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Data-Driven Robust Predictive Control for Mixed
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Jianglin Lan , Dezong Zhao , Senior Member, IEEE, and Daxin Tian , Senior Member, IEEE

Abstract— This paper investigates cooperative adaptive cruise
control (CACC) for mixed platoons consisting of both human-
driven vehicles (HVs) and automated vehicles (AVs). This
research is critical because the penetration rate of AVs in the
transportation system will remain unsaturated for a long time.
Uncertainties and randomness are prevalent in human driving
behaviours and highly affect the platoon safety and stability,
which need to be considered in the CACC design. A further
challenge is the difficulty to know the exact models of the HVs
and the exact powertrain parameters of both AVs and HVs.
To address these challenges, this paper proposes a data-driven
model predictive control (MPC) that does not need the exact mod-
els of HVs or powertrain parameters. The MPC design adopts
the technique of data-driven reachability to predict the future
trajectory of the mixed platoon within a given horizon based on
noisy vehicle measurements. Compared to the classic adaptive
cruise control (ACC) and existing data-driven adaptive dynamic
programming (ADP), the proposed MPC ensures satisfaction of
constraints such as acceleration limit and safe inter-vehicular
gap. With this salient feature, the proposed MPC has provably
guarantee in establishing a safe and robustly stable mixed platoon
despite of the velocity changes of the leading vehicle. The
efficacy and advantage of the proposed MPC are verified through
comparison with the classic ACC and data-driven ADP methods
on both small and large mixed platoons.

Index Terms— Data-driven control, model predictive control,
mixed vehicle platoon, reachability.

I. INTRODUCTION

COOPERATIVE adaptive cruise control (CACC), which
leverages vehicle-to-vehicle (V2V) wireless communi-

cations, ensures a convoy of vehicles travel at the same
longitudinal velocity with safe vehicular gaps. Both theoretic
and experimental studies have revealed the great potential
of CACC in reducing traffic congestion, accidents and fuel
consumption [1]–[7]. This has attracted much research interest
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and many CACC strategies have been developed for effective
platooning of pure automated vehicles (AVs) [8], [9]. However,
the penetration rate of AVs in the transportation system will
remain unsaturated for a long time, resulting in the coexistence
of AVs and human-driven vehicles (HVs) on roads [10].
Hence, it is in great need to develop CACC for mixed vehicle
platoons consisting of both AVs and HVs. The key difference
between the platoon of pure AVs and mixed platoon is that the
later involves HVs whose behaviours are not programmable
as AVs. Moreover, human driving behaviours have inherent
uncertainties and randomness that would cause traffic con-
gestion [11] and oscillation [12]. Therefore, the behaviours
of HVs need to be considered in designing the CACC of
mixed platoon to ensure platoon safety (i.e., collision-free)
and robustness (i.e., formation-maintainable), as demonstrated
in the experiments [13]–[15]. However, the state-of-the-art
CACC strategies for platooning pure AVs are normally
based on the simple and identical mass-point vehicle models
and thus cannot be applied to mixed platoons. This raises
the demand of developing new CACC strategies for mixed
platoons.

Many models have been developed to capture the human
driving behaviours in the car-following setting [16], e.g., the
intelligent vehicle model, the optimal velocity (OV) model,
etc. Compared to other models, the OV model is simple in
representation but can characterize qualitatively almost all
kinds of traffic behaviours and the transitions between different
behaviours [16], [17]. Hence, the OV model has been adopted
for analyzing the stability of mixed platoon [18], [19] and
developing model-based CACC for AVs within mixed pla-
toons [17], [20]–[24]. Linear quadratic regulators are designed
in [20], [21] for controlling an AV to smooth the mixed traffic
flow on a ring road. Optimal control is developed in [17] for
an AV to lead a number of HVs at a signalized intersection.
Tube model predictive control (MPC) is used in [22] to control
the AV behind a group of HVs. Robust control is designed
in [24] for the AVs in large-scale mixed platoons. However,
all the above control designs need to know the parameters of
the OV model, which is too restrictive as the HV behaviours
are difficult to be modelled exactly [10]. Moreover, both the
OV model of HVs and the point-mass model of AVs adopted
in the above works do not include the effect of time delays in
propulsion, which could affect the platoon stability. Therefore,
it is more appealing to develop a CACC for mixed platoons
that considers the propulsion time delays and has no need of
knowing the HV model (i.e., OV model) parameters.
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Adaptive dynamic programming (ADP) [25] has been
adopted by [26]–[28] to design data-driven optimal CACC for
AVs in the mixed platoon, where the HV model parameters are
not required. ADP has been proved powerful to learn optimal
stable controllers by utilizing the collected input-state data of
the system. However, these works lack a systematic way to
guarantee a safe inter-vehicular gap and platoon’s robustness
against leader velocity changes. Reinforcement learning based
CACC for mixed traffic has been developed in [29], where the
AVs acceleration commands are generated by a centralized
learning model managed on the cloud. The learning model
is trained offline using experimental data of mixed traffic
to mimic behaviours of the OV model under safety and
physical constraints. However, the centralized setting relies on
vehicle-to-cloud communications and may cause time delays
in applying the acceleration commands. Also, parameters of
the learning model are fixed once being trained, which poses
challenge in generating optimal CACC for general mixed pla-
toons. All the above data-driven designs have not considered
noises in vehicle state measurement and unknown propulsion
time delays, which may lead to degraded CACC performance.

