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Abstract — This paper presents an optimal design of 

terahertz InP-based pseudomorphic high electron mobility 

transistors (pHEMT) powered by an artificial intelligence (AI) 

technique. Unlike the traditional physics-based design 

optimization methods, the new technique employs a machine 

learning-assisted global optimization algorithm. A state-of-the-

art commercial pHEMT operating at millimeter-wave 

frequencies was used to calibrate the physics-based model. Based 

on the pHEMT, the proposed machine learning-assisted 

optimization method was implemented with the constraint of gate 

length, i.e., 100 nm. The simulation results show significant 

improvement in terms of cut-off frequency, i.e., 57%, and 

maximum oscillation frequency, i.e., 30%, compared to the 

commercial design. To the best of our knowledge, this is the first 

time to employ machine learning-assisted global optimization 

techniques to pHEMT design, showing high potential in terms of 

numerical simulation and device design for ultrafast semiconductor 

devices. 

Keywords — pHEMT, terahertz, machine learning, global 

optimization. 

I. INTRODUCTION 

Terahertz (THz) frequency, covering 100 GHz to 3 THz, 

has attracted attention in many applications, including security 

screening [1], next-generation autonomous radars [2], and 

high data rate mobile communications beyond 5G [3]. 

Transistors are the core devices in the front-ends of RF 

systems, and indium phosphide (InP)-based pseudomorphic 

high electron mobility transistors (pHEMTs) have a cut-off 

frequency fT over 700 GHz and a maximum oscillation 

frequency fmax close to 1.5 THz [4]. This makes them ideal 

enabling technologies for terahertz monolithic integrated 

circuits, which have the advantages of low cost, ease of 

integration, and small size over other technologies. 

However, the design of pHEMTs is not trivial, which 

involves both material (epitaxial layers) and structure (mainly 

electrodes) optimization. The total number of parameters to be 

optimized could be more than 20. For example, to achieve the 

highest operating frequency, one should first optimize 

materials including material composition, layer thickness, and 

doping method and level for as high electron mobility as 

possible and then optimize transistor structure, including gate 

length, gate shape, source-drain separation, the gate to 

drain/source distance, etc. to reduce parasitic capacitance. In 

addition, metal alloys/stacks for gate and source/drain contacts 

should also be optimized. In the past, the above optimization 

process mainly relied on trial-and-error with fabricated 

devices. Clearly, it is a time-consuming and costly method and 

may also obtain suboptimal results. Recently, numerical 

simulation models have become available. However, the 

drawbacks on efficiency and optimization quality of the trial-

and-error method still exist. This calls for the need to employ 

modern optimization techniques. 

This paper introduces a state-of-the-art machine learning-

assisted global optimization method to design pHEMTs for the 

first time. The employed algorithm is called surrogate model 

assisted differential evolution for antenna synthesis (SADEA), 

initially developed for antenna design [5]. We employ 

SADEA to a commercial pHEMT structure and obtain the 

optimized new design, showing 57% and 37% improvements 

on fT=336 GHz and fmax=770 GHz, respectively, without 

changing the gate length. The optimization time using a 

normal desktop computer is 16 hours, significantly shorter 

than the conventional methods, which may take several days. 

The new method shows great potential in terms of efficiency 

and optimization quality for ultrafast transistor design. It could 

also be extended to other advanced semiconductor devices and 

circuits.  

The remainder of this paper is organized as follows. In 

Section II, the physical model of pHEMTs and the SADEA 

algorithm are first introduced. In Section III, a case study of 

optimizing commercial InP pHEMTs using the SADEA is 

demonstrated. Conclusions are finally provided in Section IV. 

II. SADEA-BASED PHEMT DESIGN OPTIMIZATION METHOD 

Depending on applications, the design focus of HEMTs 

varies. For ultrafast applications, fT and fmax are the two main 

figures of merit and should be maximized wherever possible. 

This section will introduce pHEMTs, the conventional design 

method, and the SADEA-based design method.  

Fig. 1. Illustration of epilayers and electrodes of a pHEMT. 



A. Introduction to pHEMTs 

Fig. 1 shows a typical InP pHEMT. The epilayers are 

grown on a semi-insulating InP substrate using either Metal-

Organic Chemical Vapor Phase Deposition (MOCVD) or 

Molecular Beam Epitaxy (MBE). The channel layer, made of 

InyGa1-yAs where y indicates indium mole fraction, is 

sandwiched by two wider bandgap In0.52Al0.48As layers. A 

quantum well is formed in the channel, making electrons well 

confined. The top In0.52Al0.48As is further divided into halves 

by a silicon delta doping layer that provides electrons to the 

channel. The lower In0.52Al0.48As adjacent to the channel is a 

spacer that separates electrons from the dopants (i.e., silicon), 

reduces the scattering of impurities, and improves electron 

mobility in the channel. The upper In0.52Al0.48As is a barrier 

where the gate sits, controlling the channel's electron flow. A 

heavily doped n-type In0.53Ga0.47As layer above the barrier 

forms the ohmic contacts for low contact resistance. The cap 

layer under the gate is removed to allow the formation of a 

Schottky barrier. 

