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Abstract: This paper presents an approach based on radio frequency identification (RFID) and ma-

chine learning for contamination sensing of food items and drinks such as soft drinks, alcohol, baby 

formula milk, etc. We employ sticker-type inkjet printed ultra-high-frequency (UHF) RFID tags for 

contamination sensing experimentation. The RFID tag antenna was mounted on pure as well as 

contaminated food products with known contaminant quantity. The received signal strength indi-

cator (RSSI), as well as the phase of the backscattered signal from the RFID tag mounted on the food 

item, are measured using the Tagformance Pro setup. We used a machine-learning algorithm 

XGBoost for further training of the model and improving the accuracy of sensing, which is about 

90%. Therefore, this research study paves a way for ubiquitous contamination/content sensing us-

ing RFID and machine learning technologies that can enlighten their users about the health concerns 

and safety of their food. 

Keywords: ultra-high-frequency (UHF); radio frequency identification (RFID); Internet of Things 

(IoT); machine learning; food contamination sensing 

 

1. Introduction 

The Internet of Things (IoT) and machine learning (ML) are reshaping our lives by 

providing numerous emerging applications ranging from healthcare, smart environ-

ments, smart sensing, etc. [1–7]. Moreover, short-range IoT technologies such as RFID are 

considered to be last-mile solutions in many applications such as inventory management, 

supply chain tracking, healthcare, waste management, and so forth [8–14]. The UHF RFID 

technology provides sensing benefits due to its inherent capability of noticing impedance 

variations with respect to the permittivity of background environments [15–19]. Moreo-

ver, the passive UHF RFID tag also provides a relatively long read range as compared to 

other competitors such as low frequency (LF) RFID and high frequency (HF) RFID. Addi-

tionally, the passive UHF RFID tags pose easily printable sticker-type structures, which 

helps their low-cost and bulk manufacturing [20,21]. 

Food contamination is one of the biggest issues among public health problems. More-

over, the spoilage and deterioration of food quality during storage is another challenge 

for both the food industry and environmental perspectives [22,23]. According to the world 

health organization (WHO) fact sheet, every year almost 600 million people fall ill after 
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eating contaminated food. Similarly, almost 0.42 million people die after eating contami-

nated food [24]. An RFID sensor was proposed for detecting the quality of food [25]. The 

quality and contamination of food were detected by measuring the read range due to var-

iation in permittivity of background food packets. However, this technique requires a pair 

of tags to be mounted at a fixed distance. A remote patient monitoring system has been 

proposed in [26] using RFID and ML for early detection of suicidal behavior in mental 

health facilities. A range of machine learning algorithms was tested and found that the 

Decision tree algorithm provides a better result as compared to random forest and 

XGBoost in this scenario. In [27], RFID and ML based techniques were used to detect the 

human presence and daily human activities. The proposed algorithms successfully 

demonstrated the accuracy of 96.7% in recognizing 24 different daily activities. The die-

lectric properties of organic aqueous liquids were tested with a range of different permit-

tivity values. The label-type RFID tag antenna was mounted to either a clear borosilicate 

glass bottle or Petri plate. Different solutions were tested solutions consist of high-relative 

permittivity (such as water) along with low permittivity, lossy liquids (such as xylene) 

having distinctive frequency characteristics with a read range of up to 7 m for each type 

of container. The proposed sensor was also able to detect ‘unknown’ solutions and deter-

mine the dielectric properties by utilizing standard curve analysis with an accuracy of 

±0.834 relative permittivity and ±0.050 S · m−1 conductivity. 

In [28], a human activity recognition system was proposed by combining passive 

RFID tags and a machine learning algorithm. A passive UHF RFID tag-based wall was 

designed for the activity recognition experiment. Moreover, a machine learning algorithm 

was implemented using a multivariate Gaussian algorithm for classification and predic-

tion of sampled activities. In this scenario, the multivariate Gaussian algorithm achieved 

better performance in terms of accuracy as compared with standard algorithms such as 

random forest, logistic regression, and support vector machine (SVM) classifiers. 

An idea regarding food quality sensing using RFID tags is presented in [29]. The au-

thors used RFIDs and USRP N210 software radios for food content sensing. This set uses 

two frequency excitation techniques for food quality sensing. The first frequency was uti-

lized for delivering the power in industrial, scientific, and medical (ISM) bands. The sec-

ond frequency was aimed to record the changes in RFID tag’s response mounted on liquid 

over a wideband (due to dielectric effects). Moreover, an algorithm was implemented in 

MATLAB for averaging 50 RFID responses for extracting amplitude and phase. In addi-

tion to this, another XGBoost algorithm was implemented in python for gradient boosting 

tree classifiers. This experiment was tested for alcohol tainting and baby formula adulter-

ation with an accuracy of 96%. Although, this experiment provides good accuracy with a 

difference of 25% approximately 10 grams’ addition each time in sample. Therefore, the 

sample having in between values was not tested. Additionally, this setup is very expen-

sive and can be used for a commercial solution. 

