
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

This is the peer reviewed version of the following article:

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

http://eprints.gla.ac.uk/257901/

Deposited on: 2 November 2021

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk
Title: Controlling Selectivity in the Synthesis of Z-α,β-Unsaturated Amidines by Tuning the N-Sulfonyl Group in a Rhodium(II) Catalyzed 1,2–H Shift

Authors: Matthew L Martin and Alistair Boyer

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Eur. J. Org. Chem. 10.1002/ejoc.202101235

Link to VoR: https://doi.org/10.1002/ejoc.202101235
Controlling Selectivity in the Synthesis of Z-α,β-Unsaturated Amidines by Tuning the N-Sulfonyl Group in a Rhodium(II) Catalyzed 1,2–H Shift

Matthew L. Martin,[a] and Alistair Boyer*[a]

Abstract: N-Sulfonyl-α-diazo amidines can be synthesized by the reaction of electron rich alkynyl amines with electron poor sulfonyl azides through 1,3-dipolar cycloadditions that proceed with perfect regioselectivity. In the presence of rhodium(II) carboxylate catalysts denitrogenation occurs to give the corresponding metallocarbenes. Then, there is a competition between 1,2–H shift and O-transfer from the sulfonyl group to the metallocarbene center. Using an electron poor nitrobenzenesulfonyl group and large carboxylate rhodium ligands gives complete selectivity for 1,2–H shift, forming α,β-unsaturated amidines in high yield and excellent Z-selectivity.

Introduction

Reactions that exploit high energy intermediates are attractive because they can result in the rapid generation of complex molecules.[1] Rhodium carbenes, readily formed by denitrogenation of diazo starting materials, are an excellent embodiment of this strategy, providing highly interesting and useful reactivity.[2] However, along with the benefits of using reactive species comes the substantial challenge of control. Once generated, a highly reactive species is poised to react with something and, when this is not the intended target, it can be solvent or result in intramolecular processes. Therefore, careful study of carbene reactivity is not only fascinating but also essential to maximize the value and scope of each transformation. Chemists have deployed various elements of control including tuning rhodium through its ligands,[3] varying reaction conditions, using additives and varying protecting / directing groups. As a result, rhodium carbenes can provide a wide range of value-added products,[3] and this has been showcased in the context of complex molecule synthesis[4] and within biological systems.[5]

In addition to the performance of a reaction itself, the accessibility of the substrate is a key factor in determining overall value of a process. Diazo starting materials for metallocarbenes formation can be derived in number of ways,[6] including Dimroth[7] equilibration of 1-sulfonyl-1,2,3-triazoles. The use of triazoles as carbene precursors is a recent development that exemplifies the synergy between easy substrate synthesis and valuable reactivity.[8,9] The base cycloaddition between an alkyne and an azide to make a triazole is slow and unselective[10] but approaches have been exploited to improve reaction speed and selectivity: chiefly this involves the use of a catalyst,[11] but reacting partners can also be selected for a better electronic match. By tuning the electronic properties of the substrates, a close HOMO-LUMO energy results in rapid and selective reaction.[12] This approach to α-diazo amidines was widely explored by Regitz, Himbert[13] and Harmon (1 + 2 → 3, Scheme 1);[14] and Fokin[15] capitalised this approach to explore the amidines’ reactivity[16] in styrene cyclopropanation. However, instead of intermolecular reaction, internal O-transfer reaction occurred resulting in sulfur(VI) reduction and the preparation of α-keto sulfanyl amidines 4. Following optimization, the sulfur(VI) reduction process could be made high-yielding and asymmetric by the use of appropriate chiral rhodium catalysts.

