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Abstract  12 

In this paper, a practical and general-adapted optimization and decision-making 13 

method is proposed for thermal systems designed for a wide range of energy field 14 

regarding organic Rankine cycle and thermodynamic cycles. This method is 15 

composed of four progressive hierarchies including modelling, optimization, scheme 16 

comparison and decision-making. To demonstrate the Four-Hierarchy method, 17 

performance of a basic trans-critical ORC and a recuperative trans-critical ORC are 18 

analyzed and compared. The NSGA-II algorithm is adopted to obtain the Pareto 19 

optimal frontier. Four decision-making methods which are Shannon Entropy, 20 

modified LINMAP, TOPSIS and TLFDM are applied for evaluating the Pareto set 21 

points. Furthermore, the final Pareto-optimal solution is determined by the 22 

root-mean-square difference, correlation coefficient and standard deviation in the 23 

Taylor diagram. The optimal results indicate that the final Pareto-optimal solution 24 

often appears at LINMAP and TLFDM points. In contrast with basic trans-critical 25 

ORC, the recuperative trans-critical ORC can always improve the system’s 26 

thermodynamic performance. But the techno-economics is only enhanced when the 27 

energy grade of heat source is sufficient. The most beneficial improvement is the 28 

average reduction of heat transfer area per net output power by more than 27.0% and 29 

30.0% in the medium temperature and high temperature geothermal reservoirs, 30 

respectively. Based on the case study, the presented method has proved its application 31 

value, and has shown its promising applicability in a wide range of energy field 32 

regarding organic Rankine cycle and thermodynamic cycles for energy conversion. 33 

Keywords: Four-Hierarchy design method; Trans-critical organic Rankine cycle; 34 

Multi-objective optimization; Three-level fuzzy decision; Taylor diagram 35 

  



 

 

1 Introduction 36 

Rapid economic and social development with the intensification of human 37 

activities has increased the consumption of fossil fuels, leading to a huge demand for 38 

the energy supply. Effective utilization of sustainable resource like geothermal energy 39 

has drawn much attention in recent years, which offers the wild availability, large 40 

capacity, and stability. Innovative optimization algorithms and decision-making 41 

methods are emerging for improving the system’s performance. Concerning the 42 

utilization of different heat sources, the organic Rankine cycle (ORC) has been 43 

currently regarded as the preferred solution for power generation from low grade heat 44 

sources [1-7]. Accordingly, particular attention is paid to develop a general 45 

methodology for integrating modelling, optimizing and decision-making process of 46 

ORC system in the present work.  47 



 

 

Summarizing from the previous studies, a large amount of literature has focused 48 

on the stochastic algorithm and optimization design to enhance the performance of 49 

geothermal ORC systems. Cetin et al. [8] applied the exergy analysis, Simulated 50 

Annealing algorithm, and Gravitational Search algorithm for the thermodynamic 51 

performance optimization of a binary geothermal power plant. The optimal results 52 

showed that the exergy efficiency obtained by the three methods were 14.48%, 30.62% 53 

and 38.49%, respectively. Kolahi et al. [9] investigated a binary flash geothermal 54 

ORC system integrated desalination system by utilizing Particle Swarm algorithm. 55 

The single objective optimization results revealed that fresh water flow rate of the 56 

paralleled system was higher than the series system. Pratama et al. [10] developed a 57 

robust design optimization methodology in contrast with the standard design to ensure 58 

the stable operation of geothermal ORC system. The Pareto optimal frontier 59 

discovered the expected power production increased by 1.5% and the heat transfer 60 

area of heat exchangers decreased by 34%. Erdeweghe et al. [11] constructed a 61 

two-step optimization method accounting for the off-design behavior which firstly 62 

acquired the maximum net present value and then the highest net output power. The 63 

off-design results demonstrated that the net output power increased by 1.95~4.75MW 64 

while the environment temperature decreased from 29.07 to -4.08℃. Karimi et al. [12] 65 

studied the basic, recuperative and two-stage geothermal ORC systems from the 66 

thermodynamic, economic and exergoeconomic perspectives. The linear optimization 67 

method illustrated that superheat degree and working fluids exerted considerable 68 

influence on the whole system performance. Liu et al. [13] proposed a weighted 69 

summation method programmed by using Microsoft Excel, which integrated the 70 

thermal efficiency, exergy efficiency, net output power and system capitalized cost as 71 

one objective function to search the optimal ORC layouts. The evaluation results 72 

showed that the basic ORC with R123 was the most appropriate for 80~90℃ 73 

geothermal sources. Arslan et al. [14] employed the artificial neural network 74 

integrated with a back-propagation learning algorithm to evaluate the economic 75 

performance of a binary trans-critical geothermal ORC plant. The life cycle cost 76 

decision-making method was used to determine the best system design. The optimal 77 

results explained that the maximum benefit was 124.88 million dollars when the 78 

installed capacity was 64.2MW. 79 



 

 

To exploit possible utilization of geothermal sources, the multi-generation 80 

system comprising of cooling, heating, and electricity production, as well as other 81 

newly combined ORC have been presented to maximize the energy and exergy 82 

efficiency. Alimont et al. [15] explored five applications of geothermal sources 83 

including district heating, adsorption cooling, ORC power production, thermal 84 

cascade system and combined heat and power configurations. When the temperature 85 

was below 300℃, the optimized exergy efficiency of district heating reached 40~50%, 86 

and the favorable utilization was the combined heat and power configuration when 87 

exceeding 300℃. Cao et al. [16] carried out thermodynamic and thermo-economic 88 

performance evaluation for a geothermal poly-generation plant. The parametric study 89 

exhibited that the net output power and heating load increased by 16.4% and 14.9% 90 

along with the cooling capacity and hydrogen production decreased by 38.9% and 91 

18.5%. Musharavati et al. [17] evaluated the thermodynamic and exergoeconomic 92 

performance of an integrated geothermal system. The binary objective optimization 93 

results found out that the Pareto-optimal solution with exergy efficiency and electrical 94 

cost rate were 22.11% and 12.52$/h. Aliahmadi et al. [18] proposed a novel 95 

geothermal ORC-TEG system to recover heat from reinjected well. The investigation 96 

revealed that regenerative ORC held the maximum exergy efficiency, and the TEG 97 

configuration produced the maximum output power. Lu et al. [19] put forward a 98 

composition-adjustable zeotropic ORC system to solve the off-design problem. The 99 

optimal results explained that the annual average net output power and thermal 100 

efficiency increased by 0.52% and 2.2%, with a decrease of 21.43% in electricity cost.   101 



 

 

During the optimization procedures, it may occur that one objective is satisfied 102 

while the other has to deviate from its ideal value. On this occasion, the evolutionary 103 

optimization methodologies including genetic algorithm and non-dominated sorting 104 

genetic algorithm-II (NSGA-II) have been successfully applied to search for 105 

compromising solutions to meet decision-maker requirements. Nasruddin et al. [20] 106 

compared ORC and Kalina cycles performance in terms of exergy, exergoeconomic 107 

and exergoenvironmental analysis in a binary geothermal power plant. It was 108 

concluded that ORC was more suitable for acquiring the highest exergy efficiency, per 109 

unit power generation and total environmental impact. Pratama et al. [10] quantified 110 

the energy loss and pressure reduction for the binary-flash geothermal cycle using the 111 

genetic algorithm to optimize net present value and output power. The results 112 

demonstrated that R601a resulted in maximum net present value of 2.92million 113 

dollars and highest output power with 27.88MW. Additionally, the pressure drop and 114 

energy destruction were 0.37~0.93bar and 0.53MW. Wang et al. [21] employed 115 

NSGA-II to optimize the thermodynamic and economic performance of a binary flash 116 

cycle. TOPSIS decision-making method was adopted to find the Pareto-optimal 117 

solution. The weighting factor was studied to reveal the effect on the objective 118 

function and decision variable, which was recommended within the range of 0.1~0.6. 119 

