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Abstract

Offshore wind energy is drawing increased attention for the decarbonization of electricity generation. Due
to the unpredictable and complex nature of offshore aero-hydro dynamics, the Wind Turbine Power Curve
(WTPC) model is an important tool for power forecasting and, hence, providing a reliable, predictable, and
stable power supply. With the development of data-driven approaches, the Artificial Neural Network (ANN)
has become a popular method for estimating WTPCs. This paper integrates the Isolation Forest (iForest),
Nonsymmetric Fuzzy Means (NSFM) Radial Basis Neural Network (RBFNN), and metaheuristic algorithm to
form a novel WTPC model. iForest performed anomaly detection and removal, NSFM RBFNN approximated
the WTPC, and the metaheuristic solved NSFM optimization without training RBFNN. Four real-world
datasets were used to assess the performance of NSFM RBFNN. According to multiple evaluation metrics
and the Diebold-Mariano test, the accuracy of NSFM RBFNN was significantly better than the other
competitive neural network-based methods. Additionally, NSFM RBFNN was shown to be more robust to

anomalies than competitors, which is highly beneficial for practical applications.

Keywords: Offshore Wind Power; Wind Turbine Power Curve (WTPC); Radial Basis Function Neural Network

(RBFNN).
Nomenclature
Latin symbols o width of I*" kernel
a proportion coefficient ) output of I** kernel
b output offset A membership
c average path length 0 cost of a possible solution
h path length
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i measurement instance Abbreviation

Ly tabu list ADAM Adaptive Moment Estimation

p probability of accepting a non- ANFIS Adaptive Neuro-Fuzzy Inference

improving solution System

p fuzzy partition vector ANN Artificial Neural Network

R? coefficient of determination DLNN Deep Learning Neural Network

T cooling rate FM Fuzzy Means

s anomaly score iForest Isolation Forest

s I*" fuzzy subspace MAE Median Absolute Error

T current temperature MLPNN Multilayer Perceptron Neural
Network

w; synaptic weight of [** kernel MSE Mean Square Error

< input vector NRMSE Normalized Root Mean Square
Error

y output response NSFM Nonsymmetric Fuzzy Means

Vo n‘" measured output RBFNN Eaec:ﬁljerasw Function Neural

P n" model output SA Simulated Annealing

y mean of measured outputs SATS Simulated Annealing Tabu Search

SCADA Superyigory Control and Data

Acquisition

Greek symbols SFM Symmetric Fuzzy Means

Vi coefficient of 1" kernel TS Tabu Search

€ relative distance WT Wind Turbine

W centre vector of ‘" kernel WTPC Wind Turbine Power Curve

1. Introduction

With the increasing penetration of wind energy, power systems are taking the risk of unreliability and
instability due to the stochastic nature of the wind resource being harnessed. Wind turbines (WT) based
offshore are subject to nonlinear aero-hydro-dynamic environments, which results in difficulties in predicting
the precise generated power [1]. As a consequence, appropriate approaches for estimating the power output
of offshore WTs are critical for the energy industry for successful grid integration. Furthermore, accurate
power estimations will be needed for optimal operation of hybrid technology power plants, such as with

storage [2].

As a convenient way to derive the performance of a WT, a manufacturer will provide a Wind Turbine Power
Curve (WTPC). The WTPC explicitly provides the output power of a WT for a range of wind speeds under
specific test conditions. As the manufacturer's tests were conducted under ideal wind conditions, the WTPC
will appear quite smooth. This is not typically the reality when a WT is deployed on-site as factors such as
topography, roughness, and wake effects come into play. Furthermore, fluctuating wind speeds, directions,
temperatures, and pressures will all serve to scatter output around the WTPC, as will endogenous factors

such as blade condition [1, 3]. With the above challenges noted, WTPC modelling is still one of the key tools



for monitoring the performance of WTs and forecasting their power output, and therefore developing

accurate WTPC models can further benefit the application of wind power [3].

Techniques to fit the WTPC from sample data can be classified into parametric and nonparametric methods
[1, 3]. A parametric model derives the output response through constructing a set of mathematical equations
including a few parameters, which may be based on underlying physical laws [3]. However, owing to the
uncertain nature of some parameters, it becomes more complex and more difficult to use parametric
methods for deployed WTs. With floating offshore WTs in mind, parametric models become even harder to
solve as additional degrees-of-freedom of the hub are added. In contrast to parametric methods,
nonparametric methods do not require any prior assumptions to derive the relationship between input

variables and output response, which provide higher reliability and lower estimation errors [1].

To monitor WTs and predict power output, many nonparametric methods of WTPC modelling have been
developed and applied. For example, neural networks learned the relationship between input and output
with the aid of nonlinear functions within neurons, data clustering methods characterized power curves by
grouping similar data into classes or clusters, data mining methods extracted or mined the implicit
information from mass data, and copula models considered the joint probability distribution of the output
power and wind speed [3]. Nonparametric methods exhibit the suitability to establish models from large
datasets, where the Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS)
outperformed parametric and other nonparametric models [3]. ANN was claimed to be the best

nonparametric model comparing with the Fuzzy C-Means clustering and data mining [4, 5].

