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Abstract

We study the interaction between two closely spaced but electrically isolated quasi-one-

dimensional electrical wires by a drag experiment. In this work we experimentally demonstrate

the generation of current in an unbiased (drag) wire, which results from the interactions with

a neighboring biased (drive) wire. The direction of the drag current depends on the length of

the one-dimensional wire with respect to the position of the barrier in the drag wire. When

we additionally form a potential barrier in the drive wire, the direction of the drag current is

determined by the relative position of the two barriers. We interpret this behavior in terms of

electron excitations by phonon-mediated interactions between the two wires in presence of the

electron scattering inside the drive wire.

Nanoscale electronic circuits lie at the heart of emerging quantum technologies. The miniaturisation poses

however a challenge for electrical isolation owing to interaction effects at the level of elementary particles.

The precise understanding of energy and momentum transfer between electrons and phonons is thus key for

nanoscale electronic-circuit design. An original approach to study this aspect is the so-called drag experiment,1

where two close-by, but electrically isolated systems are considered. One of these parts – the drive system

– introduces excitation via an injected electric current, whereas the other so-called drag system is sensitive

to measurable responses owing to energy and momentum transfer from quantum interactions. Studying and

understanding the nature of these fundamental interactions is of paramount importance for future quantum

technologies. This is because coupled quantum systems have become essential building blocks for advanced

quantum circuits employing solid-state flying qubits2–4.

In the past, drag experiments have been successfully performed to study electron-electron and electron-

phonon interactions1. Various types of nanocircuits have been investigated, such as quantum wires5–9, quantum

dots10,11 or quantum point contacts12. These experiments revealed physical phenomena ranging from Wigner

crystallisation of electrons over high-frequency-noise detection to Tomonaga-Luttinger liquids. An interesting
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behaviour was observed in two adjacent but electrically isolated quantum point contacts (QPCs) that are nearly

pinched12. When one of the QPCs is biased with a voltage of about 1 mV or larger, a current with opposite

direction is created in the other, unbiased QPC. It was suggested that this counterflow is a direct consequence

of an augmented thermopower effect that manifests at half conductance plateau of a QPC13,14 as well as the

asymmetric phonon-induced excitation of electrons between the two reservoirs of the drag QPC. However, a

detailed understanding of the process has not been obtained yet.

In this work, we study phonon-mediated interactions in a pair of neighboring quasi-one-dimensional (1D)

wires, which are electrically isolated and equipped with potential barriers at different positions. The placement

of potential barriers at different positions allows the systematic investigation of the phonon-induced electron-

motion for different configurations. Our results corroborate the interpretation of previous experimental studies12

and highlight the importance of geometry for the direction of the phonon-induced current. Our measurement

data furthermore indicate that heat-driven electron-motion is strongly affected by electron-scattering within the

drive wire.

The investigated sample is fabricated in a GaAs/AlGaAs heterostructure hosting a two-dimensional electron

gas (2DEG) at a depth of 146 nm with electron density of 1.9× 1011 cm−2 and mobility of 1.8× 106 cm2/Vs

at 4 K. We perform the measurement in a dilution refrigerator at a base temperature of ∼ 15 mK under zero

magnetic field. Figure 1b shows a SEM image of the surface gates defining the investigated pair of quantum

wires. Applying a set of negative voltages on these Schottky gates, we define the potential landscape within

the 2DEG and thus the electronic nanocircuit. Surface gates that remain unused in the present experiment

(gl, go) are darkened in the SEM image (Fig. 1b). All gates were polarised with 0.3 V during the cool down

to reduce the operation voltage and improve the stability of the device. We electrostatically isolate the drag-

and drive-wire (illustrated by red; top and blue; bottom in Fig. 1a) by polarising the horizontal barrier gate

(gc) and the upper entrance gate (gu) with a sufficiently negative voltage. In the following we investigate the

currents along the drive Idrive and drag Idrag wires as function of the voltage bias Vsd applied on the drive wire

for different arrangements of potential barrier. In these experimental scenarios, we control the presence of a

potential barrier via a negative voltage applied on the corresponding Schottky gates g1 - g3 in the (top) drag or

g4 - g6 in the (bottom) drive wire15. For the measurements, the side gates of the two wires are tuned to host

4 ∼ 5 conduction modes in each wire in order to suppress significant electron-scattering due to disorders along

the transport paths. To suppress the influence of thermal voltage variation between different measurement lines,

all Ohmic contacts, except the injection contact on the left, are connected to ground at the base temperature

through a 10 kΩ resistor. The currents flowing through the drive and drag wire are respectively obtained by

measuring the voltages across the 10 kΩ resistor. If not indicated otherwise, the drag current is obtained by

measuring the voltage Vdrag at the right-most Ohmic contact as shown in Fig 1b.