Imran et al. [22] dealt with the hydraulic and thermal models of evaporator for low 120 

temperature geothermal ORC system with NSGA-II algorithm. The primary 121 

geometrical parameters were length, width and plate spacing. The optimal results 122 

showed that allowable pressure and evaporator cost were 30~40kPa and 3000~3500$.  123 



 

 

The determination of objective functions is relevant with thermodynamic and 124 

techno-economic properties, and the decision variables are initialized with stochastic 125 

values for subsequent analysis. Liu et al. [23] analyzed the effect of pinch point 126 

temperature difference on system performance. The working fluid mass flow rate, net 127 

output power, irreversible loss, total thermal conductance, size parameter and 128 

volumetric flow ratio were investigated. The results presented that lower pinch point 129 

temperature difference led to higher net output power and investment, with an optimal 130 

variation range of 2~21℃. Shokati et al. [24] performed the comparative analysis 131 

with basic, dual-pressure, dual-fluid ORCs and Kalina cycle for the medium 132 

temperature geothermal power production. The parametric study evaluated the effect 133 

of ammonia concentration and operation pressure on system thermodynamic and 134 

enhanced exergoeconomic performance. The optimized results demonstrated that the 135 

dual-pressure ORC obtained the maximum electricity production and Kalina cycle got 136 

the minimum unit cost of power produced. Hettiarachchi et al. [25] provided a 137 

cost-effective design method which taken heat transfer area per net output power as 138 

the single objective function. The optimized results illustrated that ammonia obtained 139 

the minimal objective value but lower cycle efficiency, which was restricted use under 140 

the high evaporation pressure for the vapor droplet may fall into the two-phase region 141 

after expansion. 142 

  



 

 

The brief literature reviews show that researchers tend to develop multiple and 143 

scattered methodologies for the design of ORC power plants. In addition to the 144 

reliability and applicability, it may take some time associated with modelling and 145 

verification for a variety of heat sources. Furthermore, it is worth noting that the 146 

Pareto-optimal solutions judged by numerous decision-making methods vary greatly, 147 

making it difficult to accurately determine the optimization results. Therefore, the 148 

goal of this work is to present a systematic and generic design method, which 149 

integrates the modelling, optimizing, scheme comparing and decision-making steps. It 150 

provides a general-adapted approach to get the final Pareto-optimal solution, which 151 

can be widely employed in geothermal field, and much wider applications including 152 

industrial and engine waste heat recovery, co-generation systems, biomass energy 153 

utilization, solar ponds, etc. 154 

In this study, the multi-objective optimization models based on NSGA-II with 155 

regard to basic trans-critical and recuperative trans-critical ORC are constructed for 156 

further elaborating the Four-Hierarchy method. Six working fluids including R227ea, 157 

R134, R143a, R290, R1270 and R142b are selected for the simulated operating 158 

conditions of two typical medium (GR-I) and high (GR-II) temperature geothermal 159 

reservoirs. The Pareto optimal frontiers are acquired by setting two objectives with 160 

net output power and heat transfer area per net output power as well as five decision 161 

variables with evaporation pressure, turbine inlet temperature, condenser temperature, 162 

evaporator pinch point temperature, and condenser pinch point temperature. 163 

Meanwhile, thirteen decision criteria covering environmental, thermodynamic, and 164 

techno-economic perspectives are evaluated for the performance analysis. Afterwards, 165 

four decision-making methods including Shannon Entropy, modified LINMAP 166 

(combined with Relative entropy), modified TOPSIS (integrated with Shannon 167 

entropy and Relative entropy), and TLFDM (Three-level fuzzy decision method) are 168 

employed to determine Pareto-optimal solutions. Lastly, these four Pareto-optimal 169 

solutions are evaluated by Taylor diagram to identify the optimization results. 170 

  



 

 

2 Methodology description 171 

The Four-Hierarchy method can provide a feasible basis for the comprehensive 172 

analysis and optimization of ORC system. As depicted in Fig. 1, this approach 173 

consists of the modelling, optimization, scheme comparison and decision-making 174 

hierarchy, which exhibits a progressive pyramid shape. At first, the evaluation criteria 175 

need to be determined according to the specific characteristics of system and the 176 

preference of decision-maker. For the geothermal sources exploitation, the 177 

environmental, thermodynamic, heat transfer, techno-economic, and equipment 178 

reliability models are constructed. Afterwards, by selecting the appropriate objective 179 

functions, the optimization is performed to obtain the target performance under 180 

different operating conditions. For the single-objective optimization, the decision 181 

criteria values are acquired under the same condition while getting the maximum net 182 

output power. Furthermore, Three-level fuzzy decision method (TLFDM) which takes 183 

into account the effect of the former level on the latter is used for subsequent 184 

evaluation of the priority between different schemes. And all the single-objective 185 

optimization works have been explicitly illustrated in a previous article [26]. As for 186 

the multi-objective optimization, the stochastic algorithm is used to get the Pareto 187 

optimal frontier. The Pareto-optimal solutions are assessed by four decision-making 188 

methods which are Shannon Entropy, modified TOPSIS, LINMAP and TLFDM. To 189 

solve the equivalent distance problem, the traditional Euclidean distance is replaced 190 

by Relative entropy. Eventually, the final optimal result is obtained by comparing the 191 

four decision-making points in the Taylor diagram.192 



 

 

 

Fig. 1. Description of the Four-Hierarchy method.  
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2.1 Mathematical modelling 193 

 

Fig. 2. (a) Schematic diagram and (b) T-s diagram of trans-critical B-ORC system. 

    

Fig. 3. (a) Schematic diagram and (b) T-s diagram of trans-critical R-ORC system. 

