

Gordon, R., Worrall, K. and Ceriotti, M. (2021) Attitude Control of a Nanosatellite
using Inverse Simulation. In: 72nd International Astronautical Congress 2021, Dubai,
United Arab Emirates, 25-29 Oct 2021.

https://dl.iafastro.directory/event/IAC-2021/paper/64025/

Manuscript presented at the 72nd International Astronautical Congress 2021, Dubai,
United Arab Emirates, 25-29 Oct 2021. Copyright by IAF

http://eprints.gla.ac.uk/257797/

Deposited on: 27 October 2021

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

https://dl.iafastro.directory/event/IAC-2021/paper/64025/
http://eprints.gla.ac.uk/257797/
http://eprints.gla.ac.uk/

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by Mr. Robert Gordon. Published by the IAF, with permission and released to the IAF to publish in all forms

IAC-21,C1,8,12,x64025

Attitude Control of a Nanosatellite using Inverse Simulation

Robert Gordon a, Kevin Worrall b, Matteo Ceriotti c

a James Watt School of Engineering, University of Glasgow, r.gordon.5@research.gla.ac.uk
b James Watt School of Engineering, University of Glasgow, kevin.worrall@glasgow.ac.uk
c James Watt School of Engineering, University of Glasgow, matteo.ceriotti@glasgow.ac.uk

Abstract
Modern nanosatellites are being utilised more widely for missions that require high pointing accuracy of

their instrumentation. Therefore, attitude control methods that can ensure pointing requirements are always
met are needed. This paper explores the feasibility, performance and practicality of applying existing Inverse
Simulation (InvSim) techniques to the attitude control problem. A series of different attitude manoeuvres
are used to show the versatility of InvSim. Specific scenarios of an inertial pointing and spin-axis pointing
rigid body 3U nanosatellite, with four reaction wheel actuators, are investigated. Performance of the
InvSim controller is compared to Proportional-Integral-Derivative (PID) control through consideration of
the pointing error, peak actuator power and total actuator energy of the attitude manoeuvres. InvSim is
successfully implemented as an attitude controller, with comparable performance to traditional PID control
in most cases, and performing better in the presence of higher nonlinear dynamics. In addition, two specific
use cases are explored to show the superior practicality and versatility of InvSim, and its possible use as a
design tool/aid.

Nomenclature
u Control vector
) Control timestep
y Controlled states vector
y3 Desired controlled states vector
81 Body rate vector
J1 Body inertia matrix
30 Equivalent actuator torque
hF Reaction wheel momentum vector
¤hF Reaction wheel torque vector
AF Reaction wheel actuator distribution matrix
ŵ< Reaction wheel unit vector
)F Reaction wheel time constant
Dsat Control torque saturation
ℎF,sat Reaction wheel momentum saturation
q, \, k Euler angles
AIHG Attitude matrix
F 1 , F 8 Body and inertial reference frames
& Controlled states error
J= Jacobian
< Number of controls
? Number of controlled states
Δu Control perturbation vector
ΔDmin Minimum control perturbation
& tol Tolerance of Newton-Raphson loop
3C Integration timestep
Pwps Matrix of desired trajectory way-points
Cmove Time-to-move

Chold Time-to-hold
lspin Spin-axis spin rate
� (B) PID control law
� (B) Plant
 ? , 8 , 3 PID controller gains
q Quaternion
on Pointing error
% Actuator power
�total Total actuator energy

1. Introduction
The advent of nano and pico satellites has allowed for

greater and more affordable access to space [1]. These
small satellite platforms are being more widely used for
complex missions using a variety of instrumentation, tradi-
tionally reserved for larger satellites [2, 3]. In many cases,
these instruments have restrictive pointing requirements
to adequately perform their tasks, making the need for
accurate, stable and efficient attitude control methods of
high importance.

Traditional attitude controlmethods such as Proportional-
Integral-Derivative (PID) control allow for a stable, accu-
rate solution to be found through linearisation and tuning
of gains around a steady-state condition. This solution
can perform well while operating close to the linearisation
point [4]. However, if the mission requirements requires
diverging significantly from the steady-state condition then

IAC-21,C1,8,12,x64025 Page 1 of 15

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by Mr. Robert Gordon. Published by the IAF, with permission and released to the IAF to publish in all forms

Fig. 1 Forward simulation

Fig. 2 Inverse simulation controller

re-tuning or gain scheduling may be required [5]. Addi-
tionally a PID controller is “unintelligent”, meaning that
it will always attempt to follow the commanded attitude
even if it is unrealisable due to system dynamics or actu-
ator saturation. In cases where pointing of nanosatellite
instrumentation is mission critical and needs to be ensured,
such an “unintelligent” approach may not be sufficient.
Inverse simulation (InvSim), which is proposed in this
work, provides an alternative “intelligent” solution that can
ensure pointing constraints are met throughout an attitude
slew manoeuvre.

Conventional forward simulations map a set of input
controls u to a set of corresponding output controlled
states y through integration of a mathematical model. This
forward simulation, as seen in fig. 1, allows for detailed
study and analysis of the dynamics of a system when
subjected to a time-series of inputs/controls.

Inverse Simulation (InvSim) conversely maps the con-
trolled states y to corresponding inputs controls u. This
allows for a time-series of desired controlled states y3
to be mapped to the required inputs u needed to achieve
those controlled states. When placed into the configuration
shown in fig. 2, InvSim can be used as an offline, open-loop
controller that will produce the required controls to follow
a trajectory defined by the time-series y3 (C).

InvSim techniques have already been widely utilised
within research fields such as rotorcraft [6–10] and fixed-
wing aircraft [11–14]. There has been limited use of
InvSim within the space field such as applications in the
control of a four-wheeled planetary rover [15, 16] and
orbital rendezvous and docking [17]. There are two main
methodologies for InvSim: the Differential method and the
Integral method.

