314 per
kWh [28]. Fig. 8(a) shows the energy required to transmit the
different types of ViWi datasets between each SBS and the
macro BS. This figure reveals that all the proposed techniques
significantly reduce the amount of energy consumption, and
the combined data manipulation approach of ODET, SICH,
and COMP is the most energy efficient achieving 82.5%
reduction in energy consumption. Similarly, Fig. 8(b) demon-
strates the amount of CO2e emissions accompanied with data
transmission over the wireless network. In this figure, we
note that the hybrid approach has the best performance in the
context of reducing the amounts of CO2e emissions that also



Figure 6: Average training time per epoch vs types of ViWi dataset.

Figure 7: Blockage prediction accuracy vs number of epochs for six
types of ViWi dataset.

achieves an improvement of 82.5%.
Finally, the time required to transmit the RGB images

through the mmWave backhaul is plotted versus the differ-
ent types of ViWi datasets in Fig. 9. It is observed that
our proposed hybrid technique has significantly reduced the
time required for data transmission. The reduction in data
transmission time is attributed to the reduction in datasets
size, which means less time to send them to the central
server. Our hybrid data manipulation technique can reduce
the network latency by 83% compared to that achieved by the
ORIG dataset. The significant reduction in data transmission
time demonstrates the potential of our proposed work in low-
latency, time-sensitive applications.

V. CONCLUSIONS

In this paper, we proposed several data manipulation tech-
niques that have improved the energy efficiency and trans-
mission latency of DL-based vision-aided UDNs by reducing
the computation complexity of DL models and the burden ac-
companied with transmitting large multimodal data. Network
performance is improved due to removing redundant informa-
tion from the training dataset and neglecting the insignificant
information before starting model training. The simulation

(a)

(b)

Figure 8: The performance of using ViWi datasets in terms of (a)
Energy consumption and (b) CO2e emission

Figure 9: Transmission time needed to send the RGB images in 64
seconds of video recording from SBS to the macro BS over mmWave
backhaul link.



results showed that the combination of ODET, SICH, and
COMP achieved the best results by reducing the model training
time by 34% and the memory size needed to store the raw data
by 86% without compromising the accuracy of the DL model.
Furthermore, the hybrid technique has improved the network’s
energy consumption and carbon footprint by 82.5% and also
reduced data transmission time by 83%, which helps to realise
low-latency time-sensitive applications.
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