To address the above challenges, this paper aims to develop
a data-driven MPC for mixed platoons with unknown HV
model parameters, unknown propulsion time delays and mea-
surement noise. Due to its capability of real-time optimization
and explicit constraint handling, MPC has been widely used
for platoons of pure AVs [5]–[7], [9], [30] and also for mixed
platoon with known HV models [22]. In principle, the MPC
design relies on a known platoon model to predict the future
platoon trajectory under the candidate control sequence. The
existing model-based MPC designs are inapplicable to this
work, because the investigated mixed platoons have unknown
models. The proposed design will adopt the technique of
system reachability analysis to predict the trajectory of the
mixed platoon under specified input and safety constraints.
Reachability analysis has been used for autonomous vehicle
path planning in [31], but the exact vehicle model is needed.
Recently, data-driven reachability analysis has been developed
in [32] and used for MPC design for generic discrete-time
linear systems in [33]. However, their MPC design requires
data sets collected through offline experiments, making it
inapplicable for mixed platoon application. In practice a mixed
platoon is more likely to be formed on-the-fly and a priori
knowledge of it is unavailable. Hence, setting offline simula-
tion experiments for data collection is unrealistic for mixed
platoon applications.

The above background motivates this work and the main
contributions are summarized as follows:

1) A data-driven robust MPC is proposed to control the ego
AVs in the mixed vehicle platoon with unknown HV
models. Each vehicle (either AV or HV) is character-
ized by a third-order dynamic model with an unknown
propulsion time delay. The third-order model captures
more realistic vehicle dynamics than the second-order
point-mass model used in the existing literature on
mixed platoons. Moreover, the proposed MPC is applica-
ble for a wide range of mixed platoon formations that
contain the one in [26]–[28] as a special case.

Fig. 1. Formation of the mixed platoon.

2) The proposed MPC explicitly considers input and safety
constraints and has provably guarantee in establishing a
safe and robustly stable mixed platoon, which is lacking
in the data-driven ADP-based designs [26]–[28]. The
MPC determines a real-time safe, robust and optimal
acceleration command for each ego AV, which has not
been realized by either the ADP-based methods
[26]–[28] or the reinforcement learning based
method [29].

3) The proposed MPC adopts the idea of data-driven
reachability and uses vehicle state measurement with
unknown noise, which has not been investigated in the
literature. The data is collected when the mixed platoon
is on-the-fly, rather than collected through offline sim-
ulation experiments as in [33]. During data collection,
the lead AV generates a small velocity change to excite
the platoon dynamics and ego AVs are equipped with the
classic adaptive cruise control (ACC) to avoid collisions.

The rest of this paper is organized as follows. Section II
describes the mixed platoon and CACC problem, Section III
presents the data-driven MPC design, Section IV provides the
simulation results, and Section V draws the conclusions.

Notation: The symbol R
n is the n dimensional Euclidean

space. ⊗ is the Kronecker product. The superscripts � and †
are transpose and pseudo-inverse, respectively. | · | is the
absolute value and �x�P = x� Px . In is a n × n identity
matrix. 1n is a n dimensional column of ones. I[a,b] denotes
the set of integers from a to b. 0 is a zero matrix whose
dimensions are known from the context unless it is necessary
to be given. s.t. is short for subject to.

II. MIXED PLATOON MODEL AND CACC PROBLEM

This paper considers the mixed platoon in Fig. 1, where all
the vehicles are equipped with V2V wireless communication
devices. The mixed platoon has N + 1 vehicles, including
the lead AV 0, the end AV N , and N − 1 HVs between
them. The role of AV 0 is to ensure controllability of the
entire platoon and assist the data collection for designing the
proposed data-driven MPC for AV N . AV 0 is assumed to
already have a well-tuned controller, e.g., the MPC in [30],
to ensure the tracking of reference longitudinal velocity. The
focus of this paper is to design the longitudinal acceleration
commands of AV N to follow AV 0 by using the motion
information from vehicles 0 to N − 1. The CACC design in
this paper is based on Fig. 1, but applicable to more general
mixed platoons. This is because a general mixed platoon
can be split into multiple sub-platoons with the formation
of Fig. 1, which will be demonstrated in the simulation
studies.
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The longitudinal dynamics of AVs are characterized by the
third-order linear system

ṗi = vi

v̇i = ai

ȧi = 1

τi
(ui − ai ) (1)

where i = 0, N . The variables pi , vi , ai , and ui are the vehicle
position, longitudinal velocity, acceleration, and acceleration
command, respectively. τi is the unknown propulsion time
delay.

The acceleration command uN is to be determined for con-
trolling AV N to track v0 whilst keeping a safe inter-vehicular
gap h∗ between itself and HV N − 1. The platooning error
vector of AV N is defined as xN = [�hN �vN aN ]�, where
�hN = hN − h∗, �vN = vN − v0 and hN = pN−1 − pN .
By using (1), the platooning error system of AV N is derived
as

ẋN = AN xN + BN uN + DN xN−1 + EN a0 (2)

where xN−1 is the platooning error vector of HV N − 1 and

AN =
⎡
⎣0 −1 0

0 0 1
0 0 − 1

τN

⎤
⎦ , BN =

⎡
⎣ 0

0
1
τN

⎤
⎦ ,

DN =
⎡
⎣0 1 0

0 0 0
0 0 0

⎤
⎦ , EN =

⎡
⎣ 0

−1
0

⎤
⎦ .

The car-following behaviour of HV i , i ∈ I[1,N−1], is cap-
tured by the third-order nonlinear system

ḣi = vi−1 − vi

v̇i = ai

ȧi = 1

τi

�
αi (V (hi ) − vi ) + βi (vi−1 − vi ) − ai

�
(3)

where hi = pi−1 − pi is the gap between vehicles i − 1 and
i , αi is the headway gain, and βi is the relative velocity gain.
V (hi ) is the spacing-dependent desired velocity given by [20]:

V (hi ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, hi ≤ hs
vmax

2

�
1 − cos(π

hi − hs

hg − hs
)


, hs < hi < hg

vmax, hi ≥ hg

(4)

where hs is the smallest gap before the HV intends to stop and
hg is the largest gap after which the HV intends to maintain
the maximum velocity vmax. This paper establishes a stable
platoon and thus ensures hs < hi < hg. To build a more
realistic mixed platoon model, the HV model (3) includes the
acceleration dynamics with unknown propulsion time delay
τi , which has not been considered in the existing literature on
mixed platoons [16]–[24], [26]–[29].