The differential method was the first to be proposed and
is primarily an analytical approach involving converting the
differential equations into a series of algebraic equations
that can be reduced and solved iteratively. This however is
model-specific, with knowledge of the plant being key to
the derivation of the solution. Unique solutions have been
developed previously for vehicles such as fixedwing aircraft
[12] and helicopters [6], however no general differential
solution exists. The solution process also makes use of

numerical time differentiation which is known throughout
literature to suffer from poor accuracy and instability [18].

A new InvSim method was first posed by Hess and
Gao in the early 1990’s [7, 8, 14] based on numerical
integration methods known to be highly accurate and
stable. The integral method, as it became known, allowed
for a general solution to be formed, not requiring any
inside knowledge into the plant, therefore working with
a black box model. This method does however require
substantially greater computation power when compared
to its differential counterpart [19]. This makes the integral
method less suitable for online real-time deployment as
substantial computational power would be required on
the nanosatellite’s hardware. Instead the solution can be
calculated beforehand and then executed by the vehicle
to perform the desired manoeuvre. The general integral
method is now the most common method due to its ease
of implementation, versatility and stable solution. This
will be the methodology implemented in the design of the
attitude controller detailed in this paper.

This paper will investigate the feasibility and perfor-
mance of InvSim as an attitude control method for inertial
and spin-axis pointing of a nanosatellite. The paper will
model the nanosatellite as a rigid body, with purely nu-
merical simulations being used as a proof of concept.
Additionally, it is assumed that perfect modelling of the
nanosatellite is possible and that no parametric or non-
parametric uncertainties exist.

The rest of this paper is organised as follows: section 2
will outline the rigid body mathematical model used to
test the InvSim attitude controller. The integral InvSim
algorithm used to develop the attitude controller is fully
described in section 3. Section 4 describes two scenarios
and a variety attitude paths used to test the validity and
performance of the InvSim controller. Two PID controllers,
one for each scenario, are developed in section 5.1 to
allow for comparisons in performance and practicality to
be made to the InvSim controller developed. The specific
quantitative metrics used to draw comparisons between
the InvSim and PID controllers are defined in section 5.2.
The results and discussion follows in section 6 which
includes the performance, feasibility and practicality of

IAC-21,C1,8,12,x64025 Page 2 of 15

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by Mr. Robert Gordon. Published by the IAF, with permission and released to the IAF to publish in all forms

using each controller design. Finally section 7 summarises
the conclusions of the paper.

2. Mathematical Model
The nanosatellite is represented as a rigid body, equipped

with a set of < reaction-wheel actuators, and modelled
through the following equations of motion:

381

3C
= J−11 [30 − 81 × (J181)] (1)

30 = −AF
¤hF − 81 × (AF hF) (2)

AF = [ŵ1ŵ2 · · · ŵ<] (3)

3 ¤hF

3C
=

u − ¤hF

)F
(4)

|u | < Dsat, |hF | < ℎF,sat (5)

The Euler rotational equation (eq. (1)) gives the time
derivative of the body rates, 81, defined within the body
axis set F 1 and relative to the inertial frame F 8 . J1 is
the inertia tensor of the rigid-body nanosatellite and 30 is
the effective actuator torque supplied by the set of reaction
wheels, as defined in eq. (2). The reaction wheel torque
¤hF , and angular momenta hF of each wheel are mapped
to the body axis through the actuator distribution matrix
AF . The actuator distribution matrix (eq. (3)) is comprised
of < number of unit column vectors ŵ1, ŵ2, . . . ŵ< each
pointing along the spinning axis of a reaction wheel within
the body axis of the nanosatellite. The effective torque also
includes the coupling term 81 × (AF hF) which is caused
by the interaction between the reaction wheel’s angular
momentum, hF , and the nanosatellite’s body rate. The
control signal, u, affects the time derivative of the wheel
torque through the first order dynamics, seen in eq. (4),
characterised by the wheel’s time constant)F . The actuator
saturation applied to the commanded control torque Dsat
and the wheel momentum ℎF,sat is also included in the
model (eq. (5)).

The Z-Y-X asymmetric Euler set, defined with Euler
angles [q \ k]) defines the attitude matrix AIHG :

AIHG = AG (q)AH (\)AI (k) (6)

The attitude is defined as the rotation from the inertial
axis set F 8 to the nanosatellite’s body fixed axis F 1 . The
corresponding Euler kinematics are given:


¤q
¤\
¤k

 =

1 tan \ sin q tan \ cos q
0 cos q − sin q
0 sec \ sin q sec \ cos q



l1,G

l1,H

l1,I

 (7)

Where [¤q ¤\ ¤k]) are the Euler angle rates, [q \ k]) are
the Euler angles and 81 is the nanosatellite’s body rate.

Fig. 3 Integral inverse simulation algorithm

3. Methodology
The InvSim integral method is detailed in a flow chart

in fig. 3 with each step numbered for reference. Step 1
generates the desired controlled states that the InvSim con-
trolled is required to follow. Choice of controlled states can
be made depending on the specific mission requirements
and can also have significant impact on performance of the
algorithm. This will be explored later in section 4 when
specific test cases are set out.

An initial guess for the control solution at C = 0, u0, is
made as a starting point for the algorithm to begin solving
the first control timestep. The algorithm now enters the
outer loop (step 3) which will iterate through the timeseries
of desired controlled states and solve the control vector
u[:)] for each control timestep :) .

IAC-21,C1,8,12,x64025 Page 3 of 15

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by Mr. Robert Gordon. Published by the IAF, with permission and released to the IAF to publish in all forms

The objective of the algorithm is to find the control,
u[:)], that will be applied to the actuators for) seconds
driving the controlled states y to match the desired con-
trolled states, y3 , at time (: + 1)) , giving the required
constraint:

y[(: + 1))] = y3 [(: + 1))] (8)

First, the next set of controlled states, y[(: + 1))],
is sampled from the desired trajectory (step 4) and can
be considered the current target for the InvSim algorithm.
The model is integrated forward in time using the control
solution from the previous timestep, u[(: − 1))], as an
input (step 5) and the resulting controlled states, y, are
obtained. If this is the first timestep being solved for, then
the initial control guess, u0, is used.