Therefore, this paper provides a simple approach that only requires a small 

handheld. 

RFID reader for measuring backscatter power from tagged food samples in terms of 

RSSI. The proposed technique employs sticker-type inkjet printed RFID tags and a ma-

chine learning algorithm for food contamination sensing and accuracy improvements. 

The received signal strength indicator (RSSI), as well as phase of the backscattered signal 

from RFID tag mounted on a food item, are measured using Tagformance Pro setup. The 

normal spring water was taken as a food sample. A known amount of salt and sugar 

quantity was deliberately added to water and mixed evenly. The food contamination/con-

tents were sensed with an accuracy of 90%. We used the XGBoost algorithm for further 

training of the model and improving the accuracy of sensing, which is about 90%. There-

fore, this research study paves a way for ubiquitous contamination sensing using RFID 

and machine learning technologies that can enlighten their users about the health con-

cerns and safety of their food. 
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2. Proposed Methodology for Sensing Contamination 

Figure 1 shows the proposed system for food contamination detection using UHF 

RFID tags and machine learning. For food contamination sensing proposes, the RFID 

reader is placed at a fixed distance ‘R’ from the food item to be sensed. A UHF RFID tag 

antenna is mounted on each food item such as designed in [30]. The backscattered power 

from pure food items and contaminated food items will be compared and the data would 

be given as input to the machine learning algorithm. The machine learning algorithm 

trains its self and improves food contamination sensing. 

 

Figure 1. Proposed system for food contamination sensing using RFID and machine learning. 

Figure 2 illustrates the methodology for food contamination sensing using UHF RFID 

tags. Let “c” represents the quantity of substance added as a contaminant in a pure sub-

stance. Moreover, the known parameters of reader setup such as transmitted power 

transmitP  and reader antenna gain 
er aderG  would help to calculate receivedP  by the tag an-

tenna. Accordingly, the equations presented in [20,30,31] can be modified as follows: 

2
e

2
[ ]

4 4




 
 transmit r ader

received Tag polarization

P G
P G c

R
  (1)

where [ ]TagG c  is the associated gain of tag antenna with respect to the quantity of con-

taminant substance contents c. Moreover, polarization  represents a polarization mismatch 

between the tag and reader antenna, which will be equal to 1 in our case as both tag and 

reader antenna are aligned. 

 

Figure 2. Methodology for food contamination sensing using UHF RFID technology. 

The power extracted by RFID chip from tag antenna can be expressed as follow: 
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where [ ] c  measures the impedance mismatch between RFID chip and tag, also known 

as power transmission coefficient: 

2

4 [ ]
[ ]

[ ]
 



chip Tag

chip Tag

R R c
c

Z Z c
  (3)

The tag and chip impedance associated with contaminant quantity are 

[ ] [ ] [ ] Tag Tag TagZ c R c jX c  and  chip chip chipZ R jX , respectively. 

Therefore, the backscatter power from the tag can be expressed as: 

2
2e

2
[ ] [ ] ( )

4 4




 
    transmit r ader

backscatter Tag polarization Tag m

P G
P G c G c c

R
  (4)

where ( )m c reflection coefficient of tag and is related to power transmission coefficient 

as 
2

[ ] 1 ( )   mc c . 

Accordingly, the received signal strength indicator (RSSI) extracted by the RFID 

reader from backscatter power is represented as: 

2

e2

1
[ ] * *

4 4



 
RSSI r ader backscatterP c G P

d
  (5)
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RSSI r ader Tag polarization Tag m
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where 

2
22[ ] [ ] ( )

4




  Tag Tag mrcs c G c c  can be represented as radar cross-section of 

the tag antenna. 

2

2 2
e

1
[ ] [ ]

4 4




 

 
  

 
RSSI transmit r ader Tag polarizationP c P G rcs c

R
  (7)

The quantity of contaminant ‘c’ can be sensed by comparing the [ ]RSSIP c  and pure 

food item RSSIP . Similarly, the different quantity of contaminant ‘c1′ and also be sensed 

by comparing [ ]RSSIP c  and [ 1]RSSIP c . 