To begin, we characterise the potential barriers. Figures 1c (1d) show conductance measurements as a

function of the voltage applied on the barrier gates g1 – g3 (g4 – g6) along the drag (drive) wire. The data

shows plateau-like features near the conductance pinch-off16 that are consistent for both drive and drag wires.

By selectively polarising the barrier gates, we form a potential barrier at deliberately chosen positions along the

drag and drive wires.

The measurements are performed in the basic setup illustrated in Fig. 1a. Here we form a potential barrier

only in the drag wire and the gates g4, g5, and g6 in the drive wire are not used. To measure the differential drag

conductance Gdrag, we inject current into the drive wire by applying an AC voltage drive of V rms = 70.7 µV at
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the left Ohmic contact and at a frequency of 23.3 Hz, which is used for lock-in detection purposes. In addition

to the AC voltage drive, we apply a DC offset bias, Vsd, on the injection contact and measure the resulting

induced AC current in the drag wire to obtain Gdrag at a fixed Vsd
17. In this experiment the polarity of Gdrag

gives the relation between the flow-direction of the drive current and the one of the drag current. When Gdrag

is positive, the drive current and the drag current flow in the same direction. On the other hand, when Gdrag

is negative, the drive current and the drag current flow towards opposite directions. The black solid curve in

Fig. 2a shows the differential drag conductance, Gdrag, as a function of the voltage applied on the potential

barrier gate g2 defined by V2, while the offset bias Vsd was fixed to 2 mV. For comparison purposes, the red

dashed curve illustrates the corresponding conductance G of the same potential barrier in the absence of the

DC bias voltage. Clear peaks of Gdrag at the voltage around half of the conductance plateaus are visible. At

those peaks the thermopower of the potential barrier becomes large13,14 and hence a large drag current flows

when a temperature-gradient is induced across the potential barrier. Here we confirm that as far as we keep

a few conduction modes within each wire, a slight variation of the drive-wire-width will not change the gate

voltage dependence of the differential drag conductance qualitatively18. We then fix the potential barrier, V2,

at the voltage where we obtain a peak in the differential drag conductance Gdrag as shown by the dashed circle

in Fig. 1c and remeasure Gdrag as a function of the DC bias voltage, Vsd. The result is shown by the black solid

curve in Fig. 2b, in which Gdrag appears to be positive for positive Vsd and negative for negative Vsd. From

Gdrag as a function of Vsd we calculate the drag current Idrag
17 (blue dash-dotted curve in Fig. 2b). We clearly

observe that the direction of the drag current does not depend on the direction of the drive current (i.e. the

polarity of Vsd). This result indicates that the temperature-gradient across the potential barrier depends on the

absolute value of the drive current. Here electrons at the right side of the potential barrier are excited more

than the ones at the left side. As a result, electrons flow from the right to the left in the drag wire.

We also perform a similar measurement by forming a potential barrier either at g1 or g3. As for the case of

g2, the differential drag conductance, Gdrag, shows a peak for the potential barrier at g1, however it shows a dip

for the barrier formed at g3. After fixing the voltage applied to the potential barriers, V1 or V3, at their peak/dip

value respectively (indicated by the circles in Fig. 1c) we perform a DC bias voltage scan and calculate the drag

current. The results are summarised in Fig. 2c, including the data from g2 shown in Fig. 2b for comparison. For

g1 the drag current is positive as for the case of g2 while for g3 it is negative. When we assume a homogeneous

energy exchange between the drag and the drive wire, the relative length of the drag wire with respect to the

position of the potential barrier in the drag wire determines on which side of the potential barrier electrons

are more excited. For g1 and g2, the wire at the right side of the potential barrier is longer while for g3 the

wire at the left side is longer. This explains the observed behaviour of the drag current. We plot the data of