When AV 0 travels at the velocity v0 (≤ vmax), the HVs will
ultimately reach the equilibrium point (h∗, v∗), where v∗ =
v0 and h∗ satisfies v∗ = V (h∗). Define xi = [�hi �vi ai ]�,
with �hi = hi −h∗ and �vi = vi −v0. The linearized models
of the HVs around the equilibrium point are derived as

ẋ1 = A1x1, ẋi = Ai xi + Di xi−1, i ∈ I[2,N−1] (5)

with

Ai =
⎡
⎢⎣

0 −1 0
0 0 1
ᾱi
τi

−β̄i
τi

−1
τi

⎤
⎥⎦ , Di =

⎡
⎣0 1 0

0 0 0
0 c̄i

τi
0

⎤
⎦ ,

ᾱi = αi τ̂i , β̄i = αi + βi , c̄i = βi ,

where τ̂i = V 	(h∗) is the derivative of V (hi ) with respect to
hi evaluated at h∗ [16].

Define the overall platooning error vector as x =
[x�

1 · · · x�
N ]� and the control input as u = uN . By using (2)

and (5), the overall platooning error system is derived as

ẋ = Acx + Bcu + Eca0 (6)

with the system matrices

Ac =

⎡
⎢⎢⎢⎣

A1
D2 A2

. . .
. . .

DN AN

⎤
⎥⎥⎥⎦ , Bc =

⎡
⎢⎢⎢⎣

B1
B2
...

BN

⎤
⎥⎥⎥⎦ ,

Ec =

⎡
⎢⎢⎢⎣

E1
E2
...

EN

⎤
⎥⎥⎥⎦ ,

Bi = 0, Ei = 0, i ∈ I[1,N−1].

The acceleration a0 of AV 0 is regarded as a disturbance,
because it is an external input intending to drift the overall
platooning error system (6) away from the equilibrium posi-
tion. Hence, u will be designed to ensure that the platooning
error system is robustly stable against a0.

Discretizing (6) using the forward Euler method with sam-
pling time ts to get the control-oriented mixed platoon model

x(t + 1) = Ax(t) + Bu(t) + Ea0(t)

y(t) = x(t) + w(t) (7)

where t is the sampling step, A = In + ts Ac, B = ts Bc and
E = ts Ec. w(t) is the measurement noise which is unknown
but bounded. The dimensions of the vectors x(t), u(t), a0(t),
y(t) and w(t) are n = 3N , m = 1, q = 1, n = 3N and
n = 3N , respectively.

Although the car-following behaviours of HVs can be
captured by the OV model (5), the uncertainty and randomness
in human driving make it impossible to identify the exact
model parameters αi and βi , i ∈ I[1,N−1]. The propulsion time
delays τi , i ∈ I[1,N], are also unknown. Hence, the system
matrices A and B in (7) are unknown and the model-based
CACC designs in [17], [18], [20]–[24] are inapplicable. This
paper will develop a data-driven MPC to get an optimal u(t)
to realize two objectives:

1) Ensure stability of the mixed platoon:
Fy(t) − ȳr(t) = 0 (8)

where F = [03×(n−3) I3] and ȳr(t) = [0 0 a0(t)]�.
2) Satisfy input and safety constraints:

u(t) ∈ U, y(t) ∈ Y (9)
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Fig. 2. Flowchart of the proposed CACC design.

where U = {u ∈ R | |u| ≤ umax} and Y = {y ∈
R

n | |y| ≤ ymax}, with ymax = 1N ⊗ ȳ and ȳ =
[�hmax �vmax umax]�.

In (9), umax is the maximum acceleration, �hmax is the
maximum allowable inter-vehicular gap error (i.e., deviation
from the safe inter-vehicular gap h∗), and �vmax the maximum
allowable velocity error (i.e., deviation from the equilibrium
velocity v∗). By setting 0 < �hmax < h∗, satisfying y(t) ∈ Y

guarantees 0 < pi−1 − pi < 2h∗ and avoids vehicle collisions.

III. DATA-DRIVEN ROBUST MPC FOR MIXED PLATOON

As outlined in Fig. 2, the proposed CACC design consists
of three steps:

1) Collect noisy platoon data including the input u(t) and
state y(t) (see Section III-B).

2) Construct an over-approximation of the unknown mixed
platoon model [A B] (see Section III-C). This paper
focuses on over-approximating the mixed platoon model,
because all the possible platoon dynamics under
the physical and safety constraints can be captured.
Although over-approximation leads to design conserv-
ativeness, the over-approximated model is essential for
designing MPC to generate a robustly optimal control
law u(t) to realize the objectives in (8) and (9).

3) Compute the reachable set of platoon state and design
the data-driven robust MPC (see Section III-D).

Before proceeding, the necessary preliminaries of reacha-
bility and zonotope are provided in Section III-A.

A. Basics of Reachability and Zonotope

The proposed MPC will be based on the reachable set of the
mixed platoon model (7). The reachable set is the union of all
possible y(t) within a finite time when starting from the initial
state y(0) ∈ Y and implementing a set of possible u(t) ∈ U,
in the presence of disturbance a0(t) and measurement noise
w(t). The reachable set is to be computed using the matrix
zonotope based set-propagation technique in [31], [32], which
can represent the high-dimensional sets compactly and is
computationally efficient. This technique is essential for this
work, because the state x(t) in the platoon model (7) has
the dimension of n = 3N , which will be very high as the
number of vehicles N increases. The basic knowledge of set
representation is recalled from [31], [32] and given below.