As one of the most powerful nonparametric methods, ANNs have had many applications in WTPC modelling
[6]. Li et al. designed a three-layer (4-8-1) Multilayer Perceptron Neural Network (MLPNN) with the
compressing functions to estimate the output power from two sets of meteorological data with different
sampling rates [7]. Mabel and Fernandez implemented a feed-forward three-layer (3-4-1) MLPNN to
forecast the monthly power generation [8]. Pelletier et al. developed a multi-stage ANN modelling technique
with six input features, where ANN was proven to be suitable for WTPC modelling and was able to reduce
the absolute and random errors among parametric, nonparametric and discrete methods [9]. Jyothi and Rao
introduced a method of one-step-ahead wind power forecasting based on an adaptive Wavelet Neural

Network (WNN), which surpassed standard ANN and ANFIS methods [10]. Current research regarding ANN-
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based WTPC modelling is focused on optimizing architectures, using novel structures, guiding applications,
and evaluating performance which contribute to precise prediction and convenient implementation. With
the development of data-driven methods, many hybrid ANNs have been designed to deliver more accurate
WTPC models. Shetty et al. developed a Radial Basis Function Neural Network (RBFNN) speeded up by an
Extreme Learning Machine (ELM) and cooperating with the Particle Swarm Optimization Fuzzy C-Means
(PSO-FCM) to obtain the power response [11]. Zhao et al. proposed a wind power forecasting system
consisting of a numerical weather prediction (delivering real-time weather data series) and a three-layer
feedforward ANN (cascaded with a power aggregation), in which wind speed data was processed by a
Kalman filter and fed into a trained ANN with the rest of the weather data [12]. Liu et al. combined three
individual forecasting models and an ANFIS model, where the Backpropagation Neural Network (BPNN),
RBFNN, and Least Squares Support Vector Machine (LS-SVM) were included [13]. Liu et al. compared two
anomaly detection techniques and integrated the Isolation Forest (iForest) with a five-layer Deep Learning
Neural Network (DLNN) to forecast the offshore WT power [1]. Karamichailidou et al. applied a
Nonsymmetrical Fuzzy Means (NSFM) RBFNN with the thin plate spline function optimized by the Tabu
Search (TS) to establish WTPC models [14]. All mentioned approaches with their input features, sampling
rate, and accuracy are summarized in Table 1. Compared to single ANNs, hybrid ANNs aim to improve the
prediction accuracy, speed up the training process, and provide suggestions for data processing and
hyperparameter optimization. The majority of current approaches were trained and tested with preprocessed
data but the degradation with inaccurate measurements was not discussed for real-world implementation.

Besides, the significance of prediction of a model with other competitive models was not assessed for

offshore WTs.
Table 1
Comparison of WTPC models.
Reference Training algorithm Input features Sampling rate  Accuracy
Lietal [7] MLPNN wind speed, wind direction 5 sec, 10 min Maximum Relative Error = 0.303-4.06%
Mabel and wind speed, relative humidity, Mean Square Error (MSE) = 0.0065,
MLPNN ) 1 h
Fernandez [8] and generation hour mont Mean Absolute Error = 0.0586
wind speed, wind direction,
. yaw error, air density, Weighted Mean Error = 0, Weighted
Pell I MLPNN 1
elletier et al. [3] turbulence intensity, and wind se¢ Mean Absolute Error = 15.3-15.9
shear
Jyothi and Rao WNN x::j Zz(;ii’ W;:z ::ﬁe;teli?’ 10 min Normalized Root Mean Square Error
[10] v (NRMSE) = 0.02

temperature

wind speed, wind direction,

blade pitch angle, density, and 1 hour
rotor speed

MSE = 3.004x10”, Mean Relative Error
= 2.948%

RBFNN, ELM, PSO-

Shetty et al. [11] FCM

Zhao et al. [12] Num.erical weather  wind speed, wind direction, 15 min NRMSE = 16.47%
prediction, MLPNN,  temperature, pressure, and
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Kalman filter humidity

Mean Absolute Percentage Error =

BPNN, RBFNN, LS~ wind speed, wind direction, 15 min 6.70-11.76, Normalized Mean Absolute

Liu et al. [13]

SVM, ANFIS and temperature Error = 1.01-4.23, NRMSE = 2.37-6.24
wind speed, nacelle
Liu et al. [1] iForest, MLPNN orientation, yaw error, blade MSE = 0.003258

pitch angle, and ambient
temperature

wind speed, wind direction,
RBFNN, NSFM, TS blade pitch angle, and 10 min
ambient temperature

Median Absolute Error = 19.3407-
23.6915

Karamichailidou et
al. [14]

Most studies concerned a select number of meteorological features for their WTPC modelling, typically
concentrated on wind speed, wind direction, and factors related to air density. Wind speed and wind
direction relative to the orientation of the WT, known as yaw, have a large influence on wind power.
Considering the rapidly fluctuating nature of wind fields, it is practically impossible for a WT to be aligned
with the incoming wind, or unyawed, at any time. For this paper, wind direction, and hence yaw angle, is not
available so nacelle orientation is used instead. The blade pitch angle is related to the aerodynamic efficiency
that affects the output power by varying the angle of attack [14]. The air density is mainly affected by the
ambient temperature, whose importance cannot be neglected [14]. Therefore, input attributes in this study
are the wind speed, nacelle orientation, blade pitch angle, and ambient temperature. The output response

is the WT active power.