Fig. 2c in Fig. 2d in the form of Idrag/Idrive to clearly present the strength of the drag effect. The observed drag

effect is orders of magnitude stronger than the one expected from the Coulomb drag19 in our well-separated

wires (the distance between the drag and the drive wire is ∼ 300 nm). This suggests that phonon-mediated

interactions are at the origin of energy exchange between the two wires. Here when we carefully look at the

data around zero DC bias, Idrag/Idrive starts appearing at a few hundred µV. This energy scale corresponds to

the subband energy gap in the drive wire, which is also visible as a small dip structure in Idrive (See section 1

of Supplementary material17). For Vsd above a few hundred µV, the inter-subband electron-scattering becomes

possible and hence scattering with a large momentum transfer occurs20. Such a process should play a key role

for the observed drag effect and may enhance the electron-phonon coupling.
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In what follows, we investigate how the drag current is affected by introducing potential barriers along the

drive wire. To do this we return back to the basic setup (Fig. 1a) and form a potential barrier along the drag

wire at gate g2 by setting V2 at the voltage value illustrated by the dashed circle shown in Fig. 1c. Then we

sweep the voltage V5 on gate g5 and measure the differential drag conductance Gdrag at Vsd =2 mV. The result

is shown in Fig. 3a. The differential drag conductance, Gdrag (black solid curve in Fig. 3a), shows a positive

value when V5 is less negative and thus no potential barrier is formed in the drive wire. This is consistent with

the result shown in Fig. 2b. When V5 is decreased even further, Gdrag crosses zero and a negative dip appears

before the pinch off. To study the origin of this dip, we fix V5 to that value (indicated by the dashed circle in

Fig. 1d) and measure Gdrag as a function of input bias voltage Vsd. The results shown in Fig. 3b demonstrate

that the drag conductance is negative for both positive and negative Vsd. This means that the drag current

and the drive current flow in opposite direction. Such a counterflow of electrons has been reported in Ref. 12.

In this reference the asymmetric phonon-induced excitation of electrons is suggested to explain the counterflow

behaviour. When the potential barrier in the drive wire is set close to the pinch off, the tunnel-probability

across the barrier becomes energy dependent and electrons with higher energy are transmitted more favorably.

As a consequence energy relaxation occurs mainly after the barrier by the emission of phonons. This results

in a counterflow of the electrons in the drag wire. We confirm that the origin of the induced drag current is

indeed an asymmetric excitation with respect to the potential barrier21. Although the discussed counterflow

behaviour of the drag current is qualitatively same for our work and Ref. 12, the observed drag current is much

larger in our work (∼ nA while ∼ pA in Ref. 12). The difference is considered to originate from the potential

barrier being embedded in a quasi 1D wire in our work, while in Ref. 12 it was embedded in a 2D reservoir.

Finally we also investigate the drag current by forming a potential barrier at different positions in each wire.

For this measurement we form a potential barrier at gates g2 and g4 by setting their voltages to their respective

values indicated by the dashed and solid circles in Fig. 1c and Fig. 1d, respectively. In this situation we observe

a negative drag current for both positive and negative Vsd as shown by the magenta solid curve in Fig. 4a. When

we perform the same measurement by placing the potential barrier at g6 instead of g4, the direction of the drag

current becomes positive for both signs of Vsd as shown by the green dashed curve in Fig. 4a. This result is

in clear contrast to the result reported in Ref. 12, where the counterflow behaviour is preserved in a similar

drag-current measurement performed for the QPC potential barriers separated by ∼ 300 nm. In our device the

distance between the potential barriers is much larger (lg2−g4 = 6 µm, lg2−g6 = 7 µm). Here the drag current

is generated by electrons, which absorb phonons with high enough energy and can pass through the potential

barrier in the drag wire. Our results indicate that phonon-mediated energy transfer between the two wires

contributing to the drag current mainly occurs within a distance of up to 6 µm. The flight time of electrons over

6 µm is about 30 ps. The electron-phonon scattering time τe−p reported for GaAs-based 2DEG is roughly 1 ns22,

which is much larger than the above-mentioned flight time. Our results suggest that most of the electrons, which

make it over the potential barrier in the drive wire and can excite transport across the barrier in the drag wire,

lose their excess energy within a few micrometers before their energy is transferred to phonons in our 1D wire.

The decay of energy and momentum most probably occurs through inter-subband electron-electron scattering20.

