Developing practical clinical tools for predicting neonatal mortality at a neonatal intensive care unit in Tanzania

Kovacs, D., Msanga, D. R., Mshana, S. E., Bilal, M., Oravcova, K. and Matthews, L. (2021) Developing practical clinical tools for predicting neonatal mortality at a neonatal intensive care unit in Tanzania. BMC Pediatrics, 21, 537. (doi: 10.1186/s12887-021-03012-4) (PMID:34852794) (PMCID:PMC8638252)

[img] Text
258945.pdf - Published Version
Available under License Creative Commons Attribution.



Background: Neonatal mortality remains high in Tanzania at approximately 20 deaths per 1000 live births. Low birthweight, prematurity, and asphyxia are associated with neonatal mortality; however, no studies have assessed the value of combining underlying conditions and vital signs to provide clinicians with early warning of infants at risk of mortality. The aim of this study was to identify risk factors (including vital signs) associated with neonatal mortality in the neonatal intensive care unit (NICU) in Bugando Medical Centre (BMC), Mwanza, Tanzania; to identify the most accurate generalised linear model (GLM) or decision tree for predicting mortality; and to provide a tool that provides clinically relevant cut-offs for predicting mortality that is easily used by clinicians in a low-resource setting. Methods: In total, 165 neonates were enrolled between November 2019 and March 2020, of whom 80 (48.5%) died. We competed the performance of GLMs and decision trees by resampling the data to create training and test datasets and comparing their accuracy at correctly predicting mortality. Results: GLMs always outperformed decision trees. The best fitting GLM showed that (for standardised risk factors) temperature (OR 0.61, 95% CI 0.40–0.90), birthweight (OR 0.33, 95% CI 0.20–0.52), and oxygen saturation (OR 0.66, 95% CI 0.45–0.94) were negatively associated with mortality, while heart rate (OR 1.59, 95% CI 1.10–2.35) and asphyxia (OR 3.23, 95% 1.25–8.91) were risk factors. To identify the tool that balances accuracy and with ease of use in a low-resource clinical setting, we compared the best fitting GLM with simpler versions, and identified the three-variable GLM with temperature, heart rate, and birth weight as the best candidate. For this tool, cut-offs were identified using receiver operator characteristic (ROC) curves with the optimal cut-off for mortality prediction corresponding to 76.3% sensitivity and 68.2% specificity. The final tool is graphical, showing cut-offs that depend on birthweight, heart rate, and temperature. Conclusions: Underlying conditions and vital signs can be combined into simple graphical tools that improve upon the current guidelines and are straightforward to use by clinicians in a low-resource setting.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Oravcova, Dr Katarina and Matthews, Professor Louise and Kovacs, Dorottya
Authors: Kovacs, D., Msanga, D. R., Mshana, S. E., Bilal, M., Oravcova, K., and Matthews, L.
College/School:College of Medical Veterinary and Life Sciences > School of Biodiversity, One Health & Veterinary Medicine
Journal Name:BMC Pediatrics
Publisher:BioMed Central
ISSN (Online):1471-2431
Copyright Holders:Copyright © The Author(s) 2021
First Published:First published in BMC Pediatrics 21:537
Publisher Policy:Reproduced under a Creative Commons Licence

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
303374Supporting the National Action Plan for Antimicrobial Resistance (SNAP-AMR) in TanzaniaShona HiltonMedical Research Council (MRC)MR/S004815/1Institute of Biodiversity, Animal Health and Comparative Medicine
304005MRC Precision Medicine Training GrantMorven BarlassMedical Research Council (MRC)MR/N013166/1-LGH/MS/MED25CAMS - Cardiovascular Science