The main contributions of this paper to fill the current knowledge gap are described below:

a. Most of the current ANN-based WTPC models have been designed, tested, and compared using
onshore WTs. This paper uses data from an offshore wind farm. Four WT datasets, including a case of
scattered outputs, are used to assess the performance, in which the scattered case is caused by the
grid stability, maintenance, safety, etc.

b. Although NSFM RBFNN has been previously applied to onshore WTPC modelling [14], this paper
proposes a different nonsymmetric partition technique and a novel kernel function for offshore wind
power. Additionally, a novel metaheuristic algorithm, based on the Simulated Annealing (SA) and
improved with a memorable tabu list to avoid duplicate solution explorations, is introduced to solve
the optimal nonsymmetric fuzzy partition for NSFM, in which an objective function regarding relative
distance instead of evaluation metrics of RBFNN is adopted to avoid training RBFNN.

c. Many previous WTPC methods only considered numerical metrics, such as the MSE, to evaluate and

compare the accuracy. This paper relies on multiple metrics but also carries out a significance test, the



Diebold-Mariano test, on two model outputs produced by the proposed method and any one of the
competitive methods. The model degradation under inaccurate measurements is also studied to

investigate the feasibility of applying the proposed method to real-world WTs.

Start
SCADA data

Anomaly
detection

Hyperparameter

SATS }
tuning

SFM K-Means

RBFNN RBFNN MLPNN DLNN

Comparisons of
NSFM modelling accuracy,
RBFNN Diebold-Mariano test

Selection of the most
competitive model

Robustness test

End

Fig. 1. Flowchart of investigating WTPC modelling.

As shown in the flowchart in Fig. 1, the remainder of this paper is organized as follows: Section 2 provides
characteristics of the target WTs and details of the datasets. Section 3 introduces our proposed RBFNN
model which receives data processed by an anomaly detection technique. To initialize RBF kernels, a revised
NSFM approach was developed, which induced the motivation of applying a novel multivariate RBF kernel
function. This was optimized by a hybrid metaheuristic method, the Simulated-Annealing-Tabu-Search
(SATS). Section 4 presents the results of the anomaly detection and evaluates the performance of NSFM
RBFNN by comparing against Symmetric Fuzzy Means (SFM) RBFNN, K-Means RBFNN, MLPNN, and DLNN.
This section also includes the application of the Diebold-Mariano test, which is applied to evaluate the
significance of the accuracy of model forecasting and select the most competitive method. At the end of the
comparison, a robustness test is carried out on the NSFM RBFNN and the other selected method to

investigate the models’ accuracy under raw measurements including missing data, sampling errors, and
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noise. Section 5 summarizes the main findings of the presented paper.

2. Data description

Four Supervisory Control and Data Acquisition (SCADA) datasets were used for training and testing, which
were measured by four Siemens SWT-3.6-120 3.6 MW offshore WTs from the same wind farm at Anholt.
Anholt is Denmark’ s largest offshore wind farm, it was constructed and is still managed by the company

@rsted. The layout of Anholt and four selected WTs (introduced in Section 2.2) are presented in Fig. 2, in

which the wind farm is approximately 20 km long and up to 5 km wide.

approx. 5km

approx. 20km

Fig. 2. Layout of Anholt wind farm.

2.1 Target wind turbines

141.6 metres

81.6 metres

Fig. 3. Dimensions of the WTs of Anholt wind farm.



All WTs are identical 3-bladed horizontal axis WTs, fixed to the seabed via monopiles. The WTs have rotor
diameters of 120 m, hub heights of 81.6 m, and tip heights of 141.6 m, as illustrated in Fig. 3. For operation
and control, the cut-in and nominal power wind speeds are designed with the ranges of 3-5 and 12-13 m/s,
respectively [15]. The WTs are variable speed and pitch regulated machines. The main shaft rotation speed
can be tuned within the range of 5-13 rpm. An asynchronous generator couples with a gearbox and a

mechanical brake. Other specifications of the target WTs are described in Table 2 [15].

Table 2

Technical key data of WTs.

Properties Value
Capacity 3.6 MW
Nominal Rotor speed 5~13 rpm
Rotor tilt 6 deg
Hub height 81.6 m
Rotor diameter 120 m
Blade length 585 m
Gearbox ratio 1:119
Yaw type active
Cut-in wind speed 3~5m/s
Nominal power wind speed | 12~13 m/s
Cut-out wind speed 25 m/s

2.2 SCADA data description

The SCADA data were measured from January 2013 to December 2014, the power curves are shown in Fig.
4. The data was provided at 10-minute intervals. The datasets were reduced to only the parameters
described in Section 1, which are: wind speed, nacelle orientation, blade pitch angle, ambient temperature,
and active power output. The raw SCADA data contained abnormal measurements that were considered out
of reasonable boundaries. To filter out these, we only accept data with measurements of wind speed between
0 and 40 m/s, nacelle orientation between -720 and 720°, pitch angle between -2 and 80°, ambient
temperature between -15 and 35 C° and active power between 0 and 3603 kW. It is noted that a valid
nacelle orientation outside +360° will be modulo of -360° or 360° for the negative or positive angle to
eliminate the round angle. Additionally, if one or more parameters of an instance were missing the entire

instance was deleted.

The power generation of each WT was influenced by weather conditions and external constraints, which led

to different power outputs at the same time, although these WTs were at a neighbour location. As shown in
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Fig. 4, each WT had a relatively unique dispersion of the growth between zero and the rated output, which
led to that WT-4 was the widest (as a scattered case), WT-3 was slightly wider than WT-1 and 2. The

highlighted measurements for WT-3 and WT-4 are also called type ii anomalies, this will be introduced in

Section 3.1.
retained i = retained
35001 - removed 35001 - removed 38
3000 A 3000 A
2500 A 2500 1
< 2000 - < 2000
[} @
2 3
o o
2 1500 2 1500
1000 1 1000 A
500 A 500 4
04 - 04 ——
0 5 10 15 20 25 0 5 10 15 20 25
Wind Speed (m/s) Wind Speed (m/s)
a b
retained . - retained .
35009 - removed ‘3§ P R . 3500 remove: :
3000 A 3000 A
2500 ' 2500 1
z z
= 2000 = 2000
@ @
3 3
o o
A 1500 2 1500
1000 1000 -
500 500 4
01 - 0 - e—
0 5 10 15 20 25 0 5 10 15 20 25
Wind Speed (m/s) Wwind Speed (m/s)
c d

Fig. 4. Power curves: (a), (b), (c), and (d) for WT-1, 2, 3, and 4, respectively. Abnormal measurements,
which are considered unreasonable, have been removed. However, anomalies clearly remain, as

highlighted.