This is in line with previously reported electron-electron scattering times τe−e in 1D wires or 2DEG with values

ranging on the order of 10 ps or shorter for high-energy electrons (Vsd >1 mV)23–25. In Fig. 4b we plot the data

of Fig. 4a in the form of Idrag/Idrive, which is an indicator of the strength of the drag effect and hence provides

evidence on the strength of electron-phonon scattering. For small bias (|Vsd| < 1 mV) both curves show similar
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tendency and Idrag/Idrive increases with a small positive slope as a function of Vsd. This behaviour is similar

to the results when the potential barrier is absent in the drive wire as shown in the blue dash-dotted curve in

Fig. 2d. For the low bias regime (|Vsd| < 1 mV) the drag current is induced by the thermal excitation over the

long drive wire, where inter-subband electron-electron scattering is still possible with this bias. On the other

hand, for the high bias regime (|Vsd| > 1 mV) the asymmetric, phonon-induced heating by high energy electrons

transmitting across a potential barrier seem to dominate the drag current as discussed in Figs. 3 and 4a. The

two curves show opposite slopes as a function of Vsd, which is consistent with the opposite signs observed for

the drag currents in Fig. 4a. For |Vsd| > 2 mV, where inter-subband scattering becomes possible around the

barrier26, Idrag/Idrive increases significantly with Vsd. This indicates that electron-phonon scattering is locally

enhanced there. Finally, Idrag/Idrive observed for these conditions is about 1 %. This small current ratio is

consistent with the scenario in which most of the electrons in the drive wire do not emit phonons with high

enough energy to contribute to the drag current due to the electron-electron scattering. It is also consistent

with the ratio between the flight time of electrons over a few µm and the electron-phonon scattering time.

In summary, a drag-type measurement in two adjacent but electrically isolated one-dimensional quantum

wires has been performed. Our results demonstrate that phonon-mediated energy transfer has an important

effect in one-dimensional nanocircuits and can induce electron-flow in an adjacent, but electrically isolated wire

when a potential barrier is formed. The direction of the induced electron-flow is parallel or anti-parallel to the

drive current depending on the respective position of the potential barriers in the nanocircuit. Furthermore, our

results indicate that phonon-emission from electrons transmitted through a potential barrier occurs within a

short distance (< 6 µm) in the non-linear regime (Vsd > 1 mV). This suggests that momentum relaxation occurs

before the energy relaxation by electron-phonon interaction. Since a potential barrier is one of the key elements

in quantum electronic circuits — a prime example being a beam splitter — our results will provide useful

information for quantum operations in nanocircuits in particular for quantum circuits containing a potential

barrier.
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Figure 1: (a) Schematic of the device for the drag experiment. The drag- (top) / drive- (bottom) wire is

indicated by a red/ blue dashed arrow. A potential barrier can be selectively formed in the drag- / the drive-

wire by applying voltages on the gates g1, g2, g3/ g4, g5, g6. (b) False colored SEM image of a relevant device

and schematic of the measurement setup. White boxes with white crosses represent the Ohmic contacts. To

perform current measurements, some of them are grounded at the base temperature through a 10 kΩ resistor.

The Schottky gates not used in the drag experiment (gl, go) are darkened. (c, d) Conductance across a potential

barrier (c) in the drag wire (gates: g1, g2 and g3) and (d) in the drive wire (gates: g4, g5 and g6) as a function

of the respective gate voltage. For the characterization of the barriers in the drag wire, the setup is changed

from the basic one shown in (b). We depolarise gu and polarise gl, go to directly inject the current from

the left-injection contact. The circles inside the figures indicate the voltage value used for the differential

drag-conductance measurements.
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Figure 2: (a) Differential drag conductance (black solid curve, left axis) and conductance (red dashed curve, right

axis) as a function of the voltage (V2) on gate g2. The conductance is measured in a separate measurement and

these are the same data as the red dashed curve in Fig. 1c. For the differential drag conductance measurement

we fix Vsd to 2 mV. (b) Differential drag conductance (black solid curve, left axis) and drag current (blue dash-

dotted curve, right axis) as a function of the dc bias Vsd when the potential barrier at g2 is fixed to the gate

voltage indicated by the red dashed circle in Fig. 1c. The drag current is obtained by integrating the differential

drag conductance along the bias voltage across the drive wire17. (c) Drag current as a function of Vsd when we

form a potential barrier at 3 different positions in the drag wire. For the 3 curves, the voltage on the potential

barrier is fixed to the position indicated by the circles in Fig. 1c. (d) The data of (c) is plotted in the form of