Unsaturation is a key molecular component that has inspired synthetic chemists for over a century, with an alkene adding a defining geometric element to a molecule or providing a functional handle.[17] Therefore, new methods to create alkenes with high levels of control are valuable. Metallocarbenes with an α-hydrogen atom can undergo 1,2–H shift to form alkenes (6 → 7, Scheme 1). This can be an excellent approach to the preparation of alkenes because the range of catalysts available allows careful tuning of reactivity and selectivity.[18][19][20][21]

Scheme 1. Preparation and reactivity of 5-aza-1-sulfonyl-1,2,3-triazoles 3 and 1,2-shifts in α-diazocarbonyl species 6.

[a] Matthew L. Martin and Dr. Alistair Boyer
School of Chemistry
University of Glasgow
Joseph Black Building, Glasgow, G12 8QQ
E-mail: alistair@boyer-research.com
www.boyer-research.com

Supporting information for this article is given via a link at the end of the document.
Here, we report the synthesis of an extended range of α-diazo amidines and describe a method of controlled synthesis of valuable Z-alkenes from these diazo compounds under rhodium(II) catalysis (3 → 5, Scheme 1). The key feature of this work was tuning the electronics of the N-sulfonyl group to control the reactivity of the system and suppress the O-transfer process. The products of this work represent novel members of the valuable sulfonyl amidine family of bioactive compounds.\[22\]

Results and Discussion

For this study, a range of 5-amino-1-sulfonyl triazoles 3 / α-diazo-N²-sulfonyl amidines 3’ were synthesized by the cycloaddition between electron poor sulfonyl azides 1 and electron rich alkynyl amines 2 (Scheme 2). Alkynyl amines are highly reactive and unstable, so they were prepared by one of two different methods and used in situ immediately for cycloaddition. Following the research of Regitz, Himbert[13] and Harmon[14] trichloroenamines 8 (available from trichloroacetamides following treatment with tributyl phosphine[20]) were treated with 2.0 equivalents of n-butyl lithium at -10 °C to promote elimination and lithiation and form the corresponding alkynyl lithium species 11. Then an electrophile, such as allyl bromide, was added to the reaction mixture with N,N-dimethylpropyleneurea (DMPU) and the reaction was heated to reflux to promote formation of a new C–C bond and complete the generation of the key alkynyl 2. The electron-rich alkynyl 2 was cooled to 0 °C and the sulfonyl azide 1 was added. Cycloaddition of the azide with the alkynyl occurred rapidly, even at this low temperature, to give the cycloadducts in good yield after only 1 hour. For cyclic substrates: pyrrolidine and piperidine, this method was not successful owing to extreme instability of the intermediates so an alternative method was used.\[24\] A lithium amide generated from the amine 9 was added dropwise to trichloroethylene 10 followed by the addition of more nBuLi to form the alkynyl lithium species 11 that intersected the above method and went on to deliver the analogous products. Throughout all the reactions studied, complete regioselectivity was observed in the cycloaddition, giving only the products described with no evidence of the isomeric product. Importantly, the presence of the highly electron donating 5-amino substituent combined with the highly electron-withdrawing N-sulfonyl substituent meant that the triazole