The statistical details, including count, mean, standard deviation, and percentiles, are presented in Table 3.
Each SCADA set contains 105,120 rows, corresponding to 10-minute data for 2 years. After removing
obvious anomalies, the number of instances in each dataset is not the same, which is 93,392, 93,043, 92,182,
and 86,929, for WT-1, 2, 3, and 4 respectively. As observed, most type i anomalies are detected and removed

by applying our data-filtering criteria. The lower number of available data of WT-4 is mainly due to large



amounts of missing and incorrect measurements. The datasets share similar statistical characteristics in wind
speed, pitch angle, and temperature. However, the differences in nacelle orientation cannot be ignored since
these are the outcomes of yaw control. This implies that the underlying physical models are likely not

identical and, as such, individual modelling of the WTs is necessary.

Table 3

Statistics of SCADA for the 4 WTs.

- Wind speed, Nacelle Blade pitch Ambient Active power,
WT Statistic . )
m/s orientation, ° angle, ° temperature, °C kw
Count 93392 93392 93392 93392 93392
Mean 9.17 118.19 2.76 2071.81 8.91
Standard deviation 3.67 145.87 5.86 1390.48 6.36
1 Minimum 1.92 -359.29 -1.40 0.01 -6.00
25% 6.34 27.28 -0.91 653.88 4.00
Median 8.76 142.13 -0.46 2123.67 9.00
75% 11.71 232.31 6.12 3601.32 14.00
Maximum 25.32 359.97 79.03 3603.00 26.97
Count 93043 93043 93043 93043 93043
Mean 9.67 106.09 2.86 2077.21 9.09
Standard deviation 3.82 152.59 5.90 1391.07 6.31
) Minimum 2.26 -359.94 -1.40 0.01 -6.00
25% 6.67 6.46 -0.91 660.43 4.00
Median 9.30 133.58 -0.47 2122.84 9.00
75% 12.39 223.10 6.46 3601.41 14.00
Maximum 2491 359.98 79.18 3602.96 26.54
Count 92182 92182 92182 92182 92182
Mean 9.60 97.45 2.82 2061.09 8.78
Standard deviation 3.83 150.92 5.82 1392.40 6.43
3 Minimum 2.26 -359.76 -1.40 0.01 -6.18
25% 6.58 3.16 -0.91 638.52 4.00
Median 9.16 122.45 -0.48 2084.32 9.00
75% 12.42 213.84 6.39 3601.35 14.00
Maximum 24.96 360.00 79.78 3603.00 27.00
Count 86929 86929 86929 86929 86929
Mean 9.79 76.70 261 2037.69 9.45
Standard deviation 4.02 156.20 5.89 1382.00 6.57
4 Minimum 1.70 -359.81 -1.20 0.00 -5.63
25% 6.60 -64.30 -0.91 632.43 4.07
Median 9.40 99.54 -0.47 2016.59 10.00
75% 12.60 205.75 5.47 3601.30 15.00
Maximum 25.78 360.00 79.91 3603.00 27.23

3. Methodology

Our proposed method consists of 3 components: anomaly detection via iForest, an improved RBFNN
integrating with a kernel initialization method for predicting power, and a novel hybrid metaheuristic for
optimization. To train a model effectively and efficiently, a single anomaly detection method is used to
prevent abnormal SCADA measurements from affecting the training process. The key of our offshore WTPC

modelling is an RBFNN, which benefits from simple architecture and the capability of approximating
10



nonlinear systems [16]. Though some previous studies explored RBFNNs for onshore WTPC modelling [11,
13, 14], this study focused on delivering RBFNN-based offshore WTPC model with higher accuracy, faster
convergence, and greater robustness, which was achieved by introducing NSFM to initialize RBF kernels and
a novel kernel function with multiple widths to provide a better approximation. Also, a metaheuristic was

suggested to find a solution for NSFM optimization.

3.1 Anomaly detection

Anomalies are instances that appear to be generated by a different mechanism to that generating the rest
of the data [17]. To generate an accurate WTPC model from real-world SCADA data, anomalies must be
removed prior to training. For WT SCADA data, anomalies can be classified into the following three types
(illustrated in Fig. 5):
Type i: No power output at wind speeds is significantly greater than the cut-in wind speed. This is WT
stoppage, typically for maintenance or grid demands [18].
Type ii. Power is constrained and lower than the theoretically achievable value. This is WT curtailment,
typically due to grid demands [19].
Type iii: Power is randomly distributed in the vicinity of the theoretical value. Measurement failures, sensor
degradations, and sampling noises are responsible for this type, as well as transitions from type i/

il to normal operation [20].

3500 A

3000 A

2500 A

2000 A

Type iii

Power (kW)

1500 A

1000 {1ype i

o s 10 15 20 25
Wind Speed (m/s)
Fig. 5. Example of different type errors in a power curve.