3. Experimental Setup 

Figure 3 shows the experimental system includes Tagformace Pro setup from voy-

antic company(Espoo, Finland) [32,33] and water bottles samples having a different quan-

tity of salt and sugar. The Tagformance Pro includes a transceiver unit, a 6 dBi linearly 

polarized antenna, and a foam spacer. The transceiver unit was attached to a computer 

system with a pre-installed Tagformance software setup that helps to record different 

RFID tag’s performance parameters such as read range, backscatter power, and RSSI. The 

Tagformance setup uses Frii’s formula as described by (1) for calculating RSSI and theo-

retical read range. The RSSI or read range was determined for known fixed distance, 

which is kept fixed by a foam spacer. The water samples are placed 30 cm apart using a 

foam spacer and the corresponding RSSI was recorded. The tag antenna was mounted on 
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each sample as described in the subset of Figure 3. The Tagformance Pro setup also uses 

a similar principle as described in the previous section for RSSI measurement. 

 

Figure 3. Tagformance Pro based setup for food contamination sensing. 

A frequency sweep was run from 860 to 960 MHz and the corresponding RSSI asso-

ciated with tag antenna mounted on a particular food sample was recorded by Tag-

formance Pro software. The Tagformance also uses a similar principle as described in the 

previous section for RSSI measurement. The 500 mL water sample packed in a PET bottle 

(with relative permittivity ϵr = 3.4) was used for experiment proposes. We prepared 84 

samples in total, with half of the samples for salt and half for sugar contamination detec-

tion. 

4. Results and Discussion 

In experimental testing, the Tagformance Pro setup and 500 mL water-filled plastic 

bottle were used. This experiment can be done by any RFID reader, which has RSSI col-

lecting features. Most handheld RFID readers from other manufacturers also have similar 

RSSI collecting features. However, for accuracy and benchmarking, the Tagformance 

setup was used for recording RSSI over a complete RFID band ranging from 860 MHz to 

960 MHz. We solved different quantities of salt and sugar contents separately and pre-

pared different samples with the same quantity of contaminant for robustness. The salt 

contents were mixed evenly in water and each sample was tagged using RFID tag antenna 

[20]. Figure 4 represents the corresponding RSSI values associated with different quanti-

ties of salt added as a contaminant as well as RSSI value associated with pure water. It can 

be observed, the RSSI value decreases as the quantity of salt increases. This is because 

increasing the salt content increases the conductivity of water. Hence, the corresponding 

RSSI value decreases as salt content increases. The value of RSSI at 915 MHz was taken 

into consideration for comparison proposes. The RSSI value associated with simple water 

is around −51 dBm. Moreover, the value of RSSI for 2, 4, 6, 8, and 10 g of salt contents were 

−52, −53.4, −53.7, −54.5, and −55 dBm, respectively. 

Similarly, the corresponding RSSI values associated with different quantities of sugar 

added as a contaminant as well as RSSI values associated with pure water are illustrated 

in Figure 5. It can be observed, the RSSI value decreases as the number of sugar contents 

increases. This is because increasing the sugar contents produces a variation in the per-

mittivity of water. Therefore, the corresponding RSSI value decreases as sugar content 

increases. The value of RSSI at 915 MHz was taken into consideration for comparison pro-

poses. The RSSI value associated with simple water is around −51 dBm. Moreover, the 

value of RSSI for 2, 4, 6, 8, and 10 g of sugar were −52 dBm, −52.25 dBm, −52.7 dBm, −53 

dBm, and −53.5 dBm, respectively. The change in RSSI value associated with salt contents 

is more obvious as compared with sugar contents. 
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Figure 4. Measured RSSI using Tagformance setup with different quantities of salt as a contaminant. 

 

Figure 5. Measured RSSI using Tagformance setup with different quantities of sugar as a contami-

nant. 

This paper proposes a simple approach, which requires a small handheld RFID 

reader for measuring backscatter power from tagged food samples in terms of RSSI. The 

proposed technique uses sticker-like inkjet printed RFID tags for food contamination sens-

ing. Moreover, this work includes the application of a machine learning algorithm on 

RFID sensors data for accuracy improvements. The received signal strength indicator 

(RSSI), as well as the phase of the backscattered signal from the RFID tag mounted on a 

food item, are measured using Tagformance Pro setup. The normal spring water was 

taken as a food sample. A known amount of salt and sugar quantity was deliberately 

added to water and mixed evenly. The food contamination/contents were sensed with an 

accuracy of 90%. To keep the setup commercially deployable, a handheld UHF RFID 

reader-based setup connected with smartphone having an android app was used for food 

contamination sensing as shown in Figure 6. The RFID reader has a size of 135 × 75 × 32 

mm3 with 10,000 mAh battery that lasts after 16 working hours. The food sample was 

placed 30 cm apart using the foam spacer. The RFID reader was connected to a 
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smartphone using Bluetooth low energy (BLE) [34,35], that has preinstalled app associated 

with this reader setup to show the tag’s Electronic Product Code (EPC) [36] value, as well 

as RSSI of the tag, mounted on the food item. 