In the aspect of the heat source, two geothermal reservoirs referring to medium 194 

temperature (GR-I with well-head outlet of 182.23℃) and high temperature (GR-II 195 

with well-head outlet of 223.47℃) are investigated. The optimizing models are basic 196 

trans-critical ORC (B-ORC) and recuperative trans-critical ORC (R-ORC) systems. 197 

As illustrated in Fig. 3, the working fluid is initially pumped to supercritical condition 198 

(state point 7 to 1), and then entering the recuperator (state point 1 to 1r) to absorb 199 

heat from overheated vapor discharged from the turbine (state point 5 to 5r) before 200 

condensation (state point 5r to 7). During the evaporation (state point 1r to 4), the 201 

working fluid temperature reaches the maximum while the geothermal water outlet 202 

temperature is slightly higher than the B-ORC system. Next, the working fluid flows 203 

into the turbine for expansion (state point 4 to 5) to complete the entire cycle.  204 
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Furthermore, the selection of six working fluids including R227ea, R134a, 205 

R143a, R290, R1270 and R142b not only depends on the thermodynamic properties, 206 

suggesting that evaporation pressure (P4) and turbine inlet temperature (T4) should 207 

exceed critical point but avoid decomposition. Meanwhile, it also needs to take the 208 

environmental characteristics like Safety level, atmospheric life time (ALT), ozone 209 

depletion potential (ODP) and global warming potential (GWP) into consideration.  210 

Thermodynamic and techno-economic criteria for a comprehensive evaluation of 211 

geothermal trans-critical ORC systems, including net output power (Pnet), thermal 212 

efficiency (ηt), exergy efficiency (ηe) as well as heat transfer area per net output power 213 

(APR), turbine characteristic size parameter (SP), total cost (Cost2019), electricity 214 

production cost (EPC), depreciated payback period (DPP) and saving to investment 215 

ratio (SIR) are demonstrated. 216 

The simulation of two geothermal ORC systems is conducted in the original 217 

Matlab code. The following formulas are introduced to describe the thermodynamic 218 

characteristics of the R-ORC system. 219 

Compression: state point 7 to 1 220 

( )1 7 1 7s pumph h h h = + −   (1) 221 

Where 1sh  is the enthalpy of isentropic compression point and pump  represents 222 

the pump isentropic efficiency which is set to be 0.7 [26]. 223 

Expansion: state point 4 to 5 224 

( )5 4 4 5s turbineh h h h = − −    (2) 225 

Where 5sh  indicates the enthalpy of isentropic expansion point and turbine  226 

denotes the turbine isentropic efficiency which is set to be 0.75 [26]. 227 

Recuperative process: state 1 to 1r and 5 to 5r 228 

( ) ( )5 5 5 1recuperator rT T T T = − −   (3) 229 

1 1 5 5r rh h h h= + −   (4) 230 

Where recuperator  means the recuperator effectiveness and sets as 0.8 [6] and the 231 

vapor quality 5x  keeps exceeding 1 by increasing the turbine inlet temperature to 232 

avoid the working fluid falling into the two-phase region causing liquid slugging. 233 



 

 

The working fluid mass flow rate ( wfm ) is determined by the pinch point 234 

temperature difference method. It compares the error of evaporator pinch point 235 

temperature ( pinch eT − ) which is set as 10℃ with the iterative one. The wfm  is output 236 

until the error meets the accuracy requirement (1%).  237 

Assuming the geothermal water outlet temperature ( gwoutT ) to obtain the enthalpy 238 

of the state point ( gwouth ) and then calculate the initial mass flow rate of working fluid. 239 

( ) ( )4 1wf gw gwin gwout rm m h h h h= − −   (5) 240 

Evaporation process from state 1r to 3: 241 

( )3 1r gw gws gwout wfh h m h h m= + −   (6) 242 

Where gwm  represents the mass flow rate of geothermal water.  243 

Since the single-phase flow region (state point gws to gwout) of geothermal water 244 

has been distributed into one hundred segments as shown in Fig. 3. The temperature 245 

of each segment ( )gwT j , the enthalpy of working fluid ( )wfh j  and the iterative 246 

pinch point temperature difference ( )pinch eT j−D  can be calculated from the beginning 247 

of the geothermal water phase transition point gwsT . 248 

( ) 100gw gws gwoutT T TD = −   (7) 249 

( ) ( )1gw gw gwT j T j T+ = −D   (8) 250 

( ) ( ) ( ) ( ) ( )( )1 1wf wf p gw gw gw wfh j h j c j m T j T j m+ = − − +  (9) 251 

( ) ( ) ( )pinch e gw wfT j T j T j−D = −   (10) 252 

Condensation: state 5r to 7 253 

6cws pinch cT T T −= −   (11) 254 

( ) ( )6 7cw wf cws cwinm m h h h h= − −   (12) 255 

( )5 7condenser wf rQ m h h= −   (13) 256 

cwout condenser cw cwinh Q m h= +   (14) 257 

For the exergy analysis of each state point: 258 



 

 

( ) ( )0 0 0i i iE m h h T s s= − − −     (15) 259 

Description of thermodynamic performance evaluation criteria are tabulated in 260 

Table 1. 261 

The net output power of ORC system: 262 

net turbine pumpP P P= −   (16) 263 

The thermal efficiency of ORC system: 264 

t net evaporatorP Q =   (17) 265 

The total exergy destruction of ORC system: 266 

ORC pump recuperator evaporator turbine condenser cooling waterI I I I I I I= + + + + +  (18) 267 

The exergy destruction of cooling water: 268 

cooling water cwout cwinI E E= −   (19) 269 

The exergy efficiency of ORC system； 270 

( )e net net ORCP P I = +   (20) 271 

The plate heat exchanger is chosen subjected to its compact structure and high 272 

effectiveness, the geometry and heat transfer correlations are expressed in Table 2. 273 

The areas of the heat exchanger can be calculated after acquiring each part heat 274 

transfer coefficient. 275 

m
A Q U T= D   (21) 276 

1 1 1hot side cold sidePHE
U t  − −= + +   (22) 277 

The techno-economic criteria which cover the system compactness, investments 278 

and profit are depicted in Table 3. And the detailed operating parameters and 279 

assumptions have been described in a previous study [26]. 280 

 



 

 

Table 1 Energy and exergy analysis of main component in R-ORC system. 

Component Energy analysis Exergy destruction Exergy efficiency 

Pump ( )1 7pump wfP m h h= −  7 1pump pumpI E E P= − +  ( )1 7e pump pumpE E P − = −  

Recuperator ( )1 1recuperator wf rQ m h h= −  1 1 5 5recuperator r rI E E E E= − + −  ( ) ( )1 1 5 5e recuperator r rE E E E − = − −  

Evaporator ( )4 1evaporator wf rQ m h h= −  1 4evaporator gwin gwout rI E E E E= − + −  ( ) ( )4 1e evaporator r gwin gwoutE E E E − = − −  

Turbine ( )4 5turbine wfP m h h= −  4 5turbine turbineI E E P= − −  ( )4 5e turbine turbineP E E − = −  

Condenser ( )5 7condenser wf rQ m h h= −  5 7condenser r cwin cwoutI E E E E= − + −  ( ) ( )5 7e condenser cwout cwin rE E E E − = − −  

  



 

 

Table 2 Plate heat exchanger geometry and heat transfer correlations. 

Parameter [27]  Value Working fluid side Correlations 

Chevron angle, β (°) 60 Single-phase flow of geothermal water Leveque correlation [28]  

Plate width, Lw (m) 0.65 Two-phase flow of geothermal water Wang and Zhao correlation [29] 

Plate thickness, t (m) 0.0005 Supercritical working fluids Jackson correlation [30]  

Corrugation pitch, Λ (m) 0.0085 Cooling part of working fluids Chisholm correlation [31] 

Corrugation depth, b (m) 0.0025 Condensing part of working fluids Kandlikar correlation [32]  

Surface enlargement factor, Φ 1.19 Supercritical working fluids in recuperator Jackson correlation [30]  

Hydraulic diameter, Dh (m) 0.0042 Overheated working fluids in recuperator Chisholm correlation [31]  

Equivalent diameter, Deq (m) 0.005   

Coefficient of thermal conductivity, λPHE (kW/(m·K)) 0.0163   

 

  



 

 

Table 3 Techno-economic evaluation criteria expression in R-ORC system [26].  