To detect anomalies, this paper adopts iForest, a model-based approach, that makes use of two of their
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properties: they are a minority consisting of fewer instances, and they have attribute values that differ from
those of normal instances [21]. The procedure of implementing iForest includes generating isolation trees
after subsampling, calculating the path length k(i) of aninstance i (i.e. a measurement of input and output)
according to isolation trees, and evaluating the anomaly score s of 1 by Eq. (1) to identify if i belongs to
anomalies (it is considered as an anomaly when s is close to 1) [21].

E(h®)
s(in) =2 <m @

where E(h(i)) is the average path length of h(i) from a collection of isolation trees and c(n) is the

average path length of an unsuccessful search in a binary search tree.

3.2 Radial basis function neural network

This paper adopts a typical 3-layer RBFNN, as shown in Fig. 6, in which the single hidden layer consists of
nonlinear RBF kernels and synaptic weights. The output ¢; of the [-th Gaussian kernel is given by Eq. (2)
[22].

@, (x) = e villx-wll® 2)
where X is an input vector (i.e. the n-th input vector X,, fromthe N input data X = [Xq, X2, ..., Xp, -, Xy ],
X replaces X, in the following for simplicity), p; is the centre vector of the I-th kernel, and y; is the

coefficient of the [-th kernel, also written as 1/2¢7 in the form of the kernel width or radius a;.

The output response y of a given L kernels RBFNN is expressed by Eq. (3) [22].

L
y= Z w @, (X) 3)
=1

where w; is the synaptic weight of the I-th kernel. A variation of Eq. (3) is to include an offset b [22], as

per Eq. (4). This is used in this paper to achieve a better approximation.

L
y= Z w @ (X) + b 4)
=1

Before training traditional RBFNNs, the hyperparameter for the number of kernels, L, must be given to
initialize the structure. For an L Gaussian kernels RBFNN, the following values need to be determined in the
stage of training:

e RBF centres;

12



o RBF coefficients;

e synaptic weights and an offset.

‘Wind speed

Nacelle
Orientation

Output power

Blade pitch
angle

Ambient
temperature

I-th neuron

Input layer Hidden layer Output layer

Fig. 6. Architecture of RBFNN for offshore WTPC modelling.

One popular algorithm determining RBF centres is based on the K-Means clustering, where an RBF centre is
assumed to be at the centre of a cluster of the input space [23]. The main disadvantage of K-Means RBFNN
is that the number of clusters has effects on the final estimation. On the other hand, the number of clusters
cannot be automatically determined due to the intrinsic nature of K-Means. Therefore, another algorithm
based on the Fuzzy Means (FM) is developed to obtain the number of RBF kernels and their centres and

widths simultaneously [24].

3.3 Nonsymmetric fuzzy means

FM algorithms make use of the fuzzy partition technique to divide a multi-dimensional input space into a
set of fuzzy subspaces, which results in the Symmetric Fuzzy Means and Nonsymmetric Fuzzy Means [24,
25]. NSFM divides each dimension of the input space into several evenly distributed sets without interfering
with the other dimensions [25]. Accordingly, SFM is a special case of NSFM where the same partition acts on
all dimensions [24]. Many studies have successfully applied NSFM in initializing RBFNN [14, 25-27]. The
implementation of NSFM is adapted in this section for use of offshore WTs, which includes a nonsymmetric

fuzzy partition and an NSFM algorithm.

Consider an input vector X with D features:

X = [X1, X2, e, Xgy ey Xp ] (5)

where x4 is the value of the d-th dimension of x.

13



The vector p can partition the input space into several nonsymmetric fuzzy subspaces.

p= [plr D2, s Pa» "'lpD] (6)

where pg is the partition to an input variable xg.

#2(5)

H2(4)

#2(3)

#2(2)

| X

#2(1) >

IZ1€Y)] m(2) m@3) m(4) m(5) u1(6)

Fig. 7. Example of nonsymmetric fuzzy partition on a 2D input space.

For a given vector p, the [-th selected fuzzy subspace s; containing D triangular fuzzy sets is expressed
in Eq. (7).

S = [Sl,llsl,Z' ey Sl,d’ ey Sl,D]

_ {[Hm(’h). 01,1]. [Hl,z (2), Uz,z]. ,} )
[.Ul,d(nd). Uz,d], ey [Ilz,D (Mp), UL,D]
where 14 (€[1,p4]) is the selected partition number on the d-th dimension, pa(ma)/ 014 is the

centre/width of the selected d-th dimensional fuzzy set s;4. Fig. 7 illustrates how a nonsymmetric fuzzy
partition works on a 2D input space. In this case, p = [6,5] partitions x; and x, into 6 and 5 fuzzy sets
with intervals g, and a,. The selected fuzzy subspace s; in Fig. 7 is expressed as {[u;(3), o1], [12(2), 0 1}.
It is noted that fuzzy sets of each dimension are not intersected, which is different from the previous studies

[14, 25-27].

The NSFM algorithm aims to find a fuzzy space S, which is to say a compact subset of fuzzy subspaces
[s1,S2, .-, Sp, -, SL], covering all input data rather than the whole input space under the condition of a given

14



p [25]. It is noted that the number of RBF kernels is the same as the number of selected fuzzy subspaces L,
which is automatically determined by NSFM algorithm. Consequently, RBF centres are placed on the centres
of selected fuzzy subspaces [25]. Using anomaly detection on the dataset, the fuzzy space can be shrunk to

reduce the number of RBF kernels as anomalies tend to make NSFM import excessive fuzzy subspaces.

To calculate the membership of x regarding s, the relative distance &,(X) between them is defined by Eq.