Definition 1 (Zonotope): Given the center cz ∈ R
n and

generator matrix Gz = [g(1)
z · · · g(nz)

z ] ∈ R
n×nz , a zonotope

Z = 
cz, Gz� is defined as Z = {x ∈ R
n | x = cz +�nz

i=1 β(i)g(i)
z , |β(i)| ≤ 1}.

Definition 2 (Matrix Zonotope): Given the center matrix
Cm ∈ R

n×p and generator matrices Gm = [G(1)
m · · · G(nm)

m ] ∈
R

n×nm p , a matrix zonotope M = 
Cm , Gm� is defined as
M = {X ∈ R

n×p | X = Cm + �nm
i=1 β(i)G(i)

m , |β(i)| ≤ 1}.
The following operations of zonotope are to be used:
• Linear mapping: LZ = 
Lcz , L Gz�.
• Minkowski sum: Z1 + Z2 = 
cz1 + cz2, [Gz1 Gz2]�.
• Cartesian product: Z1 × Z2 =

��
cz1
cz2


,

�
Gz1 0

0 Gz2

�
.

• Interval over-approximation: Z = 
cz, Gz� can be
over-approximated by an interval V = [v, v̄], where

v = cz − �nz
i=1 |g(i)

z | and v̄ = cz + �nz
i=1 |g(i)

z |.
In this paper, the reachable set will be computed directly

from noisy data with the presence of disturbance a0(t). The
noise w(t) and disturbance a0(t) are assumed to be unknown
but satisfy Assumptions 1 and 2, respectively.

Assumption 1: The measurement noise w(t) is bounded by
a zonotope, i.e., w(t) ∈ Zw = 
cw, Gw� for all t ≥ 0.
The one-step noise propagation Aw(t) is also bounded by a
zonotope, i.e., Aw(t) ∈ Z Aw = 
cAw, G Aw� for all t ≥ 0.

Assumption 2: The term Ea0(t) is bounded by a zonotope,
i.e., Ea0(t) ∈ Za0 = 
cEa0 , GEa0� for all t ≥ 0.

According to [34], the bound of Aw(t) in Assumption 1
can be determined by using the largest singular value of A
and the upper bound of w(t). The largest singular value of A
could be obtained through experiments by considering model
parameter uncertainties of HVs [24]. Assumption 1 may be
restrictive, but it still remains as an open problem in the field of
data-driven control to deal with measurement noise. Since the
acceleration a0(t) of AV 0 is known to satisfy |a0(t)| ≤ umax
and the matrix E is known, Assumption 2 is always true.

B. Collection of Noisy Mixed Platoon Data

It is seen from (7) that the mixed platoon is influenced by
the acceleration a0 of AV 0. Hence, this paper applies a small
time-varying acceleration command u0(t) to AV 0 to excite
the platoon dynamics for data collection. To maintain safety
of AV N during data collection, its acceleration command is
set as u(t) = uACC(t), i.e., the classic ACC controller [35]:

uACC(t) =
�

sat(ugap(t), umax), hN (t) < dsafe(t)

sat(uspeed(t), umax), hN (t) ≥ dsafe(t)
(10)

where the function “sat()” is defined as sat(z, zlimit) :=
max(min(z, zlimit),−zlimit) such that |z| ≤ zlimit. The gap
controller ugap(t) is used to maintain a safe inter-vehicular
gap between HV N − 1 and AV N :

ugap(t) = kh(hN (t) − dsafe(t)) + kv (vN−1(t) − vN (t)) (11)

where kh and kv are constant gains, dsafe(t) is the safe
inter-vehicular gap designed as dsafe(t) = dstill + tgvN (t), dstill
is the standstill distance and tg is the time headway. The speed
controller is to control AV N at the specified velocity vset
whenever hN (t) ≥ dsafe(t):

uspeed(t) = min(ks(vset − vN (t)), ugap(t)) (12)

where ks is a constant gain. In this paper, the MATLAB
example “Adaptive Cruise Control with Sensor Fusion” is used
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as the reference to set the values: kh = 0.2, kv = 0.4, ks = 0.5,
dstill = 5 m, tg = 1.5 s and vset = 24.5 m/s.

The AV N has access to the real-time input u(t) and
noisy state measurements y(t) of the system (7). Collect T
steps input-state data to obtain the sequences {u(t)}T −1

t=0 and
{y(t)}T

t=0. Using them to construct the data set Sdata:

Sdata = {U−, Y+, Y−}, U− = [u(0) · · · u(T − 1)],
Y+ = [y(1) · · · y(T )], Y− = [y(0) · · · y(T − 1)]. (13)

The unknown disturbance and noise sequences correspond-
ing to the collected data set Sdata are denoted as:

D− = [Ea0(0) · · · Ea0(T − 1)],
W− = [w(0) · · · w(T − 1)],
W+ = [w(1) · · ·w(T )]. (14)

According to Assumptions 1 and 2, the sequences in (14)
satisfy the relations:

D− ⊂ Ma0, W+ ⊂ Mw, AW− ⊂ MAw (15)

where the matrix zonotopes Ma0 , Mw and MAw are computed
from the zonotopes Za0 , Zw and Z Aw , respectively.