Step 6 is the start of the iterative Newton-Raphson loop,
or the inner loop, which will calculate the solution to the
constraint seen in eq. (8). First, the error between the actual
and desired controlled states, & , is calculated (step 7):

& = y[(: + 1))] − y3 [(: + 1))] (9)

Step 8 calculates the Jacobian, J=, of first order partial
derivatives of each controlled state, H8 , with respect to
each control, D 9 , for ? number of controlled states and <
number of controls:

J= =



XH1
XD1

XH1
XD2

· · · XH1
XD<

XH2
XD1

XH2
XD2

· · · XH2
XD<

...
...

. . .
...

XH?

XD1

XH?

XD2
· · ·

XH?

XD<


(10)

The partial derivatives are calculated through numerical
differencing:

3H8

3D 9

����
: + 1

=
H8 [D 9 + ΔD 9] |:+1 − H8 [D 9 − ΔD 9] |:+1

2ΔD 9

(11)

where ΔD 9 is a perturbation applied to the control vector.
The perturbed control signals, D 9 ± ΔD 9 , are integrated
forward through the model and will produce perturbations
in the resultant controlled states, H8 ± ΔH8 . These can then
be used in eq. (11) to obtain the partial derivatives of each
controlled state, H8 , with respect to each control, D 9 . The
vector of control perturbations is calculated as a fraction
of the previous control solution:

Δu =)u[(: − 1))] (12)

where) is the control timestep. A minimum perturbation
size is ensured through the constraint:

ΔD 9 > ΔDmin (13)

where ΔDmin is the minimum perturbation size. This must
be significantly large to sufficiently perturb the controlled
states and avoid rounding errors through similar differ-
encing in eq. (11). To ensure that the perturbed control
signals do not exceed the actuator saturation of the model
(section 2) the following two additional constraints are
applied:

D 9 + ΔD 9 < Dsat (14)
D 9 − ΔD 9 < Dsat (15)

Once the Jacobian has been calculated, the control guess
can be updated using the inverse Jacobian P−1= through
(step 9):

u= [:)] = u=−1 [:)] + P−1= & (16)

where u=−1 [:)] is the previous control guess.
If the number of controlled states, ?, is equal to the

number of controls, <, then the Jacobian is a square matrix,
the inverse of which can be calculated explicitly. However,
in the case that the Jacobian is non-square, ? ≠ <, then the
Moore-Penrose pseudo-inverse must be used [20]. Using
the updated control guess, u= [:)], the model is integrated
forward to obtain corresponding updated values for the
controlled states, y[(: + 1))] (step 10). The error between
the desired controlled states and the actual controlled states,
& , is updated, eq. (9) (step 11), and then checked against
a tolerance | |& | | < ntol (step 12). If the error satisfies
the tolerance, then the current control guess u= [:)] is
accepted and saved (step 14) before the algorithm iterates
to the next control timestep (step 15) and the solution
process begins again (step 3). If the tolerance is not met,
then the Newton-Raphson iterates (step 13) to find a new
updated control guess (step 6). The Newton-Raphson
loop continues to iterate until the tolerance, ntol, is met
or a maximum number of Newton-Raphson iterations is
reached, =max.

The control timestep) is the most important param-
eter of the InvSim algorithm to be selected.) must be
sufficiently short to allow for a smooth resultant control
signal u[:)] while long enough to allow for proper prop-
agation of the controlled states y through the model to
ensure numerical stability in the partial derivatives of the
Jacobian. The integration timestep, 3C, used to solve the
mathematical model should satisfy 3C <<) to ensure an
accurate model. Reducing ntol and increasing =max can
allow for higher accuracy of the Newton-Raphson loop,
particularly in the presence of nonlinearities in the system.
Finally the initial control guess u0 can also be chosen,
however in most cases simply setting this to zero works
well.

IAC-21,C1,8,12,x64025 Page 4 of 15

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by Mr. Robert Gordon. Published by the IAF, with permission and released to the IAF to publish in all forms

4. Test Scenarios
Two scenarios are used to show the validity and relative

performance of the InvSim control algorithm in different
operating conditions. The first scenario simply considers
inertial pointing of the rigid-body’s x-axis, x1 , along which
the nanosatellite’s instrumentation can be considered to
be mounted. The path traced by the x-axis can be defined
in spherical coordinates through the pitch (\) and yaw
(k) Euler angles as defined in section 2. The second
scenario considers the same pointing of the x-axis while
simultaneously attempting to hold a constant spin rate
lspin around the x-axis. This would be applicable to a spin-
stabilised nanosatellite with instruments mounted along
the stabilised x-axis. The spin-axis pointing scenario also
allows for the InvSim controller to be tested in the presence
of higher coupling in the dynamics caused by the significant
constant spin rate.

4.1. Desired Trajectories
In both scenarios the InvSim controller will be required

to follow four paths defined in the \ − k plane and can
be seen in fig. 4. Each path is defined through a set of
piece-wise 4th order polynomials:

Position: G = 0C4 + 1C3 + 2C2 + 3C + 4 (17a)
Velocity: ¤G = 40C3 + 31C2 + 22C + 3 (17b)

Acceleration: ¥G = 120C2 + 61C + 22 (17c)
Jerk: G̈ = 240C + 61 (17d)

Where 0, 1, 2, 3 and 4 are coefficients that must be
solved using the following series of constraints:

• Continuity of the position (eq. (17a)), velocity (eq. (17b))
and acceleration (eq. (17c)) between each piece-wise
polynomial. This ensures a realisable, continuous
resultant control signal.

• Set of way-points Pwps giving the position in the \−k
plane at the end of each piece-wise polynomial:

Pwps =


\1 k1

\2 k2
...