Techno-economic criteria Formula 

Heat transfer area per net output power (APR) ( )PR evaporator condenser recuperator netA A A A P= + +  

Turbine characteristic size parameter (SP) 
0.25

5P isenS V h= D  

Total cost (Cost2019) refers to “Bare Module Cost Technique” 
2001 , , , , ,

2019 2019 2001 2001

Cos C C C C C

Cos Cos

BM pump BM evaporator BM turbine BM condenser BM recuperatort

t CEPCI CEPCI t

= + + + +

=
 

Electricity production cost (EPC) 

( ) ( )

( ) ( )( )
2019 2019Cos Cos

1 1 1

PC RF k net working time

time time

RF

E t C f t P h

C i i i

= +

= + + −
 

Depreciated payback period (DPP) 
( ) ( )

( )
2019 0

0 2019

ln 1 Cos ln 1

Cos

PP n

n P net working time k

D k t F k

F E P h f t−

= − − +

= −
 

Saving to investment ratio (SIR) 
( ) ( )( )

( )( ) ( )( )

1

2019

0

1 1

Cos 1 1

IR time time

time
j j

time net working time p

j

time
j j

time k

j

S B C

B P h E r i

C f t r i

−

=

=

=

= + +

= + +





 



 

 

2.2 Model validation 281 

The constructed B-ORC and R-ORC models are validated with the data reported 282 

in the published papers [6, 33]. As summarized in Table 4, the maximum error 283 

between yielded thermal efficiency in B-ORC system with the reference data is 1.23%. 284 

And it can be noticed from Fig. 4 that the variations of plant efficiency and thermal 285 

efficiency with turbine inlet temperature and geothermal water inlet temperature 286 

present good agreement, which indicates that the simulated results are reliable for the 287 

following analysis. 288 

Table 4 Validation of the constructed B-ORC model. 

Output parameter Reference Calculated Error (%) 

Heat source (water) outlet temperature, hsoT (℃) 70.3 70.9773 0.9542 

Cooling medium (water) outlet temperature, cmoT (℃) 17.2 17.2328 0.1903 

Working fluid (R134a) mass flow rate, wfm (kg/s) 0.1402 0.1407 0.3554 

Cooling medium mass flow rate, cmm (kg/s) 3.0990 3.0628 1.1681 

Turbine outlet vapor quality, 5x (kg/kg) 1.12 1.1201 0.0089 

Net output power, netP (kW) 4.7 4.7436 0.9191 

Thermal efficiency, t (%) 14.0 14.1748 1.2332 

  

Fig. 4. Validation of the constructed R-ORC model. 

160 170 180 190 200 210 220 230 240 250

5.0

7.5

10.0

12.5

15.0

17.5

P
la

n
t 

E
ff

ic
ie

n
cy

 (
%

)

Turbine Inlet Temperature (K)

(a)

 Reference

 Calculated

171 181 191 201 211 221 231 241 251 261

Geothermal Water Inlet Temperature (K)

160 170 180 190 200 210 220 230 240 250
15

16

17

18

19

20

21

22

23

 Reference

 Calculated

T
h

er
m

al
 E

ff
ic

ie
n
cy

 (
%

)

Turbine Inlet Temperature (K)

(b)

171 181 191 201 211 221 231 241 251 261

Geothermal Water Inlet Temperature (K)



 

 

3 Multi-objective optimization 289 

The NSGA-II (Non-dominated sorting genetic algorithm-II) method is adopted to 290 

conduct the two contradictory objectives optimization and get the Pareto optimal 291 

frontier. The binary objectives selected are Pnet and APR which reflect the 292 

thermodynamic and techno-economic performance. The heat exchanger areas will 293 

increase which leads to an increment of APR when pursuing higher Pnet. Higher APR 294 

indicates more expensive system cost. Therefore, it is necessary to find a 295 

compromising solution to acquire relatively higher Pnet and lower APR. Five decision 296 

variables including evaporation pressure (P4), turbine inlet temperature (T4), 297 

condensing temperature (Tcond), evaporator pinch point temperature (Tpinch-e), and 298 

condenser pinch point temperature (Tpinch-c) are defined.  299 

Table 5 Input parameters of NSGA-II. 

Parameter Value 

Population size 100 

Maximum generation 120 

Crossover fraction 0.8 

Mutation rate 0.2 

Selection function Tournament 

Tournament size  2 

Objective functions Pnet(max), APR(min) 

Decision variables P4, T4, Tcond (305~313K), Tpinch-e (3~10K), Tpinch-c (3~10K) 

Decision methods 

Shannon Entropy, Relative Entropy & Shannon Entropy & 

TOPSIS, Relative Entropy & LINMPA, Three-level fuzzy 

decision method 

As shown in Fig. 5, the core principle of NSGA-II lies in the five decision 300 

variables are obtained randomly within the iteration range to calculate thermodynamic 301 

and techno-economic criteria values. Subsequently, the rank and crowding distance of 302 

each individual are assigned by the relative magnitude of Pnet and APR. The individual 303 

selected into the mating pool firstly depends on the lower rank and then higher 304 

crowding distance. It compares crowding distance when rank is equal. Afterwards, the 305 

crossover and mutation are operated to produce offspring. And the lower ranking 306 

individuals are eliminated to remain the constant population size. As observed in 307 

Table 5, four decision methods are summarized for further determining the 308 

Pareto-optimal solutions. 309 



 

 

 

Fig. 5. Flow chart of NSGA-II optimization, decision-making and evaluation procedures. 
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4 Decision-making and evaluation methods 310 

After NSGA-II optimization, the optimizing results are elucidated from the 311 

Pareto optimal frontier. It can be concluded from the previous studies [34-38] that the 312 

Pareto set points obtained by different decision-making methods vary greatly, making 313 

it difficult for the decision-maker to judge which method is better. In this literature, 314 

several decision-making methods including Shannon Entropy, modified TOPSIS, 315 

LINMAP and TLFDM are adopted to determine four Pareto-optimal solutions. In 316 

order to get the unique Pareto-optimal result, the Taylor diagram can be utilized as an 317 

effective technique to evaluate the priority between these decision-making points. 318 

4.1 Shannon Entropy decision-making 319 

Shannon Entropy is normally regarded as the weighting assignment method 320 

according to the uncertainty discrepancy of information.  321 

The first step is to normalize the scheme matrix. 322 

1

n

ij ij iji
P p p

=
=    (23) 323 

Where ijp  is the objective value, while 1...i n=  and 1...j m=  represent the 324 

quantities of scheme and objective function. 325 

The information entropy index is expressed as bellows: 326 

( )
( )

1

1
ln

ln

n

j ij ij

i

h P P
n =

= −    (24) 327 

The weighting matrix is given as: 328 

( ) ( )
1

1 1
m

j j jj
w h h

=
= − −   (25) 329 

Shannon Entropy point is searched from the Pareto optimal frontier which ranked 330 

first. 331 

i ij jW P w=    (26) 332 

Where iW  is the scheme matrix that sorts in descending order after 333 

decision-making. 334 

  



 

 

4.2 Modified TOPSIS and LINMAP decision-making 335 

Conventional TOPSIS (Technique for Order Preference by Similarity to Ideal 336 

Situation) point is identified by the shortest Euclidean distance between 337 

Pareto-optimal solution with the ideal point as well as the longest distance with nadir 338 

point. As depicted in Fig. 6, it may occur that P1 and P2 get the equivalent distances, 339 

which cannot distinguish the pros and cons of the two Pareto set points. Therefore, the 340 

relative entropy initially used to estimate the difference between probability 341 

distribution is introduced as a substitute.  342 

 

Fig. 6. Conventional TOPSIS point determined by Euclidean distance. 