Table 1. Optimising for the 1,2-H shift.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar</th>
<th>R</th>
<th>Catalyst (5 mol %)</th>
<th>t (min)</th>
<th>5</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p-Tol</td>
<td>C₂H₅</td>
<td>Rh₂(OAc)₄</td>
<td>60</td>
<td>45</td>
<td>15</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>p-Tol</td>
<td>C₂H₅</td>
<td>Rh₂(esp)</td>
<td>60</td>
<td>21</td>
<td>39</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>p-Tol</td>
<td>C₂H₅</td>
<td>Rh₂(TPA)</td>
<td>60</td>
<td>53*</td>
<td>16*</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>p-Tol</td>
<td>C₂H₅</td>
<td>Rh₂(esp)</td>
<td>60</td>
<td>31</td>
<td>34</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>p-NO₂C₆H₄</td>
<td>C₂H₅</td>
<td>Rh₂(OAc)₄</td>
<td>15</td>
<td>37</td>
<td><5</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>p-NO₂C₆H₄</td>
<td>C₂H₅</td>
<td>Rh₂(esp)</td>
<td>15</td>
<td>50</td>
<td><5</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>p-NO₂C₆H₄</td>
<td>C₂H₅</td>
<td>Rh₂(TPA)</td>
<td>15</td>
<td>91*</td>
<td><5</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>p-NO₂C₆H₄</td>
<td>C₂H₅</td>
<td>Rh₂(esp)</td>
<td>15</td>
<td>61</td>
<td><5</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>p-NO₂C₆H₄</td>
<td>nPr</td>
<td>Rh₂(TPA)</td>
<td>60</td>
<td>>98</td>
<td>–</td>
<td><5</td>
</tr>
<tr>
<td>10</td>
<td>p-NO₂C₆H₄</td>
<td>Ph</td>
<td>Rh₂(TPA)</td>
<td>60</td>
<td>51</td>
<td>–</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>p-NO₂C₆H₄</td>
<td>Ph</td>
<td>Rh₂(OAc)₄</td>
<td>60</td>
<td>20</td>
<td>–</td>
<td>52</td>
</tr>
<tr>
<td>12</td>
<td>p-NO₂C₆H₄</td>
<td>Ph</td>
<td>Rh₂(esp)</td>
<td>60</td>
<td>41</td>
<td>–</td>
<td>36</td>
</tr>
<tr>
<td>13</td>
<td>p-NO₂C₆H₄</td>
<td>Ph</td>
<td>Rh₂(esp)</td>
<td>60</td>
<td>71</td>
<td>–</td>
<td><5</td>
</tr>
<tr>
<td>14</td>
<td>p-NO₂C₆H₄</td>
<td>Ph</td>
<td>Rh₂(S-PTTL)</td>
<td>60</td>
<td>85*</td>
<td>–</td>
<td><5</td>
</tr>
</tbody>
</table>

Conditions: 0.2 m in CH₂Cl₂, room temperature; [a] Isolated yield.

Figure 1. Rhodium(II) catalysts used in this study. One representative carboxylate ligand is shown in each case.
products significantly populated the α-diazoamidine form 3 of the Dimroth equilibrium. This was suggested by a characteristic bright yellow color and confirmed by the presence of a strong diazo asymmetric stretch in the IR spectra of the compounds. The difference in electronic nature of the substituents on the position of the Dimroth equilibrium was evidenced in toluenesulfonyl (tosyl, Ts) vs 4-nitrobenzenesulfonyl (nosyl, Na) substituted products: the nosyl-substituted product existed entirely in its diazo form 3 whereas the tosyl-substituted one had a 55:45 ratio (3′:3). When the diazo N′-tosylamidine substrate was treated with rhodium(II) acetate at ambient temperature, it was consumed within 1 hour resulting in the formation of two compounds (Table 1, entry 1). The first product was a highly unsaturated product 5 that was formed with exclusive Z-selectivity. The second product was a ketone 12 resulting from intramolecular oxygen atom transfer from the sulfur to the carbene position followed by isomerisation of the β,y-unsaturation into conjugation with the new ketone. The rhodium-catalyzed intramolecular oxygen atom transfer within N′-sulfonyl α-diazoamidines is an established mode of reactivity[16] including for the enantioselective synthesis of N′-sulfinyl amidines reported by Fokin et al.[17] The effect of a variety of rhodium(II) carboxylates (Figure 1) was studied (entries 1–4) but none showed significant ability to tune the reaction outcome between product families. The key factor in gaining control of the reaction was to consider the electronics of the sulfonyl group. The O-transfer does not occur in N′-sulfonyl imines derived from triazoles with carbon or hydrogen substituents. The sulfur atom of N′-sulfonyl amides is more electron rich than its N′-sulfonyl imine counterparts because of the additional conjugated nitrogen lone pair. The increase in electron density at sulfur resulted in a weaker sulfur-oxygen double bond and enabled the transfer of oxygen.[18] In order to suppress oxygen transfer, it was reasoned that switching from tosyl to the more electron-poor nosyl group would increase the S=O bond strength and reduce the propensity for oxygen transfer. Indeed, the use of Nos precluded oxygen transfer completely in the catalysts evaluated in the benchmark substrate (entries 5–8) as well as accelerating the reaction in general, reducing the time for consumption of starting material to as low as 15 min. Overall, the rhodium carboxylate Rhמז(TPA)ע (entry 7) with its large ligand size, was selected as the optimum catalyst giving the diene product in 91% yield.