...

\ 5 k 5


(18)

Which can be seen in fig. 4.
• Minimisation of discontinuity in the jerk (eq. (17d))
is also included to ensure a unique solution is found.

• The time given for completion of each piece-wise
polynomial or the time-to-move, Cmove.

Additionally once each trajectory is completed the final
way-point is held for a time Chold, to show the capability of
the InvSim controller to hold a constant attitude. The values
of time-to-move, Cmove, time-to-hold, Chold, and pointing
axis (x-axis) spin rate, lspin, for the spin-axis pointing
scenario, can be seen given in table 1.

(a) 45°box

(b) Figure of 8

(c) Slalom

(d) Long path

Fig. 4 Trajectory paths

IAC-21,C1,8,12,x64025 Page 5 of 15

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by Mr. Robert Gordon. Published by the IAF, with permission and released to the IAF to publish in all forms

Table 1 Test scenario parameters

Time-to-move, Cmove 60 s
Time-to-hold, Chold 60 s
Spin-axis spin rate, lspin 3 °/s

(a) Attitude

(b) Pitch acceleration oscillations

Fig. 5 Acceleration controlled state oscillations

4.2. Choice of Controlled States
The choice of using position, velocity or acceleration

profiles for the set of desired controlled states (y3) has
significant impact on the performance and stability of the
InvSim algorithm.

Perturbations in the controls will have a greater and
quicker effect on higher order derivatives of the trajectory
such as the velocity and to a greater extent the acceleration
[9]. This results in higher numerical stability when cal-
culating the partial derivatives (eq. (11)) of the Jacobian
(eq. (10)) and thus velocity and acceleration profiles are a
more attractive option for the desired controlled states y3 .

However, it was found that using Euler accelerations
caused divergence between control timesteps :) in the
presence of highly-coupled dynamics, i.e. high body rate
manoeuvres. Fig. 5b shows divergence from the desired
pitch acceleration between successive control timesteps :) .
Note that the InvSim algorithm is performing as intended,
matching the desired acceleration at each timestep :) .
However, the errors in the acceleration profile accumulate
over time causing substantial divergences from the desired
path as seen in fig. 5a. This issue can be mitigated by
reducing the size of the control timestep) , so long as the
frequency of control commands (52 = 1/)) can be realised
by the actuators. This would also require further reduction

of the integration timestep 3C to maintain a stable InvSim
solution, which in turn vastly increases computation time;
therefore, velocity profiles are the best compromise for
accuracy and stability of the InvSim algorithm for both the
inertial and spin-axis pointing scenarios.

For the inertial pointing scenario, the desired controlled
states for the InvSim algorithm can therefore simply be
defined as the Euler angle velocities:

y3 [:)] =
[¤q3 [:)] ¤\3 [:)] ¤k3 [:)]

]) (19)

Note that in this scenario the desired Euler roll rate, ¤q3 ,
will always be zero as the trajectory path is only defined in
the \ − k plane.

For the spin-axis pointing scenario, the desired Euler
roll rate, ¤q3 , is be replaced with the desired rate around
the body axis (l1,G)3 , as a constant spinning velocity is to
be maintained while the trajectory path is followed:

y3 [:)] =
[
(l1,G)3 ¤\3 [:)] ¤k3 [:)]

]) (20)

with the constant spinning rate is set to lspin:

(l1,G)3 = lspin (21)

which has been defined previously in table 1.

5. Performance Comparison

5.1. PID Control
Two PID control schemes are used for the inertial and

spin-axis pointing scenarios using the general feedback
control law defined in the Laplace domain:

� (B) = ? +
 8

B
+ 3B (22)

Tuning of the controller gains ? , 8 and 3 was completed
using the MATLAB PID Tuning Algorithm. The algorithm
aims to achieve the following objectives:

• Closed-loop stability: output remains bounded for a
bounded input

• Adequate performance: fast response to changes in
the reference or disturbances

• Adequate robustness: sufficient gain and phase mar-
gin to remain robust in the face of modelling errors
and variations

The tuning algorithm selects a crossover frequency (band-
width), l2 , based on the system dynamics to ensure a
fast response while maintaining a phase margin of 60° for
robustness.

In the inertial pointing scenario, three single-input-
single-output (SISO) PID controllers are employed to follow
the Euler angle pitch and yaw references, \3 and k3 , from

IAC-21,C1,8,12,x64025 Page 6 of 15

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by Mr. Robert Gordon. Published by the IAF, with permission and released to the IAF to publish in all forms

Fig. 6 PID feedback controller (inertial pointing)

Fig. 7 PID feedback controller (spin-axis pointing)

the desired trajectories seen in section 4.1 while holding a
constant roll angle, q3 = 0°. The control signals produced
are approximated to be relative to the nanosatellite’s body
axis frame F 1 and therefore are simply mapped to the set
of reaction wheel actuators using the actuator distribution
matrix AF , as can be seen in fig. 6.

The PID control architecture for the spin-axis pointing
nanosatellite can be seen in fig. 7. It also includes three
SISO PID controllers for the x-axis spin rate l1,G and
Euler angles \ and k.

Due to the constant spin rate l1,G the direction of the
nanosatellite’s actuators is constantly changing with respect
to the inertial axis set F 8 . The Euler angles, [q \ k]) ,
used to defined the trajectory are in respect to the inertial
frame, F 8 . Therefore, the \ and k controllers require their
control signals to first be transformed into the body axis
set F 1 before they can be applied to the actuators using
AF . This is done by taking the attitude direction cosine
matrix Azyx and applying it to the signals from the C\ (B)
and Ck (B) controllers.