The epilayers play a significant role in determining the 

electron mobility and the sheet resistance of the channel, 

contact resistance, parasitic capacitance, fT, and fmax. 

Researchers have attempted to improve carrier mobility by 

optimizing the thickness, mole fractions, and material 

compositions in the barrier, spacer, and channel. For example, 

lattice-matched InAlAs/InyGa1-yAs/InAlAs (y>0.53) composite 

channel with high indium mole fraction was investigated in [6]. 

InGaAs/InP composite-channel HEMT was found to have 

mobility as high as 11,000 cm2/Vs−1 [7]. Recently, 

InAs/InGaAs composite-channel HEMT was reported with 

electron mobility approaching 15,000 cm2/Vs−1 [8]. 

Apart from materials, electrodes also play a significant role 

on fT and fmax. The smaller the gate length Lg, the lower the 

gate resistance, leading to higher fT and fmax.  As shown in 

Fig.1, a T-shaped Schottky gate is often used to balance 

current capacity, narrow gate length, and parasitic capacitance. 

However, the gate foot shorter than 50 nm becomes 

challenging to make. A 10 nm T-gate has been demonstrated 

[9], but its mechanical support provided by the foot is not 

sufficiently strong, and therefore the yield becomes 

comparatively low. In this work, the foot length of the T gate 

is kept at 100 nm. 

B. State-of-the-art pHEMT design optimization 

A widely used method for simulation-based pHEMT 

design optimization is based on equivalent circuits, as shown 

in Fig. 2. Equations (1) and (2) give the main parameters from 

the small-signal equivalent circuit that affects fT and fmax, and 

Table 1 explains those parameters. Deriving such a circuit 

relies on accurate measurement, which is known notoriously 

time-consuming. Hence, most foundries can only provide 

equivalent circuit models for a few biasing conditions. This 

restricts the flexibility of optimization and often obtains sub-

optimal results. 

An alternative method is modeling devices using physics-

based CAD tools (e.g., Sentaurus). The advantages over circuit 

models include high accuracy and flexibility. However, the                

Fig. 2. The complete small-signal equivalent circuit of a pHEMT. 

    (1) 

  
   (2) 

Table 1. The main parameters from the small-signal equivalent circuit affect 

the operating frequencies. 

drawbacks located in the optimization methods. Most 

available methods neither have sufficient optimization ability 

(e.g., quasi-Newton method) nor efficient (e.g., genetic 

algorithm). Note that the simulation of a physics-based device 

model needs numerical techniques (e.g., finite element 

analysis), which is computationally expensive, and standard 

global optimization methods such as genetic algorithms often 

need thousands to tens of thousands of such simulations. 

C. pHEMT design optimization by SAEDA 

To reduce the optimization time to a practical level while 

maintaining the optimization quality as standard global 

optimization algorithms, surrogate model-assisted 

evolutionary algorithms (SAEA) are introduced into pHEMT 

design in this work. In SAEA, the surrogate model mapping 

the inputs (i.e., design variables) and outputs (i.e., 

performances) are often constructed by machine learning 

techniques. By replacing the computationally expensive 

Sentaurus simulations with computationally cheap surrogate  

model predictions, the optimization time can be considerably 

reduced. In this paper, the selected algorithm is SADEA. 

SADEA is initially designed for microwave antenna design 

exploration; however, good performances are also found in 

other applications. This is the first attempt to implement the 

algorithm on HEMTs. Fig. 3 illustrates how MATLAB, which 

runs the SADEA code, collaborates with Sentaurus, which 

Parameters  Description  

Cgs Source-gate capacitance 

Cgd Drain-gate capacitance 

Rs Parasitic source resistance 

Rd Parasitic drain resistance  

Rds Output resistance 

Ri Intrinsic channel resistance 
gm Transconductance 



runs HEMTs’ simulation. 

In SADEA, the machine learning method is Gaussian 

process (GP), the evolutionary algorithm is differential 

evolution (DE), and the model management method is 

surrogate model-aware evolutionary search framework [10]. 

The flow diagram of SADEA is shown in Fig. 4. Here is how 

it works. A Latin hypercube sampling is first implemented to 

initialize the design space. Then, in each iteration, the k top-

ranked candidate designs are selected to form the parent 

population. From the parent population, the new population is 

generated by applying DE mutation and crossover operators. 

The used operator here is DE/best/1 [11], showing fast 

convergence speed. Then, GP surrogate models are built for 

each candidate design in the generated new population. The 

training data are the nearest designs (based on Euclidean 

distance) from the simulated designs. Then, a prescreening 

method, lower confidence bound [12], is used to consider both 

prediction uncertainty and performance to find the expected 

most promising design in the current iteration, which will then 

be simulated by Sentaurus. This process continues until the 

stopping criterion is met. More details about SADEA can be 

found in [5].  

III. CASE STUDY  

In this case study, our optimal design is compared with a 

commercial pHEMT by Diramics [13]. We will first calibrate 

the device model using the data provided by Diramics, then 

SADEA is employed to optimize the design parameters. Note 

gate length is not optimized in this work.  