the drag current over the drive current as a function of Vsd.
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Figure 3: (a) Differential drag conductance (black solid curve, left axis) and conductance (blue dashed curve,

right axis) as a function of the voltage (V5) on gate g5. The conductance is measured in a separate measure-

ment and these are the same data as the blue dashed curve in Fig. 1d. For the differential drag conductance

measurement we fix Vsd to 2 mV. Here a potential barrier is formed at g2 in the drag wire by setting V2 to

the value indicated by the red dashed circle in Fig. 1c. (b) Differential drag conductance (black solid curve, left

axis) and drag current (red dash-dotted curve, right axis) as a function of the dc bias Vsd when V5 is fixed close

to its dip value shown in (a) (the value is also indicated in Fig. 1d by the blue dashed circle). The drag current

is obtained by integrating the differential drag conductance along the bias voltage across the drive wire17.
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Figure 4: (a) Drag current as a function of Vsd measured by forming a potential barrier at different positions

in both drag and drive wires. Here a potential barrier in the drag wire is formed at g2 by setting V2 to the

value indicated by the red dashed circle in Fig. 1c. In the drive wire a potential barrier is formed either at g4

(magenta solid curve) or at g6 (green dashed curve). The voltage on the gates g4 and g6 are set to the values

indicated by the blue solid and dotted circles shown in Fig. 1d, respectively. (b) The data of (a) is plotted in

the form of the drag current over the drive current as a function of Vsd.
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1 Measurement of the differential drag conductance and the drag / drive

current

The measurements of the differential drag conductance are performed by applying an AC excitation (23.3 Hz,

V rms =70.7 µV) with a controlled DC offset bias (Vsd) on the left injection contact, which injects the current

into the drive wire. To detect the drive and drag currents we measure the AC voltage across the 10 kΩ resistor

for the drive wire (Vdrive) and for the drag wire (Vdrag) respectively with a standard lock-in technique. In this

measurement setup the voltage across the drive wire (V rms
drive) is expressed by

V rms
drive = V rms − Vdrive − Vdrive ·

Rinjection +Rdrive

10 kΩ
, (1)

where Rinjection is the resistance of the injection contact and Rdrive is the resistance of the right detection contact

in the drive wire. Using the above formula for the V rms
drive, the differential conductance of the drive wire Gdrive

and differential drag conductance of the drag wire Gdrag are obtained by

Gdrive/drag =
Vdrive/drag

10 kΩ · V rms
drive

. (2)

When a finite DC offset bias Vsd is applied on the injection contact, the DC bias across the drive wire becomes

Vsd, drive = Vsd ·
V rms
drive

V rms
. (3)

By measuring the differential conductance of the drive wire and the differential drag conductance of the drag

wire at different values of Vsd from zero and by integrating them along Vsd, drive, the current flows in the drive

wire (Idrive) and the drag current (Idrag) are obtained in the experiment.

Fig. S1a shows the differential conductance of the drive wire when there is no barrier in the drive wire as a

function of Vsd. A small dip with a width of a few hundred µV appears around zero bias voltage. This structure

is considered to be associated with the subband energy gap of the drive wire and it is an order of a few hundred

1



4 2 0 2 4
Vsd / mV

0

20

40

60

80

100

120

G
dr

iv
e
/M

1

(a)

4 2 0 2 4
Vsd / mV

0

10

20

30

40

G
dr

iv
e
/M

1

(b) g4
g5
g6

4 2 0 2 4
Vsd / mV

200

100

0

100

200

I d
riv

e
/n

A

(c)

4 2 0 2 4
Vsd / mV

150

100

50

0

50

100

150

I d
riv

e
/n

A

(d) g4
g5
g6

Figure S1: (a) Differential conductance of the drive wire / (c) drive current as a function of Vsd when there

is no potential barrier in the drive wire. (b) Differential conductance of the drive wire / (d) drive current as a

function of Vsd when a potential barrier is formed at either g4 (black curve), g5 (red curve) or g6 (blue curve)

in the drive wire.
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µV. Fig. S1c shows the drive current obtained from the data in Fig. S1a as explained above. The drive current

increases almost linearly as a function of Vsd. Fig. S1b shows the differential conductance of the drive wire when

a potential barrier is formed at g4 (black curve), g5 (red curve) and g6 (blue curve), respectively. Here the

absolute value of the differential conductance is limited by the potential barrier compared to the case without a

potential barrier (Fig. S1a) and a larger structure with a width of ∼ mV appears around zero bias. This larger

structure is considered to be associated with the enhanced subband energy gap around the potential barrier.