C. Over-Approximation and Reachable Set of Platoon Model

Due to the existence of measurement noise, there gen-
erally exist multiple models [A B] that are consistent
with the collected data set Sdata = {U−, Y+, Y−}. Under
Assumptions 1 and 2, the zonotopes Za0 , Zw and Z Aw that
bound Ea0(t), w(t) and Aw(t) are known. Hence, by col-
lecting enough data such that [Y �− U�− ]� has full rank
n + m, a matrix zonotope MAB can be constructed to
over-approximate all possible system models (i.e., mixed
platoon dynamics) that are consistent with the noisy data,
as shown in Lemma 1.

Lemma 1: Given the data set Sdata = {U−, Y+, Y−} of the
mixed platoon model (7), where [Y �− U�− ]� has full rank n+m.
Then under Assumptions 1 and 2, the matrix zonotope

MAB = �
Y+ − Ma0 − Mw + MAw

� �
Y−
U−

†

(16)

contains all possible system models [A B] that are consistent
with the data and the bounds of disturbance and noise.

Proof: By using (7), the dynamics of y(t) is derived as

y(t + 1) = Ay(t) + Bu(t) + Ea0(t) + w(t)−Aw(t + 1).

(17)

Based on (13) and (14), (17) is equivalently written as

Y+ = [A B]
�

Y−
U−


+ D− + W+−AW−. (18)

Since the matrix [Y �− U�− ]� has full rank n + m, the
following equation is derived from (18):

[A B] = (Y+ − D− − W+ + AW−)

�
Y−
U−

†

. (19)

By using (15) and (19), the matrix zonotope MAB in (16)
can be used to over-approximate all possible system models
[A B] that are consistent with the noisy data.

Define Rt as the model-based reachable set of y(t) at time t .
Then it is computed based on (17) and given as

Rt+1 = [A B](Rt × Zu,t ) + Za0 + Zw − Z Aw (20)

where R0 = 
y(0), 0� and Zu,t = 
u(t), 0�. The data-driven
over-approximation of Rt is provided in Lemma 2.

Lemma 2: Given the data set Sdata = {U−, Y+, Y−} of the
mixed platoon model (7), where the matrix [Y �− U�− ]� has full
rank n+m. Then under Assumptions 1 and 2, the model-based
reachable set Rt is a subset of the data-driven reachable set
R̂t characterized by

R̂t+1 = MAB(R̂t × Zu,t ) + Za0 + Zw − Z Aw (21)

where R̂0 = 
y(0), 0� and Zu,t = 
u(t), 0�.
Proof: It is easy to see that based on (16) and (20),

R̂t is governed by (21). Since [A B] ∈ MAB as shown in
Lemma 1, it is true that Rt ⊂ R̂t . Therefore, the data-driven
representation in (21) provides an over-approximation of the
real mixed platoon dynamics in (17).

One of the sufficient conditions to the statements in
Lemma 1 and Lemma 2 is collecting “enough data” such
that the matrix [Y �− U�− ]� has full rank n + m. Physi-
cally, this ensures that the dynamic behaviours (accelera-
tion/deceleration) of the mixed platoon are captured by the
collected data, so that the unknown parameters αi and βi ,
i ∈ I[1,N−1], and τi , i ∈ I[1,N], in model (7) can be identified
from the data [36]. The full rank condition is satisfied if
the input u(t) of AV N is persistently exciting of order
n+1 during data collection [33], [36]. The persistent excitation
is realized via designing the input u(t) in [33]. However,
this is inapplicable for mixed platoons because u(t) does
not influence the behaviours of the HVs ahead of AV N .
In this paper, the dynamics of the mixed platoon is excited by
applying a small time-varying acceleration command u0(t) to
AV 0, as described in Section III-B. Note that it is also possible
to ensure the full rank condition under natural driving (without
manually adding extra u0(t) to AV 0), given that during data
collection AV 0 has time-varying velocities that are able to
excite fully the dynamics of the mixed platoon. This will be
demonstrated through simulations in Section IV-C. Under the
natural driving setting, however, it is expected that more time
could be taken to collect enough data.

D. Data-Driven Robust MPC Design and Implementation

This section describes the data-driven MPC design based
on (21) to realize the platooning objectives in (8) and (9)
with robustness against the measurement noise w(t) and leader
disturbance a0(t). As the starting point, the MPC design based
on the mixed platoon model (7) is provided to illustrate the
basic principle of MPC. At each time step t , the input u(t) is
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obtained by solving the constrained optimization problem:
min Jt (ey, eu) (22a)

s.t. y(t + k + 1|t) = Ay(t + k|t) + Bu(t + k|t)
+ E a0(t + k) + w(t + k)−Aw(t + k),

∀w(t + k) ∈ Zw, ∀Ea0(t + k) ∈ Za0 (22b)

u(t + k|t) ∈ U, y(t + k + 1|t) ∈ Y (22c)

y(t|t) = y(t) (22d)

where Jt (ey, eu) = �Nc−1
k=0 �ey(t +k +1|t)�2

Q +�eu(t +k|t)�2
R

is the cost function, Nc is the prediction horizon, and ey(t+k+
1|t) = Fy(t+k+1|t)− ȳr(t) and eu(t+k|t) = u(t+k|t)−ur(t)
are the predicted tracking errors. The input reference ur(t) =
ugap(t) is the gap controller in (11). {u(t + k|t)}Nc−1

k=0 is the
control sequence to be determined, and y(t) is the measured
state at time t . The weights Q ∈ R

3×3 and R ∈ R
m×m are

user-specified symmetric positive matrices. The obtained first
optimal control input u∗(t|t) is set as u(t) for AV N .