Normalization of the scheme matrix: 343 

 2

1

n

ij ij iji
Q q q

=
=    (27) 344 

The weighting matrix iR  is shown as: 345 

i ij jR Q w=    (28) 346 

The objective weighting jw  is derived from Shannon Entropy. 347 

Positive ( )1 2, ,..., nZ z z z+ + + +=  and negative ( )1 2, ,..., nZ z z z− − − −=  ideal solutions 348 

are explained as below: 349 

 
1
maxj ij

i n
z R+

 
=  for the higher the better criteria (29) 350 

 
1
minj ij
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z R−

 
=  for the higher the better criteria (30) 351 
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 
1
minj ij

i n
z R+

 
=  for the lower the better criteria (31) 352 

 
1
maxj ij

i n
z R−

 
=  for the lower the better criteria (32) 353 

Relative entropy distance is calculated as: 354 
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The modified TOPSIS point is selected according to the maximum coefficient 357 

iS : 358 

i
i

i i

d
S

d d

−

− +
=

+
  (35) 359 

Based on the relative entropy, the modified LINMAP (Linear Programming 360 

Technique for Multidimensional Analysis of Preference) point is defined by the 361 

smallest id +
. 362 

4.3 TLFDM decision-making 363 

Three-level fuzzy decision method (TLFDM) [26] covers thirteen evaluation 364 

criteria involving the environmental, thermodynamic and techno-economic indexes. 365 

Numerical data are output during the execution of the optimization process. For the 366 

evaluation criteria of Pnet, ηt, ηe and SIR, the higher value represents the better 367 

performance. On the contrary, lower-the-better criteria are the Safety level, ALT, ODP, 368 

GWP, APR, SP, Cost2019, EPC and DPP.  369 

Furthermore, the subjective importance ranks within the same hierarchy are 370 

given as: 371 

First level: ODP>GWP>ALT>Safety level. 372 

Second level: ηe>ηt>Pnet. 373 

Third level: EPC>SIR>DPP>Cost2019>APR>SP. 374 

Two pair-wise comparison matrices are constructed for schemes and levels and 375 

the decision-making results can be acquired by the following formula: 376 


i i i

B = W R   (36) 377 

Where i
R  and i

W  represent the weighting matrices for schemes and levels. 378 



 

 

4.4 Taylor diagram evaluation 379 

Taylor diagram [39] is capable of graphically evaluating the simulation 380 

capability of multiple complex models based on root-mean-square difference (Rrmsd), 381 

correlation coefficient (Ccoef), and standard deviation (Sstd). These three criteria 382 

represent the discrepancy, similarity, and variation amplitude between simulated and 383 

ideal results. 384 

The formulas are expressed as: 385 

( ) ( )
2

1

1 n

rmsd i i

i

R f f r r
n =

 = − − −
    (37) 386 
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i i

i i

f f r r

C

f f r r
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− −
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− −



 
  (38) 387 

( ) ( )
2 2

1 1

1 1
,

f r

n n

std i std i

i i

S f f S r r
n n= =

= − = −   (39) 388 

Where f  implies the normalized matrix, including thermodynamic and 389 

techno-economic criteria values for Shannon Entropy, TOPSIS, LINMAP and 390 

TLFDM points, r  indicates the reference (ideal point) data, f  and r  are their 391 

corresponding average values, 1...i n=  represents criteria number.  392 

  



 

 

5 Results and discussion 393 

  

  

  

Fig. 7. Pareto optimal frontier and four decision-making points in GR-I. 
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Fig. 8. Pareto optimal frontier and four decision-making points in GR-II. 

Figs. 7 and 8 depict the Pareto optimal frontier of NSGA-II optimization for 394 

basic trans-critical ORC (B-ORC) and recuperative ORC (R-ORC) systems in 395 

medium (GR-I) and high temperature geothermal reservoirs (GR-II). The binary 396 

objectives are the maximum net output power (Pnet) and minimum heat transfer area 397 

per net output power (APR). It is observed that APR increases moderately first and then 398 

goes up rapidly with an increment of Pnet, since the total area of heat exchangers 399 

increase faster than the Pnet under higher evaporation pressure and turbine inlet 400 

temperature. 401 
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Similar phenomena have been observed in previous studies [34, 40], indicating 402 

that higher thermodynamic performance leads to a decrease in techno-economic 403 

performance. The ideal point occurs at the lower right corner outside the frontier in 404 

the rectangle, which represents the theoretical goal to obtain the maximal Pnet and 405 

minimal APR simultaneously. On the contrary, the nadir point signifies the non-ideal 406 

working condition with minimal Pnet and maximal APR. In order to ascertain the 407 

Pareto-optimal solutions, four decision methods including Shannon Entropy, modified 408 

TOPSIS, LINMAP and TLFDM (Three-level fuzzy decision method) are applied, and 409 

eventually compared on Taylor diagram. The former three have been commonly used 410 

in the decision-making process [34], which only need the optimal results of the 411 

objective functions. But TLFDM requires more information about the environmental, 412 

thermodynamic and techno-economic properties of the system, which can provide a 413 

relatively comprehensive perspective for the decision-maker [26]. Additionally, with 414 

restrictions of the schemes (no more than twenty-one) in the three-level performance 415 

evaluation [41], the population is divided into small groups with six or seven 416 

individuals, and the best individual in each group can enter the next round until the 417 

target Pareto-optimal solution is found. Later, the Taylor diagram is used for 418 

determining the final Pareto-optimal solution from these four decision-making points 419 

by measuring the root-mean-square difference, correlation coefficient and standard 420 

deviation [39].  421 

As illustrated in Figs. 7 and 8, it can be observed that R-ORC obtains lower APR 422 

and higher Pnet compared to the B-ORC system. The mass flow rate of working fluid 423 

has increased in R-ORC system, resulting in an increment of Pnet and total area of heat 424 

exchangers, but the increase of Pnet is more markedly than that of total area of heat 425 

exchangers, which verifies that R-ORC may improve the system’s thermodynamic 426 

performance [6]. The two Pareto optimal frontiers have similar variation range in 427 

GR-I while are far apart in GR-II, suggesting that higher temperature working 428 

condition is favorable for the optimizing process. Concerning the decision-making 429 

points, the Shannon Entropy point is consistent with the maximal Pnet point at the top 430 

of the frontier and the LINMAP point is at the middle. As for the TOPSIS and 431 

TLDFM points, they are close to the minimal APR point in GR-I and GR-II, 432 

respectively. 433 



 

 

 

 



 

 

 

 



 

 

 

 

Fig. 9. Taylor diagram for measuring four decision-making points in GR-I. 



 

 

 

 



 

 

 

 



 

 

 

 

Fig. 10. Taylor diagram for measuring four decision-making points in GR-II. 