5.2. Performance Metrics
For both the InvSim and PID cases the performance will

be measured through the following quantitative metrics:
• Pointing error
• Peak control power
• Total control energy

The pointing error is defined as the shortest rotation required
to move between the desired pointing direction and the
actual pointing direction (i.e the x-axis direction). As
mentioned previously (section 4) the attitude of the pointing

x-axis of the nanosatellite is defined through the spherical
coordinates by the \ and k Euler angles. Quaternions
are utilised as a convenient way to calculate this angular
pointing error [21].

Quaternions of the desired pitch and yaw rotations,
q(k3 , \3), and actual pitch and yaw rotations, q(k, \),
can be constructed and then combined to get the error
quaternion:

q n = q∗ (k3 , \3) � q(k, \) (23)

where q n is the error quaternion, q∗ (k3 , \3) is the con-
jugate of the desired pitch-yaw quaternion and � is the
quaternion multiplication operator [21].

The angular pointing error can then be extracted from
the scalar component of the pointing error quaternion:

on = 2 cos−1 (@ n ,4) (24)

where on is the angular pointing error and @ n ,4 is the scalar
component of the pointing error quaternion q n .

The control power, %, for each individual reactionwheel
of the nanosatellite can be found using the magnitudes of
the torque, gF8

, and speed of the wheel, lF8
. This can be

redefined in terms of the angular momentum, ℎF8
, torque,

¤ℎF8
, and inertia of each wheel, �F . The total control power

is found summing the power of all < wheels:

% =

<∑
8=1
|gF8

lF8
| =

<∑
8=1

| ¤ℎF8
ℎF8
|

�F
(25)

The total control energy, � , used can be obtained
integrating the control power, %, along the entire trajectory:

IAC-21,C1,8,12,x64025 Page 7 of 15

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by Mr. Robert Gordon. Published by the IAF, with permission and released to the IAF to publish in all forms

�total =

∫ C 5

0
% 3C (26)

6. Results and Discussion

6.1. Parameters
The parameters for the mathematical model are given

in table 3. For the actuator saturation Dsat and ℎF ,sat
parameters were assumed to be that of the Hyperion RW10
reaction wheel. The time-constant,)F , was assumed to be
that of the O.C.E Technologies RW270. The nanosatellite’s
body inertia matrix, J1, was assumed to be that of the
UKube-1 3U Cubesat [22]. The actuator distribution
matrix, AF , is the NASA Standard 4-wheel configuration
[21] as seen in fig. 8. The reaction wheel inertia, �F , was
estimated based on the maximum angular momentum and
maximum speed of the Hyperion RW10 reaction wheel.
The same integration timestep 3C is used for both the InvSim
and PID control examples.

Fig. 8 NASA standard 4-wheel configuration [21]

The parameters used for the InvSim algorithm can be
seen in table 2. As previously mentioned in section 4.2,
) was chosen to balance stability of the algorithm and
speed of computation while achieving a relatively smooth
control signal. The integration timestep 3C <<) to ensure
accuracy of the mathematical model.

The tolerance, ntol, and maximum iterations, =max,
allow for the accuracy of the Newton-Raphson loop to
be altered. However, it was found that the current rigid
body model is highly linear in most cases, meaning that
very few iterations of the loop are required to achieve an
accurate solution. Furthermore it was found that further
reduction of ntol tends to result in the Newton-Raphson
loop oscillating around the solution leading to unnecessary
additional computational time, with no improvement in
the result. In these cases, the number of iterations tends
to reach the limit, =max, on every timestep even if limit is
increased. Therefore, unless more nonlinear dynamics are

Table 2 Inverse simulation parameters

Control timestep,) 0.1 s
Initial control guess, u0 [0 0 0]) Nm
Maximum Newton-Raphson
iterations, =max

60

Minimum control
perturbation, ΔDmin

1×10−10 Nm

Newton-Raphson
tolerance, &tol

1×10−12 rad/s

present, any reduction of the tolerance or increase in the
maximum iterations will not result in an improved solution,
but will increase computational time.

In addition, it was found for the rigid body model
used, and the rest-to-rest manoeuvres being followed, that
a solution can converge an initial control guess u0 of
zero. The minimum control perturbation, ΔDmin, is only
important for the first few timesteps when the magnitude of
the control signal is near zero. The value is chosen to ensure
significant change in the controlled states to maintain a
stable Jacobian.

The gains for both PID control schemes were tuned
using the MATLAB PID Tuning Algorithm, as mentioned
in section 5.1. The resulting tuned gains, phase margins
and bandwidths of each controller are shown in table 4.

6.2. Performance
The InvSim controller illustrated in the previous sec-

tions was able to follow all of the desired paths (fig. 4) in
both the inertial and spin-axis pointing scenarios. Exam-
ples of the resultant control signal and dynamic responses
of the long path in the inertial and spin-axis pointing sce-
narios can be seen in figs. 9 and 10 respectively. It can be
seen in both scenarios that the resultant control response
is smooth and the desired controlled states are followed
successfully.

Figs. 11 and 12 compare the pointing error between
the InvSim and PID controllers for all paths and in both the
inertial and spin-axis pointing scenarios. First, it can be
noted in both the inertial and spin-axis pointing scenarios
that PID, unlike the InvSim controller, has final pointing
errors of zero. This is due to the online/offline deployment
of each controller. The PID controller is deployed online
with feedback allowing for the integral component of the
controller to attenuate steady-state errors to zero. The In-
vSim controller conversely is deployed offline and therefore
does not benefit from any feedback in real-time. Numerical
errors are uncompensated for and result in divergence over
time from the desired trajectory. Increasing the time that
the final attitude position is held for will cause further

IAC-21,C1,8,12,x64025 Page 8 of 15

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by Mr. Robert Gordon. Published by the IAF, with permission and released to the IAF to publish in all forms

Table 3 Model parameters

Reaction wheel time-constant,)F 0.1 s
Control torque saturation, Dsat 0.1×10−3 Nm
Reaction wheel momentum saturation, ℎF , sat 6×10−3 Nms