A. Model Calibration 

Commercial pHEMT’s datasheet is available from [13]. 

The models used in Sentaurus include Hydrodynamic 

transport models for electrons, High-field mobility, and the 

Recombination model includes Shockley–Read–Hall (SRH), 

Auger, and Radiative. The ohmic contact or Schottky contact 

are specified. Table 2 lists material properties used in the 

simulation. All the parameters are referred to room 

temperature conditions. To guarantee the accuracy of the 

simulation model, the mesh density below the gate region is 

set high. 

Table 2. List of main semiconductor parameters used in the modeling. 

Parameter InP In0.53Ga0.47As In0.52Al0.48As 

Lattice constant (Å) 5.86 5.86 5.86 

Band gap (eV) 1.34 0.72 1.48 

Dielectric constant 

(static) 

12.4 14.3 12.4 

Electron affinity (eV) 4.44 4.55 4.27 

Effective mass me
* /m0 at 

central valley 

0.079 0.047 0.081 

The simulated DC (Fig. 5) and RF (Table 3) show good 

agreement with the experimental results [13]. The final 

thickness of the epilayers is shown in Fig. 1.  

Fig. 5. IV characteristics and transconductance of the experimental (Diramics) 

and simulated 100 nm pHEMT at ambient temperature, Vds=0.9 V. 

B. Device Optimization 

In this study, 16 design parameters are selected for 

optimization. Table 4 shows the search range of the 

parameters. To ensure the optimized parameters are physically 

realizable, geometric constraints are set as follows: let 𝑥 

denote the design parameters, and the pHEMT design 

optimization problems can be described as follows. 

C. Results 

The optimized 100 nm pHEMT design is shown in Table 4, 

the optimization results show that the Diramics model is 

within a reasonable boundary value range. The values of the 

epitaxial layer and structure of the device tend to the boundary  

SADEA InP pHEMT

Design

Parameters

fT, fmax

 
Fig. 3. The simulation-driven optimization flow. 
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Fig. 4. The flow diagram of SADEA. 
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Table 3. Key performances of 100 nm pHEMT between the Diramics, 

simulated and optimized. 

Performance Diramics Simulated Optimized  

Transconductance 

(mS/mm) 

1250 1255 1672 

Drain Current (mA/mm) 700 675 775 

fT (GHz)  220 215 336 

fmax (GHz) 550 542 770 

Cgs (fF) 38  10-22 30-53 

Cgd (fF) 11 3-24 3-17 

Table 4. The search ranges of the design parameters and the optimized value. 

x Parameter name Search 

range 

Optimized 

value 

1 Substrate thickness (um) 50-100 61 

2 Buffer thickness (um) 0.2-0.8 0.2 

3 Channel thickness (nm) 4-20 4 

4 Spacer thickness (nm) 2-10 2 

5 Barrier thickness (nm) 8-15 8 

6 Cap thickness (nm) 8-25 8.5 

7 Delta-doping concentration  

(cm2 /Vs-1) 

1×1012-

1×1013 

9.4×1012 

8 Indium fraction of channel 

layer 

0.6-0.85 0.85 

9 Location of delta doping (nm) 4-21 7 

10 Passivation thickness (nm) 40-100 40 

11 Recessed thickness (nm) 0-7 5 

12 Gate foot location (um) 0.45-1.05 0.47 

13 Gate-source separation (um) 0.1-0.6 0.1 

14 Gate-drain separation (um) 0.1-0.6 0.1 

15 Schottky barrier (eV) 0.6-1.5 0.6 

16 Contact resistance (ohm∙um) 30-120 30 

    

conditions and good results can be obtained. The fT and fmax 

are improved to 336 GHz and 770 GHz compared to 220 GHz 

and 550 GHz that are obtained by Diramics, respectively. In 

addition, Fig. 6 shows the transfer characteristic of the 

transistor of the optimized HEMT is higher than the Diramics 

and demonstrates its lower at a higher frequency. It can be 

seen that after optimization: (1) the indium content in the 

channel layer is increased to 85%; (2) the mobility approaches 

to 14000 cm2/Vs-1; (3) the parasitic capacitance is reduced by 

the asymmetric structure. Therefore, this optimized pHEMT 

has a higher operating frequency in fT and fmax. The results are 

summarized in Table 3. 

IV. CONCLUSION 

In this paper, machine learning-assisted global 

optimization techniques are introduced to design pHEMT. 

Remarkably, the Diramics’ 100 nm pHEMT is optimized from 

its epitaxy layer and device structure. After optimization, the 

cut-off frequency and maximum oscillation frequency are 

improved from 215 GHz to 336 GHz and 542 GHz to 770 

GHz, respectively. Moreover, the transconductance and 

current are improved to 1.6 S/m and approach 0.8 A/mm, 

respectively. The total number of Sentaurus simulation 

iterations is 240, costing 16 hours in a normal desktop 

computer. This new method shows high potential in terms of 

efficiency and optimization quality for transistor design. 
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(Diramics) and the optimized 100 nm pHEMT at ambient temperature, 
Vds=0.9 V. 
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