The MPC problem in (22) needs the unknown matrices
A and B and thus is not implementable. This paper will
reformulate it as a data-driven MPC problem using (21). The
key idea is to determine {u(t + k|t)}Nc−1

k=0 at each time step
t such that the predicted state sequence {y(t + k + 1|t)}Nc−1

k=0
always stay within the computed reachable set and the cost is
minimized. The obtained data-driven MPC problem is

min Jt (ey, eu) (23a)

s.t. R̂(t + k + 1|t) =
�
MAB(R̂(t + k|t) × Zu,t )

+ Za0 + Zw − Z Aw

�
∩ Y (23b)

y(t + k + 1|t) ⊂ R̂(t + k + 1|t) − Za0 − Zw + Z Aw

(23c)

u(t + k|t) ∈ U, y(t|t) = y(t) (23d)

where Zu,t = 
u(t + k|t), 0�. The constraint in (23b) is the
intersection of the reachable set (21) and the state constraint
set Y. The combination of (23b) and (23c) is to ensure the
predicted state sequence {y(t+k+1|t)}Nc−1

k=0 always stay within
the computed reachable set sequence {R̂(t + k + 1|t)}Nc−1

k=0 .
The data-driven MPC problem in (23) is solved recursively

at each time step to obtain the optimal control input u(t) =
u∗(t|t) for AV N . Properties of this data-driven MPC design
are described in Theorem 1.

Theorem 1: Under Assumptions 1 and 2, if the MPC prob-
lem in (23) is feasible at the first time instance t0, then
it is feasible at any time t ≥ t0 and the obtained control
inputs realize the platooning objectives in (8) and (9), i.e.,
guaranteeing that the mixed platoon is robustly stable and
satisfies the input and safety constraints.

Proof: According to Lemma 2, the computed reach-
able set R̂t is the over-approximation of the model-based
reachable set Rt , i.e., Rt ⊂ R̂t . The control input sequence
is designed to satisfy the constraints in (23b) and (23c).
This guarantees that the predicted state is always within the
intersection of the over-approximated reachable set and the
state constraints regardless of the measurement noise and
disturbance. Therefore, feasibility of (23) guarantees robust

constraint satisfaction of the over-approximation R̂t and of
the true reachable set Rt . Feasibility of the problem in (23)
also ensures that the predicted state is always enforced within
the same constraint set Y. This means that Y is a constant
terminal set of the proposed MPC [30]. Therefore, the MPC
problem in (23) is feasible at any time t ≥ t0, if it is feasible
at the first time instance t0.

According to Theorem 1, the velocity deviation �vN =
vN − v0 satisfies |�vN | ≤ �vmax for any leader acceleration
a0. Hence, it is straightforward to show that the mixed platoon
is head-to-tail string stable [37] in the sense of L2 string
stability [26]. For the considered mixed vehicle platoon in
Fig. 1, head-to-tail string stability ensures velocity fluctuations
to be suppressed from AV 0 to AV N , but allows amplification
of velocity fluctuations among the HVs between them. The
head-to-tail string stability for a general mixed platoon can
be investigated in a similar way by splitting the platoon into
multiple sub-platoons [38].

Solving (23) involves computing the matrix zonotopes
with intersections and constraints in (23b) and (23c), which
is computationally expensive and undesirable for real-time
implementation. To overcome this, (23) is reformulated as a
more computationally efficient optimization problem:

min Jt (ey, eu) (24a)

s.t. R̂(t + k + 1|t) = MAB(R̂(t + k|t) × Zu,t )

+ Za0 + Zw − Z Aw (24b)

y(t + k + 1|t) + su(t + k + 1) ≤ Yu (24c)

y(t + k + 1|t) − sl(t + k + 1) ≥ Yl (24d)

y(t + k + 1|t) + su(t + k + 1) ≤ R̂u(t + k + 1|t)
(24e)

y(t + k + 1|t) − sl(t + k + 1) ≥ R̂l(t + k + 1|t)
(24f)

su(t + k + 1) ≥ 0, sl(t + k + 1) ≥ 0 (24g)

u(t + k|t) ∈ U, y(t|t) = y(t) (24h)

where su(t + k + 1) and sl(t + k + 1) are extra variables intro-
duced to ease the computation. Yu and Yl are the upper and
lower bounds on the individual dimensions of Y, respectively.
R̂u(t + k + 1|t) and R̂l(t + k + 1|t) are the upper and lower
bounds on the individual dimensions of R̂(t + k + 1|t), and
they are computed via over-approximating R̂(t +k +1|t) using
an interval, as described in Section III-A.

The only difference between the MPC problems in (23)
and (24) is that the constraints in (23b) and (23c) are replaced
by (24b) - (24g) with the extra variables su(t + k + 1) and
sl(t + k + 1). Such a replacement improves the computational
efficiency whilst retaining the properties proved in Theorem 1
and the head-to-tail string stability. The real-time implemen-
tation of the proposed CACC is summarized in Algorithm 1.

Remark 1: The data collection process in Algorithm 1 is
necessary whenever a new mixed platoon forms, e.g., due to
lane changes, and cut-ins/outs of vehicles. There may not be
time to collect enough data if the platoon formation changes
quickly, e.g., at on/off-ramp areas. In such cases, a switch
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Algorithm 1 Proposed Data-Driven Robust MPC

Require: Input and state constraints (U,Y), weights
(Q, R), and prediction horizon Nc .
for t ≥ 0 do

while [Y �− U�− ]� is not full rank do
Construct Sdata = {U−, Y+, Y−}. � Section III-B

end
Compute MAB using (16). � Section III-C
Solve (24) for {u∗(t + k|t)}Nc−1

k=0 . � Section III-D
Apply u(t) = u∗(t|t) to AV N .

end

Fig. 3. Simulated mixed platoons: Sub-platoon 1 is used in
Sections IV-A and IV-C, while Sub-platoons 1&2 are used in Section IV-B.

from the data-driven MPC to classic ACC can be made to
avoid collisions and ensure safety of the mixed platoon.