Satellite inertia matrix, J1


0.01 0 0
0 0.0506 0
0 0 0.0506

 kgm
2

Actuator Distribution matrix, AF


1 0 0 1/

√
3

0 1 0 1/
√
3

0 0 1 1/
√
3


Reaction wheel inertia, �F 3.82×10−6 kgm2

Integration timestep, 3C 0.01 s

Table 4 PID controller parameters

Inertial pointing nanosatellite
Phase Margin Bandwidth ? 8 3

PID(q) 60° 4.68 rad/s 0.0063 0.0003 0.0387
PID(\) 60° 4.74 rad/s 0.1349 0.0098 0.2042
PID(k) 60° 4.68 rad/s 0.1760 0.0130 0.2096

Spin-axis pointing nanosatellite
Phase Margin Bandwidth ? 8 3

PID(l1,G) 60° 17.73 rad/s 0.1954 0.3357 0.0128
PID(\) 60° 0.885 rad/s 0.0149 0.0016 0.0351
PID(k) 60° 0.885 rad/s 0.0148 0.0016 0.0349

divergence when using the InvSim controller and increase
to the final errors. This would suggest that in real-world
deployment of an InvSim controller, where parametric
and non-parametric model uncertainties exist, real-time
feedback will need to be added to the control solution.

It can be seen in fig. 11 that the pointing error across
the duration of the trajectories (tracking error) is greater for
the InvSim controller for the most part. This again can be
attributed to the lack of feedback in the InvSim controller
design implemented in this paper. However, it should
be noted that the tracking error for the InvSim across all
trajectories in the inertial pointing scenario does not exceed
0.1°. The tracking errors for the spin-axis pointing scenario
(fig. 12) are for the most part significantly lower with the
InvSim controller compared to PID. An exception can be
seen in fig. 12b for the figure of 8 path where the pointing
error diverges greatly when compared to the PID example.
The InvSim controller outperforms the PID controller in
the long path (fig. 12d) with the PID controller reaching a
pointing error of over 3°, while the InvSim pointing error

does not exceed much over 0.5°.
Additionally, fig. 13 shows how well both control

schemes are able to hold the constant spin rate, lspin,
around the pointing axis while completing the trajectory. It
can be seen that the InvSim controller is better at maintain-
ing the constant spin rate, however the PID also performs
adequately reaching a maximum error of 1.7×10−3°/s dur-
ing the long path. The greater performance comparatively
of the InvSim controller over the PID example in the spin-
axis pointing scenario is most likely due to the greater
nonlinearities introduced through the coupled dynamics.
PID control is inherently linear and therefore is less well
equipped to deal with the nonlinear dynamics seen with the
spin-axis pointing nanosatellite. InvSim however through
its iterative Newton-Raphson loop can easily solve highly
nonlinear systems. However, as the dynamics becomemore
nonlinear, the number of iterations the Newton-Raphson
loop requires to find a solution will increase as will com-
putation time.

Figs. 14 and 15 show the peak actuator power and

IAC-21,C1,8,12,x64025 Page 9 of 15

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by Mr. Robert Gordon. Published by the IAF, with permission and released to the IAF to publish in all forms

(a) Attitude (b) Controls

Fig. 9 InvSim - Long path (inertial pointing)

(a) Attitude and spinning rate (b) Controls

Fig. 10 InvSim - Long path (spin-axis pointing)

total actuator energy used for all of the trajectories in the
inertial and spin-axis pointing scenarios respectively. It
can be seen that both the peak actuator power and total
control energy in both scenarios are almost identical. The
only case where there seems to be a somewhat significant
difference is in the spin-axis pointing long path case where
the total actuator energy used by the InvSim controller is
0.043 J less than in the PID example.

It should be noted when comparing the performances
that the PID controller’s control signal is continuous
whereas the InvSim controller has a control timestep) of
0.1s. As the integration timestep in both cases is 0.01s
it can be seen that the InvSim controller is following the
same desired trajectory using 10 times less control actions.
Given sufficient computational power and time the control
timestep) for the InvSim controller could be reduced and
improve performance.

6.3. Practicality
Themost noticeable difference between both controllers

in the spin-axis pointing scenario is the ease of implemen-
tation. When moving from the inertial pointing to the
spin-axis pointing scenario, the only change required for
the InvSim controller is to redefine the controlled states
that the algorithm is required to follow. Instead, the PID
controller used in the inertial pointing scenario cannot be

easily applied to the spin-axis pointing problem. Compari-
son of figs. 6 and 7 shows that significant additions were
required to allow for a stable PID control scheme to be
derived. Each SISO PID controller also required re-tuning
to ensure good performance.

Any changes to the nanosatellite itself requires no
modification to the InvSim controller other than tweaking
of the mathematical model being used. A PID controller
on the other hand requires at minimum a re-tuning of
the control gains or more drastic alterations as seen with
the spin-axis pointing scenario previously. This lends
the InvSim controller as a possible tool to aid in the
design process of a nanosatellite allowing for changes to
be made efficiently without the control system needing to
be modified.

An example of this can be illustrated through consider-
ing the case where the inertia matrix of the nanosatellite is
altered from that seen in table 3 to:

J1 =


0.005 0 0
0 0.004 0
0 0 0.002

 kgm
2 (27)

The 45°box path and the inertial pointing scenario is used
to compare the performance of the PID controller tuned
previously (table 4) and the InvSim controller. The PID
controller has not been re-tuned and the only change made

IAC-21,C1,8,12,x64025 Page 10 of 15

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by Mr. Robert Gordon. Published by the IAF, with permission and released to the IAF to publish in all forms

(a) 45°box (b) Figure of 8

(c) Slalom (d) Long path

Fig. 11 Inertial pointing scenario pointing error

(a) 45°box (b) Figure of 8

(c) Slalom (d) Long path

Fig. 12 Spin-axis pointing scenario pointing error

IAC-21,C1,8,12,x64025 Page 11 of 15

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by Mr. Robert Gordon. Published by the IAF, with permission and released to the IAF to publish in all forms

(a) 45°box (b) Figure of 8

(c) Slalom (d) Long path

Fig. 13 Spin-axis pointing scenario spin rate error

(a) Peak actuator power (b) Total actuator energy

Fig. 14 Inertial pointing scenario actuator power and energy

(a) Peak actuator power (b) Total actuator energy

Fig. 15 Spin-axis pointing scenario actuator Power and energy

IAC-21,C1,8,12,x64025 Page 12 of 15

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by Mr. Robert Gordon. Published by the IAF, with permission and released to the IAF to publish in all forms

(a) Attitude (b) Controls

Fig. 16 PID - Inertia changed, no re-tuning

(a) Attitude (b) Controls

Fig. 17 InvSim - Inertia changed

to the InvSim controller is to update the inertia matrix used
in the mathematical model.