 

 

Figs. 9 and 10 demonstrate the scatter distribution of four decision points in the 434 

Taylor diagram. It can be seen the root-mean-square difference (Rrmsd), correlation 435 

coefficient (Ccoef) and standard deviation (Sstd) are indicated by the green dashed arc, 436 

blue dotted line and black arc. E.g., the Rrmsd, Ccoef and Ssrd of LINMAP point for 437 

R227ea in the GR-I B-ORC system are 0.0032, 0.8491 and 0.0019, respectively. And 438 

the values for the ideal point are 0, 1 and 0.0047. The ideal point in the Taylor 439 

diagram is identified with maximal Pnet, ηt, ηt and SIR as well as minimal APR, SP, 440 

Cost2019, EPC and DPP, which is different from what has been explained in the Pareto 441 

optimal frontier. These decision-making points are judged by the rules of lower Rrmsd 442 

and higher Ccoef, which is preferred selected with the closest distance from the ideal 443 

point. It can be noticed that the Shannon Entropy point is always far away from the 444 

ideal point, indicating that the single objective optimal result (maximum net output 445 

power point) shouldn’t be chosen for the optimized working condition. Moreover, two 446 

decision-making points may coincide, such as TLFDM&LINMAP points for R290 in 447 

GR-I B-ORC system. 448 

As shown in Figs. 9 and 10, the Rrmsd of Shannon Entropy, LINMAP, TOPSIS 449 

and TLFDM points for R227ea in GR-I B-ORC system are 0.00973, 0.00325, 450 

0.00354 and 0.00335 respectively, and the Ccoef are -0.53482, 0.84912, 0.75769 and 451 

0.81213, respectively. As a result, the LINMAP is determined as the final optimal 452 

Pareto solution for having the minimum Rrmsd and maximum Ccoef. Similarly, the Rrmsd 453 

and Ccoef for the four decision-making points of R227ea in GR-II B-ORC system are 454 

0.00294, 0.00097, 0.00105, 0.00099 and -0.69090, 0.73897, 0.65588, 0.82070, 455 

respectively. The Rrmsd of TLFDM and LINMAP points are very close, but the Ccoef of 456 

the former is much higher than the latter. Therefore, the TLFDM point is finally 457 

chosen. The detailed value for each working fluid of the Taylor diagram in GR-I and 458 

GR-II are summarized in the appendix. 459 



 

 

A further insight of the binary objectives optimization results are displayed in 460 

Tables 6, 7, 8 and 9. It should be noticed that the condensation temperature (Tcond) and 461 

condenser pinch point temperature (Tpinch-c) are centralized around 305K and 10K, 462 

which are the minimum and maximum value of their iterative range. Lower Tcond is 463 

beneficial for the two-phase working fluid condensation as it increases the heat 464 

transfer coefficient and reduces the condenser’s area and the total cost [42]. Higher 465 

Tpinch-c is helpful to increase heat transfer rate and decrease APR. Nevertheless, the 466 

evaporator pinch point temperature (Tpinch-e) is dispersed between 7 and 10K, 467 

demonstrating that not the higher Tpinch-e the better performance. For the turbine inlet 468 

temperature (T4), it tends to get close to its upper limit to acquire higher Pnet. Besides 469 

that, it also demonstrates R-ORC decreases the evaporation pressure (P4) and Tpinch-e 470 

compared to the B-ORC system, and the final Pareto set point appears frequently at 471 

LINMAP and TLFDM points. 472 

  



 

 

Table 6 Pareto-optimal working conditions in GR-I. 

Working Fluid P4/MPa T4/K Tcond/K Tpinch-e/K Tpinch-c/K Pareto set point 

B-ORC R227ea 6.45 438.24 305.00 9.99 10.00 LINMAP 

R-ORC R227ea 5.48 440.69 305.00 7.32 10.00 TLFDM 

B-ORC R134a 8.00 444.44 305.00 10.00 10.00 LINMAP 

R-ORC R134a 6.92 444.92 305.01 8.29 10.00 LINMAP 

B-ORC R143a 9.35 445.00 305.00 9.25 10.00 LINMAP 

R-ORC R143a 8.09 445.00 305.00 7.68 10.00 LINMAP 

B-ORC R290 7.88 445.00 305.00 9.99 9.99 TLFDM&LINMAP 

R-ORC R290 7.14 445.00 305.00 7.90 9.99 LINMAP 

B-ORC R1270 8.54 444.71 305.00 10.00 10.00 TOPSIS&LINMAP 

R-ORC R1270 7.62 445.00 305.00 8.10 10.00 LINMAP 

B-ORC R142b 4.90 444.88 305.00 9.81 10.00 LINMAP 

R-ORC R142b 4.66 445.00 305.00 8.94 10.00 LINMAP 

Table 7 Pareto-optimal working conditions in GR-II. 

Working Fluid P4/MPa T4/K Tcond/K Tpinch-e/K Tpinch-c/K Pareto set point 

B-ORC R227ea 8.78 470.00 305.00 8.04 10.00 TLFDM 

R-ORC R227ea 6.98 470.00 305.00 7.38 10.00 LINMAP 

B-ORC R134a 7.59 440.00 305.00 8.63 10.00 LINMAP 

R-ORC R134a 6.37 440.00 305.00 7.77 10.00 LINMAP 

B-ORC R143a 12.92 485.00 305.00 8.37 10.00 TLFDM 

R-ORC R143a 10.27 485.00 305.00 7.85 10.00 LINMAP 

B-ORC R290 11.16 485.00 305.00 9.52 10.00 TLFDM 

R-ORC R290 9.32 485.00 305.00 8.00 10.00 LINMAP 

B-ORC R1270 12.00 485.00 305.00 9.33 10.00 LINMAP 

R-ORC R1270 9.76 485.00 305.00 7.97 10.00 LINMAP 

B-ORC R142b 5.49 454.50 305.00 9.94 10.00 LINMAP 

R-ORC R142b 4.96 455.00 305.00 8.45 10.00 LINMAP 



 

 

Table 8 Pareto-optimal results in GR-I. 

Working Fluid Pnet/kW ηt/% ηe/% APR(m2/kW) SP/m Cost2019(105$) EPC($/(kW·h)) DPP/Year SIR Pareto set point 

B-ORC R227ea 1199.09 10.97 40.57 0.241 0.071 29.71 0.035 3.600 3.457 LINMAP 

R-ORC R227ea 1292.20 14.71 48.41 0.222 0.072 32.37 0.035 3.646 3.419 TLFDM 

B-ORC R134a 1380.13 12.70 46.77 0.221 0.066 30.79 0.031 3.193 3.839 LINMAP 

R-ORC R134a 1408.93 14.89 50.64 0.215 0.067 33.15 0.033 3.392 3.641 LINMAP 

B-ORC R143a 1185.50 11.07 40.37 0.232 0.053 30.91 0.036 3.818 3.285 LINMAP 

R-ORC R143a 1245.18 13.85 46.02 0.218 0.055 33.18 0.037 3.916 3.215 LINMAP 

B-ORC R290 1331.52 12.33 45.22 0.215 0.072 30.66 0.032 3.311 3.719 TLFDM&LINMAP 

R-ORC R290 1356.49 14.77 49.54 0.207 0.073 33.05 0.034 3.531 3.516 LINMAP 

B-ORC R1270 1322.05 12.30 44.97 0.205 0.066 30.61 0.032 3.330 3.700 TOPSIS&LINMAP 

R-ORC R1270 1343.61 14.36 48.59 0.200 0.067 32.88 0.034 3.549 3.500 LINMAP 

B-ORC R142b 1573.41 14.42 53.25 0.210 0.091 30.48 0.027 2.725 4.422 LINMAP 

R-ORC R142b 1570.72 16.21 55.79 0.209 0.091 33.26 0.029 3.010 4.045 LINMAP 

  



 

 

Table 9 Pareto-optimal results in GR-II. 