IV. SIMULATION RESULTS

The proposed MPC has been verified in two different mixed
platoons: (i) Sub-platoon 1 and (ii) the entire platoon (consist-
ing of Sub-platoons 1&2) in Fig. 3. The Sub-platoons 1&2
have the same formation as Fig. 1 with N = 5 and
N = 3, respectively. The case (ii) is used to demonstrate the
applicability of the proposed MPC design for a more general
mixed platoon. This has not been investigated in the existing
data-driven CACC designs [26]–[28]. Each AV in the platoon
is set to not “look beyond” another AV, e.g., AV 8 would not
include the V2V signals from those vehicles further ahead
than AV 5. This setting is to avoid using unreliable V2V
communications between vehicles that are too far apart [39].

To further demonstrate advantages of the proposed design
over the existing ones, three different platooning designs are
simulated and compared: Classic ACC [35], ADP [28], and
Data-driven MPC proposed in this paper. In the ADP design,
input-state data are collected for computing the constant gain
KADP to implement the control law u(t) = −KADPx(t).

The simulations are conducted in MATLAB by using the
toolbox YALMIP [40] with the solver MOSEK [41] for com-
puting the MPC, and the CORA toolbox [42] for computing
the zonotopes. To simulate more realistic traffic conditions,
the vehicles have the following different model parameters:
τ0 = 0.18 s, α1 = 0.2, β1 = 0.4, τ1 = 0.13 s, α2 = 0.2,
β2 = 0.45, τ2 = 0.12 s, α3 = 0.3, β3 = 0.4, τ3 = 0.16 s,
α4 = 0.2, β4 = 0.45, τ4 = 0.15 s, τ5 = 0.12 s, α6 = 0.3,
β6 = 0.5, τ6 = 0.18 s, α7 = 0.25, β7 = 0.4, τ7 = 0.13 s,
τ8 = 0.14 s. The propulsion time delays here benchmarked
can present many vehicles including power-split plug-in hybrid
electric vehicles, such as the 2015 Toyota Prius [43]. The other
platoon parameters are: hg = 35 m, hs = 5 m, vmax = 30 m/s,
ts = 0.02 s, umax = 3 m/s2, �hmax = 15 m, �vmax = 5 m/s.

Fig. 4. Vehicle acceleration commands: Sub-platoon 1.

The state measurement noise w(t) is a white noise satisfying
|w(t)| ≤ 0.01. The initial vehicle state (pi , vi ), i ∈ I[0,8], are
(160, 10), (140, 10), (120, 10), (100, 10), (80, 10), (60, 10),
(40, 10), (20, 10) and (0, 10), respectively.

A. Results of Sub-Platoon 1

This section presents the comparative simulation results of
Sub-platoon 1 in Fig. 3 by applying Classic ACC, ADP, and
Data-driven MPC to AV 5. Classic ACC is given in (10) with
kh = 0.2, kv = 0.4, ks = 0.5, dstill = 5 m, tg = 1.5 s
and vset = 24.5 m/s, which are the default values in the
MATLAB example “Adaptive Cruise Control with Sensor
Fusion”. ADP is designed based on the platoon model (7)
and follows Algorithm 1 in [28] with Q = 10−3 × I3 and
R = 1 but neglecting the driver reaction time. Data-driven
MPC is designed by running Algorithm 1 in Section III-D
with T = 3400, Q = I3, R = 10−2 and Nc = 2. During
data collection of ADP and Data-driven MPC, the excitation
signal u0(t) = 0.2 sin(π t/600) m/s2 is applied to AV 0, and
uacc(t) in (10) is applied to AV 5 with kh = 0.2, kv = 0.4,
ks = 0.5, dstill = 5 m and tg = 1.1 s. The corresponding gap
controller ugap(t) in (11) is used as the input reference ur(t)
for Data-driven MPC.

The vehicle acceleration commands under three designs
are shown in Fig. 4. For ADP and Data-driven MPC, the
collected data sequences are required to have the full rank
of n + m (which is 16 in this example), where n and m
are the dimensions of the platooning model state and the
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Fig. 5. Vehicle velocities: Sub-platoon 1.

input of AV 5, respectively. However, as seen in Fig. 4,
Data-driven MPC collects a larger amount of data than ADP.
This is for constructing a more accurate over-approximation
of the platoon model to improve the MPC performance. After
finishing data collection, all the three designs have similar
acceleration commands that are within the limit [−umax, umax],
despite of the rapid acceleration and deceleration
of AV 0.

As shown in Fig. 5, both ADP and Data-driven MPC ensure
the entire platoon travel at the same velocity. However, for
Classic ACC, AV 5 is set to drive at the constant speed
vset = 24.5 m/s whenever hN (t) ≥ dsafe(t). This makes
the velocity of AV 5 different from its preceding vehicles
at the high speed region during t ∈ [150, 240] s. Hence,
compared to ADP and Data-driven MPC, Classic ACC has
larger inter-vehicular gaps between HV 4 & AV 5, as seen in
Fig. 6. It is also shown in the middle sub-plot of Fig. 6 that
AV 5 crashes into HV 4 under a rapid deceleration of AV 0,
due to the lack of considering the safety constraint y(t) ∈ Y in
ADP. The above results demonstrate that Data-driven MPC is
advantageous in establishing a safe and stable mixed platoon
with more compact vehicular gaps, which is beneficial for
reducing traffic congestion and fuel consumption.

The computation time to obtain the MPC control input,
including computing the data-driven reachable set and the
control input sequence, is 0.015 s (on a PC having an Intel(R)
i9-10850K CPU 3.60GHz with 32 GB of RAM). This com-
putation time is shorter than the sampling period 0.02 s and
does not introduce control input delays.