Fig. 16a shows that the PID controller is still capable
of following the desired trajectory despite no re-tuning of
the controller gains. However the resultant control signal
that the PID controller produces (fig. 16b) contains high
frequency oscillations that are highly undesirable. Not only
would this control signal most likely not be realisable by
the actuators but the peak actuator power is 5622% that
of the peak power of the InvSim controller and the total
actuator energy is 3473% that of the InvSim controller.

As can be seen in fig. 17 the InvSim controller follows
the desired trajectory and produces a smooth control signal.
It can therefore be seen that performance of the controller
can easily be ensured even as the design of the nanosatellite
itself is altered. The PID controller conversely requires
complete re-tuning of the controller gains every time an
alteration to the nanosatellite design is made. This shows
the versatility and practicality of using InvSim not only as
an attitude controller but also as a design aid. Introduction
of InvSim as the chosen controller removes the need for
any control design iterations to be made as changes are
made the rest of the nanosatellite’s design.

The InvSim algorithm is also capable of rejecting and
flagging desired trajectories given that are unrealisable
due to the nanosatellite’s dynamics and/or actuator size.
A PID controller however is unintelligent when given an

unrealisable trajectory and will instead attempt to follow it
as best it can. This could result in the pointing requirements
of the nanosatellite not beingmet and cause the nanosatellite
to be unsuccessful in its mission. This allows for InvSim
to also be an informative tool within the iterative design
process of a nanosatellite. Not only does the InvSim
controller allow for easy changes to the other subsystems of
the nanosatellite, as mentioned previously, but it can also
actively provide useful feedback on whether the design can
achieve the required instrument pointing requirements.

This can be illustrated by increasing the nanosatellite’s
inertia matrix to:

J1 =


0.5 0 0
0 0.5 0
0 0 0.5

 kgm
2 (28)

Both controllers are required to follow the 45°box path
in the inertial pointing scenario. The increased inertia
causes the required control torque to exceed the actuator
saturation, Dsat and ℎF ,sat, seen in table 3. The InvSim
algorithm is able to detect that this saturation is reached
and throws an error message indicating that the desired
trajectory given is not realisable with the current system
dynamics and/or actuator power. This information can be
used within the design process to inform engineers that
larger actuators, alterations to other subsystems, a redesign
of the desired trajectory or a combination of all these

IAC-21,C1,8,12,x64025 Page 13 of 15

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by Mr. Robert Gordon. Published by the IAF, with permission and released to the IAF to publish in all forms

(a) Attitude (b) Controls

(c) Equivalent actuator torque

Fig. 18 PID - Actuator saturation

changes is required. Additionally the InvSim algorithm
will indicate that the trajectory is not possible before it
begins to execute the manoeuvre. This could be especially
important when deviation from the trajectory would result
in catastrophic mission failure. This could be conceivable
in the case where there is little margin in the power budget
of the nanosatellite and miss-pointing of solar-panels could
result in loss of the spacecraft.

The PID controller however is unable to deal with
actuator saturation in such an ‘intelligent” way. Instead
when actuator saturation is reached, as can be seen through
the equivalent actuator torque in fig. 18c, the PID controller
simply demands more control effort which can not be
supplied (fig. 18b). The resultant attitude response can be
seen in fig. 18a which shows complete failure of the PID
controller to follow the desired trajectory.

7. Conclusions
In conclusion it has been shown that the integral Inverse

Simulation (InvSim) algorithm can successfully be used
to produce an attitude control system for a rigid body
nanosatellite. Peak power and total actuator energy across
all paths and in both the inertial and spin-axis pointing
scenarios for the InvSim controller is almost identical to the
Proportional-Integral-Derivative (PID) control example.
Lack of any feedback within the InvSim controller results
in the inability to attenuate the pointing error to zero and
therefore a significant final pointing error that will continue
to diverge exists.

Tracking pointing error performance of the InvSim
controller when compared to PID control is mixed. In the
inertial pointing scenario it is clear that the PID controller
outperforms InvSim due to the highly linear dynamics.
However, in the spin-axis pointing scenario where more
nonlinear dynamics exist the InvSim controller maintains
a lower tracking error in several of the paths, in particular
the long path. Additionally InvSim performs slightly better
when maintaining the constant spinning rate around the
pointing axis in the spin-axis pointing scenario.

It has been shown however that the greatest advantage
of using InvSim as a control solution is the practicality
and versatility of its implementation and use. InvSim is
particularly applicable within an iterative design process
where changes to the nanosatellite design affecting the
dynamics are constantly being made. InvSim does not
require any laborious re-tuning of control gains when
changes are made to the nanosatellite design in order to
maintain control performance. Instead the changes simply
need to be included in the mathematical model being used
to drive the inverse solution. Also, in the presence of highly
nonlinear dynamics a PID control scheme would require
some sort of gain-scheduling between linearisation points
to perform adequately which is not required when using
InvSim.

Additionally, InvSim is capable of informing engineers
when the given desired trajectory is not possible with
the current nanosatellite design. This will give useful
information suggesting that larger actuators, redesign of
the desired trajectory or other changes need to be made.