Working Fluid Pnet/kW ηt/% ηe/% APR(m2/kW) SP/m Cost2019(105$) EPC($/(kW·h)) DPP/Year SIR Pareto set point 

B-ORC R227ea 1772.89 11.66 34.83 0.163 0.070 32.91 0.026 2.599 4.614 TLFDM 

R-ORC R227ea 2114.75 16.61 44.89 0.138 0.071 35.87 0.024 2.353 5.050 LINMAP 

B-ORC R134a 1906.52 12.52 37.44 0.145 0.066 31.97 0.023 2.324 5.107 LINMAP 

R-ORC R134a 2053.69 14.58 41.41 0.142 0.068 34.86 0.024 2.355 5.046 LINMAP 

B-ORC R143a 1851.42 12.43 36.58 0.151 0.052 35.56 0.027 2.699 4.460 TLFDM 

R-ORC R143a 2124.32 16.67 45.05 0.134 0.054 37.64 0.025 2.468 4.835 LINMAP 

B-ORC R290 2048.57 13.69 40.42 0.139 0.070 34.71 0.024 2.350 5.056 TLFDM 

R-ORC R290 2267.51 17.65 47.87 0.126 0.072 37.03 0.023 2.257 5.245 LINMAP 

B-ORC R1270 2067.73 13.86 40.83 0.132 0.065 35.10 0.024 2.355 5.046 LINMAP 

R-ORC R1270 2257.30 17.26 47.19 0.122 0.067 36.98 0.023 2.265 5.229 LINMAP 

B-ORC R142b 2255.32 14.79 44.28 0.130 0.090 31.67 0.020 1.916 6.101 LINMAP 

R-ORC R142b 2376.73 16.94 48.01 0.128 0.091 34.86 0.020 2.008 5.839 LINMAP 

  



 

 

  

Fig. 11. Percentage change of decision criteria value after NSGA-II optimization in GR-I (%). 

  

Fig. 12. Percentage change of decision criteria value after NSGA-II optimization in GR-II (%).
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Tables 8 and 9 list the Pareto-optimal results in GR-I and GR-II which refer to 473 

the thermodynamic and techno-economic criteria. It is shown that R142b performs 474 

best in both geothermal reservoirs while R143a manifests undesirable performance 475 

among the six working fluids. Furthermore, the values of Pnet, ηt and SIR in GR-II are 476 

generally higher than those in GR-I. But the ηe displays an opposite trend for that the 477 

exergy loss has increased in GR-II, and this variation is consistent with the published 478 

literature [26], showing that the exergy of high temperature geothermal reservoir was 479 

not fully utilized compared to the lower temperature one. The APR, SP, EPC and DPP of 480 

GR-II are less than those of GR-I, indicating that higher heat source temperature 481 

working condition is favorable for geothermal energy exploitation. Moreover, it can 482 

be seen that R-ORC has strengthened the system thermodynamic performance but 483 

weakened the techno-economic performance in GR-I. The advantageous variation is 484 

that Pnet, ηt, ηe increases and APR decreases. But for R142b, the Pnet of R-ORC is 485 

slightly lower than that of B-ORC because the mass flow rate of working fluid 486 

decreases. Meanwhile, the adverse effect lies in that Cost2019, EPC, DPP exhibit a trend 487 

of increment and a reduction in SIR as well. On the contrary, R-ORC has not only 488 

improved the system’s thermodynamic performance but also the techno-economic 489 

performance in most cases of GR-II, indicating that the R-ORC is more suitable for 490 

higher temperature working conditions.  491 

Comparing the percentage change value of evaluation criteria for Pareto-optimal 492 

results with non-optimized solutions [26] tabulated in Figs. 11 and 12, it is found that 493 

the whole system performance has been improved a lot after the NSGA-II 494 

optimization. The positive alteration implies an increase while the negative one 495 

represents a decrease. Specifically, R143a exhibits the largest growth rate in Pnet, EPC, 496 

DPP and SIR. The most obvious change is APR which decreases averagely more than 497 

27.0% and 30.0% in GR-I and GR-II. And it directly accounts for a decline in the total 498 

cost. The adverse effect of the optimization is that SP shows an increment to imply the 499 

compactness of the turbine has weakened.  500 

  



 

 

6 Conclusion 501 

In this paper, a Four-Hierarchy method is developed to achieve effective and 502 

practical design and optimization along with decision-making for ORC systems. The 503 

optimal operating parameters for the medium (GR-I) and high (GR-II) temperature 504 

geothermal ORC systems have been revealed based on the NSGA-II algorithm. Four 505 

decision-making methods are applied to determine four Pareto-optimal solutions. 506 

Taylor diagram is used to find the final Pareto-optimal solution. The main conclusions 507 

are summarized as follows: 508 

1. Compared with the basic trans-critical ORC system, the recuperative 509 

trans-critical ORC is more effective to acquire better thermodynamic and 510 

techno-economic performance under high temperature geothermal working 511 

conditions. 512 

2. Modified LINMAP and TLFDM points are selected more frequently as the 513 

final Pareto-optimal solutions through the Taylor diagram. Shannon Entropy is not 514 

applicable for decision-making alone.  515 

3. The overall performance of the geothermal ORC system has been improved 516 

after optimization and the most significant alteration is heat transfer area per net 517 

output power, which decreased averagely by 27.0% and 30.0% in the medium and 518 

high temperature geothermal reservoirs, respectively. 519 

4. The condensation temperature and condenser pinch point temperature tend to 520 

be 305K and 10K respectively, while evaporator pinch point temperature ranges from 521 

7K to 10K. Moreover, R142b consistently performs the best to obtain the highest net 522 

output power and largest saving to investment ratio. 523 

According to the proposed methods, the robust mathematical model, 524 

optimization and decision-making hierarchy have been constructed, aiming at 525 

implementing the comprehensive quantitative evaluation of the performance for 526 

various ORC power plants, and realizing an intuitive comparison of the advantages 527 

and disadvantages of different scenarios. By using this systematic approach, it is 528 

possible to save time while effectively converting heat sources. And it can provide 529 

certain scientific guidance to the design of sustainable energy conversion systems.  530 
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Appendix Taylor diagram evaluation results 535 

   

   

   

   

   

   

Fig. 13. Correlation coefficient, Rrmsd and standard deviation of Taylor diagram in GR-I. 