Fig. 6. Relative vehicle positions: Sub-platoon 1.

B. Results of Sub-Platoons 1&2

This section presents the comparative simulation results of
the entire platoon in Fig. 3 by applying Classic ACC, ADP,
and Data-driven MPC to AVs 5&8. Classic ACC and ADP are
designed in the same way as that in Section IV-A. Data-driven
MPC for AV 5 is also the same as in Section IV-A. Data-
driven MPC for AV 8 is designed by running Algorithm 1
with T = 2000, Q = I3, R = 10−2 and Nc = 3. It should
be emphasized that the data sequences for AVs 5&8 are
collected simultaneously, by applying the small time-varying
acceleration command u0(t) to AV 0. During data collection
of ADP and Data-driven MPC, the signals of u0(t) applied to
AV 0, uacc(t) applied to AVs 5&8, and input reference ur(t)
of AVs 5&8 are identical to those used in Section IV-A.

It is observed from Fig. 7 that the acceleration commands of
all vehicles are within the limit [−umax, umax] under Classic
ACC and Data-driven MPC, despite of the rapid acceleration
and deceleration of AV 0. However, the acceleration command
of AV 8 under ADP exceeds the lower limit −3 m/s2. This
is because the input constraint is not considered in ADP.
As shown in Fig. 8, both ADP and Data-driven MPC ensure
the entire platoon travel at the same velocity. For Classic ACC,
both AV 5 and AV 8 are set to travel at the constant speed
vset = 24.5 m/s when hN (t) ≥ dsafe(t). Since HVs 6&7 follow
their immediate predecessors directly, they also travel at the
same velocity as AVs 5&8 at steady states. As a result, at the
high speed region in t ∈ [150, 240] s, the entire platoon is split
into two sub-platoons that are travelling at different velocities:
one sub-platoon consists of AV 0, HV 1, HV 2, HV 3 and
HV 4, and the other sub-platoon consists of the rest. Hence,
compared to ADP and Data-driven MPC, Classic ACC has
larger inter-vehicular gaps between HV 4 & AV 5 and between
HV 7 & AV 8 at the high speed region, as seen in Fig. 9.
It can also be observed from Fig. 9 that by implementing ADP,
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Fig. 7. Vehicle acceleration commands: Sub-platoons 1&2.

both AV 5 and AV 8 crash into their front vehicle (HV 4 and
HV 7) under a rapid deceleration of AV 0, due to the lack of
considering the safety constraint in designing ADP.

C. Results of Sub-Platoon 1 Under Aggressive Leader and
Stochastic HV Parameters

This section reports a test of the proposed Data-driven MPC
on Sub-platoon 1 with an aggressive leader and stochastic
HVs parameters αi and βi , i ∈ I[1,4]. In the simulation, AV
0 follows the SFTP-US06 Drive Cycle in Fig. 10, which
is a representative of aggressive, high speed and/or high
acceleration driving behaviour with rapid speed fluctuations.
To simulate the uncertainty and randomness in human driving
behaviours, the HV model parameters are assumed to have
stochastic changes, i.e., α1 = 0.2+δ(t), β1 = 0.4+δ(t), α2 =
0.2 + δ(t), β2 = 0.45 + δ(t), α3 = 0.3 + δ(t), β3 = 0.4 + δ(t),
α4 = 0.2 + δ(t), β4 = 0.45 + δ(t), where δ(t) is a white noise
satisfying |δ(t)| ≤ 0.1. All the other parameters remain the
same as Section IV-A, except that hg = 50 m, vmax = 36 m/s,
umax = 4 m/s2. Using these hg, vmax and umax is to ensure
the following vehicles have the capability to track the velocity
of AV 0 to form a mixed platoon. The initial vehicle positions
are the same as in Section IV-A, while the initial velocities
are zero, same as AV 0 (see Fig. 10). No excitation signal is
applied to AV 0 for data collection. Simulation results show
that the Data-driven MPC collects enough data within 70 s.
As shown in Fig. 11, the acceleration commands of all vehicles
are within the limits, and the inter-vehicular distances between

Fig. 8. Vehicle velocities: Sub-platoons 1&2.

Fig. 9. Relative vehicle positions: Sub-platoons 1&2.

each of the two consecutive vehicles are larger than zero.
This confirms stability and safety of Sub-platoon 1 under the
aggressive leader and HVs with stochastic parameters.
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Fig. 10. The SFTP-US06 drive cycle.

Fig. 11. Vehicle acceleration commands and inter-vehicular distances under
the SFTP-US06 drive cycle.

V. CONCLUSION

This work designs CACC for a mixed platoon consisting
of both AVs and HVs. To capture more realistic traffic
conditions, the model parameters of HVs are assumed to
be unknown and the acceleration dynamics of each vehi-
cle are considered with an unknown propulsion time delay.
A data-driven MPC is proposed to obtain the control law of
the ego AV in establishing a safe and robustly stable mixed
platoon. The MPC design leverages the data-driven reachable
sets of the mixed platoon, which are determined based on
an over-approximation of the unknown platoon model by
collecting noisy vehicle state measurements. The simulation
results of both small and large mixed platoons have verified
efficacy of the proposed MPC and its advantages over the
classic ACC and ADP methods in guaranteeing platoon safety
and robust stability with smaller vehicular gaps. Although the

proposed MPC optimization problem needs to be solved at
each sampling step, the simulation results have shown that the
computation time is less than the sampling period. Therefore,
no time delay will be introduced in implementing the MPC
control law. One future work will be extending the proposed
design for ecological mixed vehicle platooning. Another will
be developing a data-driven MPC for mixed vehicle platoons
with consideration of control input delays that are caused by
the time delays in actuators, communication and sensors.
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