The drive current in this situation is plotted in Fig. S1d. The drive current shows non-linear dependence on

Vsd for Vsd & 2 mV. This non-linear dependence originates from the structure in Gdrive discussed above and

is considered to be associated with inter-subband scattering for Vsd above the subband energy gap around the

potential barrier.
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2 Gate voltage dependence of the differential drag conductance for dif-

ferent drive-wire widths

Here we investigate the gate voltage dependence of the differential drag conductance Gdrag at g2 for different

drive-wire-widths. The measurement configuration is basically same as the configuration employed to measure

the data plotted in Fig. 2a. However, the voltage on the gate gc is set to be slightly (50 mV) more positive,

where the two wires are still well separated but the width of the two wires become slightly wider. For this

measurement Vsd is fixed to 2 mV as for the case in Fig. 2a. To modify the width of the drive wire we change

the voltage on all the lower side gates at the same time between −0.3 V and −0.6 V. −0.3 V is the value used

for the measurements in the main paper. At this voltage the drive wire hosts 4 ∼ 5 conduction modes. When

the value is changed to −0.6 V, the number of the conduction modes is reduced to 2 ∼ 3. For the different

drive-wire-widths the absolute value of the differential drag conductance slightly changes but the main feature,

in particular the peak near the conductance pinch-off, is qualitatively the same. This result indicates that the

observed drag behaviour does not change for the variation of the drive-wire-width investigated here (hosting

between 2 ∼ 3 and 4 ∼ 5 conduction modes).
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Figure S2: Differential drag conductance as a function of the voltage (V2) on gate g2 for different drive-wire-

widths. Here we fix Vsd to 2 mV. To change the width of the drive wire we modified the voltage on all the lower

side gates at the same time between −0.3 V and −0.6 V. The correspondence between the colour of the Gdrag

data and the value of the lower side gates is indicated in the figure legend.
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3 Drag current in the asymmetric drag wire configuration with a potential

barrier in the drive wire

Here we perform the drag current measurement in three different device setups as indicated schematically

in Figs. S3a-c. The observed drag currents for the three setups are plotted in Fig. S3d. In setup C we simply

form a potential barrier at gates g3 and g6 and set the voltages near the pinch off showing a peak/dip in the

differential drag conductance for both gates (the values are also indicated by the dotted circle in Figs. 1c and

d in the main paper). We find a counterflow of electrons (see the black solid curve in Fig. S3d) as for the case

when the gates g2 and g5 are used as barriers (see the blue dash-dotted curve in Fig. 3b in the main paper).

Compared to setup C, in setup D we depolarise the gate on the right of gate g3 which in turn opens the right

side of the potential barrier in the drag wire to the reservoir. This suppresses the 1D channel region of the drag

wire to the right of the barrier gate g3. When Vsd is positive and electrons flow from the right to the left in the

drive wire, we observe a counterflow drag current (see magenta dashed curve in Fig S3d). On the other hand,

when Vsd is negative and electrons flow from the left to the right in the drive wire, the drag current is highly

suppressed and the counterflow behavior disappears. This result indicates that the main origin of the observed

drag current here is asymmetric about the potential barrier and depends on the asymmetry of the wire and the

sign of Vsd. The highly suppressed drag current underlines again that the effect of electron excitation is more

effective for a 1D quantum wire than for a 2D reservoir. We assign the small negative drag current for negative

Vsd to electron excitation by the drive current on the left of the potential barrier as in the case of Fig. 2c in the

main paper. In setup E, we reverse the situation and reduce the 1D channel region of the drag wire to the left

of the barrier gate g3. To implement this scenario we pinch off gate g2 and depolarise the gate on the left of

gate g3 in the drag wire. In this case, the drag current is suppressed for positive Vsd as expected. These results

give further evidence to support the scenario of asymmetric phonon-based energy transfer discussed in Ref. 12.
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Figure S3: (a - c) Schematic of the device-setup employed in the measurements of (d). Here potential barriers

are formed at g3 and g6. The value of the applied voltage is indicated by the dotted circle in Figs. 1c and d in

the main paper, respectively. (d) Drag current as a function of Vsd observed in the 3 device-setups depicted in

(a) - (c).
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