B-ORC R227ea Ccoef Rrmsd Sstd

Ideal point 1 0 0.004733

Shannon Entropy -0.534821 0.009736 0.006346

LINMAP 0.849127 0.003259 0.001928

TOPSIS 0.757694 0.003548 0.001840

TLFDM 0.812137 0.003351 0.001946

R-ORC R227ea Ccoef Rrmsd Sstd

Ideal point 1 0 0.002614

Shannon Entropy -0.684120 0.005083 0.002923

LINMAP 0.643227 0.002132 0.000947

TOPSIS 0.562375 0.002162 0.001491

TLFDM 0.644382 0.002092 0.001068

B-ORC R134a Ccoef Rrmsd Sstd

Ideal point 1 0 0.004778

Shannon Entropy -0.286504 0.007533 0.004614

LINMAP 0.900246 0.002980 0.002168

TOPSIS 0.878064 0.003426 0.001644

TLFDM 0.690480 0.003523 0.002619

R-ORC R134a Ccoef Rrmsd Sstd

Ideal point 1 0 0.002697

Shannon Entropy -0.734961 0.008343 0.006158

LINMAP 0.728229 0.002051 0.001076

TOPSIS 0.633751 0.002086 0.001746

TLFDM 0.754888 0.002258 0.000631

B-ORC R143a Ccoef Rrmsd Sstd

Ideal point 1 0 0.002435

Shannon Entropy -0.600408 0.005068 0.003217

LINMAP 0.808130 0.001646 0.001161

TOPSIS 0.727526 0.001736 0.001299

TLFDM 0.834191 0.001786 0.000854

R-ORC R143a Ccoef Rrmsd Sstd

Ideal point 1 0 0.002538

Shannon Entropy -0.730624 0.005749 0.003627

LINMAP 0.692142 0.001953 0.001079

TOPSIS 0.594534 0.002057 0.001763

TLFDM 0.456714 0.002696 0.002633

B-ORC R290 Ccoef Rrmsd Sstd

Ideal point 1 0 0.004303

Shannon Entropy -0.615012 0.010607 0.007403

LINMAP 0.880836 0.002275 0.002778

TOPSIS 0.855172 0.002574 0.002394

TLFDM 0.880836 0.002275 0.002778

R-ORC R290 Ccoef Rrmsd Sstd

Ideal point 1 0 0.002767

Shannon Entropy -0.701124 0.007956 0.005767

LINMAP 0.709543 0.002197 0.000952

TOPSIS 0.586735 0.002242 0.001696

TLFDM 0.469931 0.002685 0.002416

B-ORC R1270 Ccoef Rrmsd Sstd

Ideal point 1 0 0.004645

Shannon Entropy -0.072377 0.007054 0.004982

LINMAP 0.893461 0.002451 0.002864

TOPSIS 0.893461 0.002451 0.002864

TLFDM 0.867112 0.002483 0.003126

R-ORC R1270 Ccoef Rrmsd Sstd

Ideal point 1 0 0.002649

Shannon Entropy -0.615030 0.005465 0.003421

LINMAP 0.670954 0.002143 0.000919

TOPSIS 0.545323 0.002226 0.001608

TLFDM 0.415939 0.002706 0.002334

B-ORC R142b Ccoef Rrmsd Sstd

Ideal point 1 0 0.003422

Shannon Entropy -0.815393 0.007275 0.004210

LINMAP 0.804884 0.002173 0.001981

TOPSIS 0.702114 0.002450 0.002662

TLFDM 0.734115 0.002324 0.002482

R-ORC R142b Ccoef Rrmsd Sstd

Ideal point 1 0 0.003206

Shannon Entropy -0.829180 0.007652 0.004780

LINMAP 0.801726 0.002061 0.001811

TOPSIS 0.716929 0.002259 0.002628

TLFDM 0.759223 0.002098 0.002214



 

 

   

   

   

   

   

   

Fig. 14. Correlation coefficient, Rrmsd and standard deviation of Taylor diagram in GR-II. 

B-ORC R227ea Ccoef Rrmsd Sstd

Ideal point 1 0 0.001398

Shannon Entropy -0.690901 0.002947 0.001802

LINMAP 0.738970 0.000979 0.000767

TOPSIS 0.655885 0.001056 0.000903

TLFDM 0.820702 0.000998 0.000549

R-ORC R227ea Ccoef Rrmsd Sstd

Ideal point 1 0 0.001325

Shannon Entropy -0.710830 0.002445 0.001319

LINMAP 0.586295 0.001139 0.000398

TOPSIS 0.518924 0.001135 0.000766

TLFDM 0.562378 0.001236 0.001316

B-ORC R134a Ccoef Rrmsd Sstd

Ideal point 1 0 0.001247

Shannon Entropy -0.830273 0.002542 0.001410

LINMAP 0.800907 0.000768 0.000818

TOPSIS 0.762169 0.000816 0.001071

TLFDM 0.863616 0.000988 0.000315

R-ORC R134a Ccoef Rrmsd Sstd

Ideal point 1 0 0.001113

Shannon Entropy -0.799788 0.004675 0.003736

LINMAP 0.705058 0.000849 0.000472

TOPSIS 0.577341 0.000921 0.000793

TLFDM 0.564113 0.001004 0.001033

B-ORC R143a Ccoef Rrmsd Sstd

Ideal point 1 0 0.001425

Shannon Entropy -0.716240 0.002988 0.001798

LINMAP 0.817918 0.000869 0.000878

TOPSIS 0.667084 0.001062 0.000976

TLFDM 0.848776 0.000888 0.000739

R-ORC R143a Ccoef Rrmsd Sstd

Ideal point 1 0 0.001573

Shannon Entropy -0.703324 0.002938 0.001611

LINMAP 0.619857 0.001320 0.000507

TOPSIS 0.384475 0.001468 0.000822

TLFDM 0.601799 0.001400 0.001564

B-ORC R290 Ccoef Rrmsd Sstd

Ideal point 1 0 0.001627

Shannon Entropy -0.662569 0.003328 0.002018

LINMAP 0.816841 0.000966 0.001103

TOPSIS 0.466252 0.001481 0.001107

TLFDM 0.822390 0.000967 0.001060

R-ORC R290 Ccoef Rrmsd Sstd

Ideal point 1 0 0.001754

Shannon Entropy -0.746163 0.003350 0.001831

LINMAP 0.609107 0.001473 0.000583

TOPSIS 0.477776 0.001544 0.000929

TLFDM 0.623989 0.001549 0.001816

B-ORC R1270 Ccoef Rrmsd Sstd

Ideal point 1 0 0.001509

Shannon Entropy -0.780595 0.003762 0.002464

LINMAP 0.803757 0.000943 0.000924

TOPSIS 0.727080 0.001036 0.001065

TLFDM 0.818731 0.001053 0.000636

R-ORC R1270 Ccoef Rrmsd Sstd

Ideal point 1 0 0.001714

Shannon Entropy -0.758867 0.003524 0.002042

LINMAP 0.675696 0.001355 0.000669

TOPSIS 0.603532 0.001368 0.001096

TLFDM 0.618217 0.001513 0.001748

B-ORC R142b Ccoef Rrmsd Sstd

Ideal point 1 0 0.002311

Shannon Entropy -0.280534 0.004167 0.002879

LINMAP 0.851529 0.001443 0.001185

TOPSIS 0.863982 0.001701 0.000756

TLFDM 0.720759 0.001656 0.001247

R-ORC R142b Ccoef Rrmsd Sstd

Ideal point 1 0 0.001252

Shannon Entropy -0.830240 0.002580 0.001445

LINMAP 0.785652 0.000796 0.000802

TOPSIS 0.742176 0.000846 0.001039

TLFDM 0.804061 0.000845 0.000607
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