IAC-21,C1,8,12,x64025 Page 14 of 15

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by Mr. Robert Gordon. Published by the IAF, with permission and released to the IAF to publish in all forms

The InvSim algorithm is calculated offline so it will not
attempt to follow a trajectory until it has been deemed
possible to follow. Conversely PID control would try to
follow the trajectory the best it can, either with degraded
performance or complete failure.

Overall InvSim provides unique practical properties
over other traditional control methods such as PID. It’s per-
formance is adequate, however real-world implementation
will require inclusion of some form of feedback to deal
with parametric and non-parametric model uncertainties
as-well as disturbances.

References
[1] M.N. Sweeting, “Modern Small Satellites-Changing

the Economics of Space,” Proceedings of the IEEE,
vol. 106, no. 3, pp. 343–361, 2018.

[2] D. Selva and D. Krejci, “A survey and assessment of
the capabilities of Cubesats for Earth observation,”
Acta Astronautica, vol. 74, pp. 50–68, 2012, issn:
0094-5765.

[3] A. Poghosyan and A. Golkar, “CubeSat evolution:
Analyzing CubeSat capabilities for conducting sci-
ence missions,” Progress in Aerospace Sciences,
vol. 88, pp. 59–83, 2017, issn: 0376-0421.

[4] G. C. Goodwin, S. F. Graebe, M. E. Salgado, et al.,
Control system design. Prentice Hall New Jersey,
2001, vol. 240.

[5] M. A. Johnson and M. H. Moradi, PID control.
Springer, 2005.

[6] D. Thomson and R. Bradley, “Development and
verification of an algorithm for helicopter inverse
simulation,” Vertica, vol. 14, no. 2, pp. 185–200,
1990.

[7] R. A. Hess, C. Gao, and S. H. Wang, “Generalized
technique for inverse simulation applied to aircraft
maneuvers,” Journal of Guidance, Control, and
Dynamics, vol. 14, no. 5, pp. 920–926, Sep. 1991.

[8] R. A. Hess and C. Gao, “Generalized algorithm for
inverse simulation applied to helicopter maneuver-
ing flight,” Journal of the American Helicopter Soci-
ety, vol. 38, no. 4, pp. 3–15, 1993, issn: 00028711.

[9] S.Rutherford andD.G.Thomson, “Improvedmethod-
ology for inverse simulation,” The Aeronautical
Journal (1968), vol. 100, no. 993, pp. 79–86, 1996,
issn: 0001-9240.

[10] G. Avanzini, D. Thomson, and A. Torasso, “Model
predictive control architecture for rotorcraft inverse
simulation,” Journal of Guidance, Control, and
Dynamics, vol. 36, no. 1, pp. 207–217, Dec. 2013,
issn: 15333884.

[11] R. T. Jones, “ASimplifiedApplication of theMethod
of Operators to the Calculation of DisturbedMotions
of an Airplane,” Tech. Rep., 1936.

[12] O. Kato and I. Sugiura, “An interpretation of air-
plane general motion and contol as inverse problem,”
Journal of Guidance, Control, and Dynamics, vol. 9,
no. 2, pp. 198–204, Mar. 1986.

[13] O. Kato, “Attitude projection method for analyzing
large-amplitude airplane maneuvers,” Journal of
Guidance, Control, and Dynamics, vol. 13, no. 1,
pp. 22–29, Jan. 1990.

[14] C. Gao and R. A. Hess, “Inverse simulation of large-
amplitude aircraft maneuvers,” Journal of Guidance,
Control, and Dynamics, vol. 16, no. 4, pp. 733–737,
Jul. 1993.

[15] K. Worrall, D. Thomson, and E. Mcgookin, “Appli-
cation of Inverse Simulation to a wheeled mobile
robot,” in ICARA 2015 - Proceedings of the 2015 6th
International Conference on Automation, Robotics
and Applications, 2015.

[16] K. J. Worrall, D. G. Thomson, E. W. McGookin,
and T. Flessa, “Autonomous Planetary Rover Con-
trol using Inverse Simulation,” in 13th Symposium
on Advanced Space Technologies in Robotics and
Automation (ASTRA 2015), 2015.

[17] W. Zhou, H. Wang, G. Tang, and S. Guo, “Inverse
simulation system for manual-controlled rendezvous
and docking based on artificial neural network,”
Advances in Space Research, vol. 58, no. 6, pp. 938–
949, 2016, issn: 0273-1177.

[18] K. LIN, P. LU, and M. SMITH, “The numerical er-
rors in inverse simulation,” in Flight Simulation and
Technologies, ser. Guidance, Navigation, and Con-
trol and Co-located Conferences, American Institute
of Aeronautics and Astronautics, Aug. 1993.

[19] D. Thomson and R. Bradley, Inverse simulation as
a tool for flight dynamics research-Principles and
applications, 2006.

[20] J. C. A. Barata and M. S. Hussein, “The Moore–
Penrose pseudoinverse: A tutorial review of the
theory,” Brazilian Journal of Physics, vol. 42, no. 1-
2, pp. 146–165, 2012.

[21] F. L. Markley and J. L. Crassidis, Fundamentals of
spacecraft attitude determination and control. New
York, NY: Springer New York, 2014, pp. 1–486,
isbn: 9781493908028.

[22] J. Kim and K. Worrall, “Sun tracking controller
for UKube-1 using magnetic torquer only*,” IFAC
Proceedings Volumes, vol. 46, no. 19, pp. 541–546,
2013, issn: 1474-6670.

IAC-21,C1,8,12,x64025 Page 15 of 15

	IAF coversheet.pdf
	257797
	Introduction
	Mathematical Model
	Methodology
	Test Scenarios
	Desired Trajectories
	Choice of Controlled States

	Performance Comparison
	PID Control
	Performance Metrics

	Results and Discussion
	Parameters
	Performance
	Practicality

	Conclusions