(8) [25].

1 e (%a — ta(a)
. a — H,a(Mag
) = [ (i ) ®

a=1

The multidimensional membership function Ag,(x) is given by Eq. (9) [28].

1—g,(), &, (x) <1
A (x) = {O, &,(x) > 1 ©)

The relative distance &g, , (x4) of an input variable x4 to a selected fuzzy set s;4 can be expressed by Eq.
(10).

Xa — Hia M)
OLd4

Es1a (xq) = (10)

With the introduction of Ssl,d(xd)’ the progression of selecting a potential fuzzy set is more efficient because

Eg. (10) makes the search process independent on each dimension.

The NSFM algorithm starts by identifying if the n-th input vector X, is already in the current fuzzy space
S. If x,, is outside S, which is implied by the fact that Ag,(X;) regarding an arbitrary fuzzy subspace s; of
S is always zero (otherwise X, is in S when there exists at least a nonzero membership), a new fuzzy
subspace s;;1 Will be searched to cover this input vector and added into S. The principle of searching s;41
is based on the minimum relative distance &,,, ,(x4). The NSFM algorithm will iterate through the rest of
the input data X after initializing S so the number of iterations is equal to N — 1. The search for fuzzy
subspaces can be regarded as a kind of greedy strategy, so the sequence of input data may affect the final
fuzzy space, especially when a SCADA dataset maintains its time series characteristic. To minimize this effect,

it is recommended to randomize the order of an input time series.
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To make full use of NSFM’ s strengths, a novel multivariate kernel function ¢;(x) described in Eq. (11) is

introduced here to replace Eq. (2) as the kernel function.

= (11)

p(x)=e

Algorithm 1: NSFM algorithm
Input: X = [Xq, X3, ..., Xp, -, Xp ]

pP= [plr D2, - Pa» ---:pD]
Output: S =[sy,S2,...,Sy, -, SL]

1. initialize S =[s;] by taking x4 into steps (11-

14)
2. For n=2:N Do:
3. obtain L of S
4, For [ =1:L Do:
5. If x,, is covered by s; according to Eq. (9)
6. X, is in § and steps (10-16) will be
skipped
7. break
8. End If
9. End For
10. If x,, isoutside S
11. For d = 1:D Do:
12. select pp+14(Mg) and o414 with the
minimum &, ,(x4) calculated by Eq.
(10)
13. End For
14. [HL+1,1 (1), O-L+1,1]!
Spiq = [ﬂL+1,2 (U2)10L+1,2].
[:uL+1,D (Mp), crL+1,D]
15. add s;,q into S andupdate L=L+1
16. End If
17. End For

The traditional kernel function in Eq. (2) uses a single width to calculate, Eq. (11) adopts independent widths
for all dimensions, which effectively deliver the information from input variables to a neuron. However,
introducing this kernel function will not aggravate the computational burden since all widths have been
obtained during the selection of the minimum &, ,(x4). Since the nonsymmetric fuzzy partition influences
the performance of NSFM RBFNN, it is necessary to find the optimal solution of the nonsymmetric fuzzy
partition, which can be regarded as an optimization problem. Many metaheuristics have been developed to

solve this problem. The next section will describe a hybrid metaheuristic method to solve NSFM optimization.
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3.4 Hybrid metaheuristic algorithm

Many metaheuristic methods have been developed to escape local optima in the search for global optima.
Metaheuristics can be classified into population-based and single solution-based methods to explore the
solution space. Although some [25, 29] applied population-based metaheuristics (Genetic Algorithm and
Particle Swarm Optimization) to derive a solution of NSFM, these were found to be computationally intensive
with huge memory consumptions and lengthy search times. Furthermore, the situation is exacerbated as
datasets get larger. Therefore, a single solution-based metaheuristic is preferred for SCADA. Simulated
Annealing is a stochastic, single solution-based metaheuristic, which always accepts a better solution and is
capable of accepting a non-improving solution with a varied probability [27, 30, 31]. Tabu Search is also a
single solution-based metaheuristic, which starts with a random solution and a memory-based tabu list [31].
In each iteration, the neighbourhood is fully explored to generate the local best solution. If the evaluation of
this solution is improved, the tabu list will always be updated [30, 31]. Meanwhile, the tabu list also accepts
a non-improving solution to avoid local optima [14, 30, 31]. However, basic SA may explore a solution
multiple times, and searching the whole neighbourhood in TS is time-consuming. Therefore, a hybrid
Simulated-Annealing-Tabu-Search (SATS) algorithm is developed to find a solution for the nonsymmetric

fuzzy partition. The basic idea of SATS is to add a tabu list into SA to avoid duplicated searches.

SATS algorithm, Algorithm 2, starts with an initial solution p and a tabu list Ly,. The solution space of p
in this paper is set to the lower and upper bounds (Pmin = [6,6,6,6] and Pmax = [11,11,11,11]). After that,
a neighbour solution Pygp in the vicinity of p within Ap is randomly selected, which is not contained by
Ly and will be added into Ly, to avoid repetitive explorations. If Ly, includes all neighbour solutions, the
program will be terminated. Subsequently, Pyngp is evaluated by the cost function © in Eq. (12) after

Algorithm 1 is executed to obtain S = [sy, 3, ..., Sy, ..., S;] under the condition of Pugp.