In the more saturated analogue with an alkyl chain included (n-propyl, entry 9), the conditions held effective and the Z-alkene was also formed in good yield. However, when the substrate scope was extended to a benzyl group, the selectivity for the alkene product (13) became an issue once again (entry 12). A rescreen of catalysts showed that the Rhמז(esp)ו[25] or Rhמז(S·PTTL)ו[26] ligands could deliver excellent selectivity for the Z-alkene product in excellent yield and selectivity (71 and 85%, entries 13 and 14).

The conditions optimized for the allylic N,N′-diethyl substrate were evaluated against a panel of other amine substrates (Figure 2). Simple linear alkyl amine substituents all gave the Z-alkene products in excellent yield (5a–d). When the size of the alkyl substituent was increased, the reaction slowed such that disobutylamine substrate 5e required an extended time for the reaction to proceed to completion. It is important to note that leaving the reaction for a longer period was preferable to acceleration of the reaction through heating because at 110 °C the E-alkene product was also observed. There was no significant drop in yield when switching to a single N′-benzyl substituent (5f) but there was a significant drop when the N′,N′-dibenzylic substrate was examined (5g). The N′-benzyl substrates could be heated to promote reaction without isomerisation of the alkene products. Cyclic amines also performed excellently under the reaction conditions (5h–j), although there was reduction in yield for the N′-benzylcyclic tetrahydroisoquinoline substrate (5k). The conditions for the allylic substrate could be directly applied to alkyl substrates giving the Z-alkene products 5l–m with good yield and selectivity. As described during the optimisation, the appearance of some O-transfer in the benzyl substrate (5o) necessitated the use of the Rhמז(S·PTTL)ו catalyst and these conditions also worked well for the larger naphthyl aromatic group (5p).

Figure 2. Alkenes accessed through Rh(II) catalyzed denitrogenation and 1,2-H shift. Conditions: 5 mol % RhמזTPAע, CH2Cl2, 0.2 M, a) 7 days; b) 60 °C (CH2Cl2); c) 5 mol % Rhמז(S·PTTL)ו.

The less-substituted methyl substrate 3q resulted in only O-transfer (13q) under the conditions attempted using rhodium(II) catalysts (Scheme 3). It is proposed that this was a result of the increased C-H bond strength of the CH3 group vs alkyl, allylic or benzyl groups,[20] slowing the rate of 1,2-H shift such that the O-transfer was the only viable pathway. Switching to a palladium catalyst[27] was able to overturn the selectivity and the 1,2-H shift
Experimental Section

Representative procedure for rhodium(II) catalyzed 1,2-H shift to form sulfonyl amidine 5a. Full details, including starting material synthesis procedures for all examples shown and supporting spectra can be found in the Supporting Information.

Acknowledgements

AB is a Royal Society TATA Research Fellow and MLM acknowledges the University of Glasgow for a PhD studentship.

Keywords: Amidine • C–H Shift • Carbenes • Diazo compounds • Rhodium

α,β-Unsaturated amidines can be synthesized in high yield by rhodium(II) carboxylate catalyzed 1,2–H shift following denitrogenation of α-diazo amidines. Using a large carboxylate rhodium(II) ligand and an electron-poor N-sulfonyl group results in exclusive Z-selectivity and excellent yield by suppressing side reactions involving intramolecular oxygen transfer.