Tagged food sample
Foam Space 

(for fixed distance)
Handheld RFID 

reader 
Mobile phone App

Bluetooth low 
energy 

 

Figure 6. Handheld reader based setup connected with smart phone for food contamination sensing. 

The RSSI data collected using Tagformance pro setup was exploited for machine 

learning algorithm in order to better food contamination section accuracy. The python 

program was used for the implementation of XGBoost algorithm [37]. The reason behind 

the use of XGBoost algorithm is its scalability feature, which enables it to use less memory 

by utilizing distributive computing and parallel data. XGBoost uses bagging and boosting 

technique. For any dataset having n instances and m attributes, the explanatory variables 

such as sensor RSSI data can be defined as si = (si1, si2, si3, …, sim). We can also define objec-

tive variable as ci, i = 1, 2, 3, …, n. 

Now, the output of decision tree can be represented as 
( )ˆ t
ic , The error 

(1)
i  between 

objective function 
( )ˆ t
ic  and first decision tree output can be represented as 

(1) (1)ˆ
i i ic c     (8)

The kth decision tree can be described as fk. So, the predicted value after K time boost-

ing can be shown as: 

1
ˆ ( )

K

i k ik
c f s


    (9)

The final target is to minimize the objective function ( ) , which is based on loss 

function ( ˆ( , )i il c c ). 

1 1 )ˆ( , )( ) (I K
i ki kil c c f        

where 
21

( )
2

kf T w     is penalize function. 

First of all, we prepared the samples by adding different amounts of salt concentra-

tions. The first set was pure water without any addition of extra salt. The rest of the sam-

ples contain 2, 4, 6, 8, and 10 g salt. For data collection, we utilized 500 mL water bottles 

and 7 samples were used for each salt concentration to validate the robustness of the so-

lution. 

Therefore, 42 samples were used in total with salt contaminating detection. Figure 7a 

illustrates the results as confusion a matrix for detection of salt contamination. The differ-

ent columns represent the predicted samples successfully recognized by the algorithm, 
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while the rows represent the actual samples. It can be seen from Figure 7a, the proposed 

system can classify the different concentrations of salt contents with an average accuracy 

of 92% due to error in adjacent classes. Therefore, the proposed can be used to classify the 

contamination of salt contents. Similarly, we prepared the 42 samples by adding different 

concertation of sugar in water. The first class was pure water without adding additional 

sugar, while the rest of the samples contains 2, 4, 6, 8, and 10 g of sugar contamination. 

The result of sugar contamination detection is shown as a confusion matrix in Figure 7b. 

The rows and columns represent the actual and predicted sample, respectively. Therefore, 

the proposed system can also successfully classify different concentrations of sugar con-

taminants. However, the average accuracy of sugar detection is about 90% with more false 

detection in adjacent samples. So, the proposed system shows a potential towards the 

classification of the food contents as well as contamination detection. 
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(a)        (b) 

Figure 7. Confusion matrix for detection of food contamination detection (different columns repre-

sent the predicted samples while the rows represent the actual samples). (a) Salt as contaminant; (b) 

sugar as contaminant. 

5. Conclusions 

This paper provides a simple approach that only requires a small handheld RFID 

reader for measuring backscatter power from tagged food samples in terms of RSSI. The 

proposed technique employs sticker-type inkjet printed RFID tags and a machine learning 

algorithm for food contamination sensing and accuracy improvements. The received sig-

nal strength indicator (RSSI), as well as the phase of the backscattered signal from the 

RFID tag mounted on the food item, are measured using the Tagformance Pro setup. The 

normal spring water was taken as a food sample. A known amount of salt and sugar 

quantity was deliberately added to water and mixed evenly. The food contamination/con-

tents were sensed with an accuracy of 90%. 

We used the machine learning XGBoost algorithm that was implemented in python 

for further training of the model and improving the accuracy of sensing, which is about 

90%. Therefore, this research study paves a way for ubiquitous contamination sensing 

using RFID and machine learning technologies that can enlighten their users about the 

health concerns and safety of their food. Moreover, this research also provides sufficient 

information regarding food spoilage and saves a lot of food waste. 
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