O (s (), Ay (),
o(p) = Zmax( s, (%) ) (12)

Algorithm 2: SATS algorithm

Input: X = [Xq,X3, ..., Xp, ., Xp ]
Ap = [Apy, Apy, ..., Apy, ..., App]
To, T

Output: Popt = [pl,opt' P2,0pts =1 Pd,opt> ---rpD,opt]
1. generate a random solution p
2. add p into Ly
3. While not termination Repeat:
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4. generate a neighbourhood solution ppgp NOt

5. add Ppgp to Ly and run Algorithm 1

6. If G)(pngb) > G(p)

7. accept P = Pngp

8. Else

9. If P, <P(Pngb)

10. release p from Ly and accept p =
pngb

11. End If

12. update T;;1 by using Eq. (14)

13. End While

14. Return po, from Ly,

The commonly used method for evaluating the performance of a hyperparameter optimization technique
for ANNSs is to compare a metric (such as MSE) on the testing dataset after training ANNs. To avoid the time-
consuming training process, the cost function of Eq. (12) is defined to evaluate different nonsymmetric fuzzy
partition solutions. With the help of the cost function, this metaheuristic does not need to train RBFNN. As
such, it is a nontrainable parameter optimization technique, which can save the training time of RBFNN. This
cost function calculates the membership of each input vector in a fuzzy space. An input vector may belong
to multiple fuzzy subspaces, which leads to ambiguous membership determination, hence only the
maximum membership among different fuzzy subspaces is considered. If pngp is believed as a better
solution, p will always be updated. However, pyg, Can also be accepted when the probability condition, i.e.
P, < P(pngb), of accepting a non-improving solution is satisfied, where P; has the standard uniform

distribution P;~U(0,1) and P(pngb) is calculated by Eq. (13). This is revised from Ref. [31].

_e(pngb)_e(p)

P(Pugy ) = - € T, (13)

where a is the proportion coefficient and T; is the current temperature. a is set to 0.5 in this paper.

Accepting the current non-improving solution is the so-called aspiration criterion in TS. The key step of our
proposed SATS algorithm is to release p before updating so that the neighbourhood of p can be searched
again. At the end of each iteration, the current temperature T; is updated by Eq. (14) [31].

Tiyy=7"T; (14)
where 7 is the cooling rate. In this paper, the initial temperature and cooling rate are set to 10,000 and 0.98
respectively. It is noted that the initial temperature should be adjusted according to the quantity of data to

make the annealing process smooth.
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4. Case study

The methodology outlined in Section 3 was applied to the SCADA data outlined in Section 2.

4.1 Result of isolation forest

iForest was implemented using the Scikit-Learn library. The number of trees, subsampling ratio,
contamination ratio, and maximum features, were 200, 0.8, 0.3, and 4 respectively. Fig. 8 displays the iForest-
filtered results, in which the anomalies highlighted in Fig. 4 have been removed. After filtering, these datasets
were ready to train and test NSFM RBFNN. In this study, each filtered dataset is randomly divided into three

groups, 70% for training, 20% for testing, and 10% for validation.
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Fig. 8. Power curves processed by iForest: (a), (b), (c), and (d) for WT-1, 2, 3, and 4, respectively.

4.2 Simulation platform

The proposed methodology was implemented using Python with the Keras library packaged in TensorFlow
[32]. Adaptive Moment Estimation (ADAM) is selected as the optimization algorithm to train our NSFM

RBFNN. The default Keras ADAM configuration was used, with values: learning rate of 0.001, the 1%/2™-
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moment decay rates of 0.9/0.999, and epsilon of 10”". The training and validation losses both used MSE as it
was found to have stable compatibility on our datasets. The unknown variables were synaptic weights and
one offset, which were iteratively calculated during training. RBF centres with corresponding widths were
also iteratively calculated to achieve better approximation after kernel initialization. The hyperparameters of

batch size and maximum epochs were 1,000 and 300 respectively.

4.3 Comparison of different methods

4.3.1 Evaluation of modelling accuracy

To evaluate the accuracy of our proposed WTPC modelling, multiple statistical criteria were applied. The
Normalized Root Mean Square Error (NRMSE) [33-36], Median Absolute Error (MAE) [14, 37, 38], and
coefficient of determination (R?) [3, 14, 33, 37] were applied and are defined in Egs. (17), (18), and (19),

respectively.

N (5 _ )2
MSE = M (15)
N
RMSE = VMSE (16)
— RMSE /_

NRMSE = /5 17)
MAE = median(|y, — yn|) (18)

N (5 _ )2
R2 =1— Zn:l(yn Yn) (19)

Zrl\lzl(yn - 37)2
where y, is the n-th measured output, ¥, is the n-th model output, and ¥ is the mean of measured

outputs.

NRMSE is widely utilized as a dimensionless metric, where a large value indicates estimations vary
significantly from measurements [33, 37]. MAE is also adopted here to avoid a result influenced by a few
instances [14, 38]. R* describes the variance of model outputs from measurements [14, 33, 37]. If R is closer
to unity, the model will produce a more accurate result, which offers a straightforward way to examine the

estimation or prediction accuracy.

4.3.2 Comparison of modelling

Four additional model types were selected to compare against NSFM RBFNN, these were: SFM RBFNN, K-

Means RBFNN, two-layer MLPNN, and DLNN. SFM RBFNN was set to have the same solution space as NSFM
20



RBFNN. Due to the effect of the number of clusters of K-Means [23], an extensive search for determining
the number of clusters was carried out within the range of 50 to 150 with steps of 25. Another extensive
search for optimizing MLPNN was also executed, where neurons in the first layer ranged from 30 to 60 with
steps of 10, and neurons in the second layer ranged from 10 to 20 with steps of 5. Since deep learning
methods are widely applied in operating and controlling WTs [1, 20, 33, 39], this paper also chose the DLNN
suggested in [1] for comparison. This DLNN had a 5-layer architecture, in which 20 neurons were in the first

and fifth layers and 50 neurons were in the second, third, and fourth layers.

The validation losses in the form of MSE (described in Eqg. (15)) of tensors are displayed in Fig. 9. NSFM
RBFNN and DLNN are shown to converge faster than the others, where both reached steady MSE values
before 50 epochs. NSFM RBFNN achieves the minimum validation losses for all datasets. DLNN also had a
favourable performance with no significant difference from RBFNN. MLPNN achieved similar validation
losses at the end of training but converged at slower speeds. Another advantage of NSFM RBFNN is that the
validation loss exhibited smooth training. Besides, with the aid of flexible widths, our proposed NSFM RBFNN

has advantages in contrast to SFM and K-Means in terms of training performance.
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Fig. 9. MSE Training loses for the models: (a), (b), (c), and (d) for WT-1, 2, 3, and 4, respectively.

In Fig. 10, the degree of fitting of estimations produced by NSFM RBFNN with measurements is shown. The
estimations matched the measurements well, where the linear relationship is clear to identify and R® averaged
0.9934. Of the WTs, WT-4 faired worst with an R* of 0.9890. This is likely a result of WT-4" s WTPC being

more scattered than the other turbines after anomaly removal, as shown in Fig. 8.
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Fig. 10. Estimated versus actual power for NSFM RBFNN: (a), (b), (c), and (d) for WT-1, 2, 3, and 4,

respectively.

The statistical results discussed in Section 4.3.1 for the testing datasets are shown in Table 4. In terms of
NRMSE and R’, NSFM RBFNN is the best performer for all datasets, although it is only marginally better
compared to MLPNN and DLNN for these metrics. WT-1 achieves the minimum value of NRMSE at 0.0424
and R’ reaches the maximum value of 0.9959. According to NRMSE and R?, NSFM RBFNN can provide a

more precise group estimation compared to the other methods. Considering MAE, the models of NSFM
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RBFNN, MLPNN, and DLNN distinctly outperform SFM RBFNN and K-Means RBFNN, however, none of the

three models have advantages over the other two.

According to such metrics, it can be concluded that: i) SFM and K-Means RBFNNs are unable to derive high-
accuracy WTPC models, ii) the accuracy of MLPNN degrades faster for scattered WT outputs than NSFM
RBFNN and DLNN, iii) the objective of NSFM RBFNN or DLNN is not to reduce the error of each instance but
to minimize the error of a group. Due to the similar performance among NSFM RBFNN, MLPNN, and DLNN,

a significance test of predictions is carried out in the next section to investigate further.

Table 4

Comparison among the methods regarding NRMSE, MAE, and R*

No. Metrics NSFM RBFNN SFM RBFNN K-Means RBFNN MLPNN DLNN
Fuzzy partition [9,10,7,7] [7,7,7,7] - - -
No. of nodes 93 53 75 [40,15] 190
1 NRMSE 0.0424 0.0958 0.0968 0.0494 0.0478
MAE 21.7439 129.9651 134.7788 20.2346 18.2813
R? 0.9959 0.9790 0.9785 0.9944 0.9948
Fuzzy partition [7,6,7,7] [7,7,7,7] - - -
No. of nodes 50 50 50 [60,20] 190
2 NRMSE 0.0503 0.0897 0.0912 0.0586 0.0582
MAE 25.2810 110.8882 115.6800 25.0110 27.0013
R? 0.9945 0.9825 0.9819 0.9925 0.9926
Fuzzy partition [8,6,8,7] [7,7,7,7] - - -
No. of nodes 61 59 50 [30,20] 190
3 NRMSE 0.0510 0.0986 0.0950 0.0637 0.0532
MAE 25.9001 128.3840 121.1400 26.7006 20.5363
R? 0.9942 0.9782 0.9798 0.9909 0.9936
Fuzzy partition [10,6,8,8] [7,7,7,7] - - -
No. of nodes 95 59 50 [40,15] 190
4 NRMSE 0.0726 0.1145 0.1139 0.0853 0.0747
MAE 36.0088 130.1140 138.6030 44.9436 37.3907
R? 0.9890 0.9726 0.9729 0.9848 0.9883
NRMSE 0.0541 0.0997 0.0992 0.0643 0.0585
Mean MAE 27.2334 124.8378 127.5505 29.2225 25.8024
R? 0.9934 0.9781 0.9783 0.9907 0.9923

4.4 Diebold-Mariano test

Diebold and Mariano introduced explicit tests of the null hypothesis regarding the difference in accuracy
between two forecasting models [40, 41]. There is no quadratic or symmetric requirement for the loss
function, and model prediction errors can be non-Gaussian, nonzero-mean, serially correlated, and
contemporaneously correlated [40]. As presented in Section 4.3.2, the strength of NSFM RBFNN is not
overwhelming to MLPNN and DLNN. Therefore, the Diebold-Mariano test will be carried out to investigate

further.
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Let Ho be the null hypothesis that there is no difference between NSFM RBFNN and a competitive model, H:
be the hypothesis that the output power estimated by NSFM RBFNN is better, and H: be the hypothesis that
the output power estimated by the competitive model is better. The loss function applied in this hypothesis
testing is MSE [41]. Let So and po be the statistic and p-value of the Diebold-Mariano test, respectively, and
the confidence level is set to 95% [40, 41]. A po value greater than 0.05 indicates there is no difference. If po

is less than 0.05 and Sois negative, H: will be accepted, otherwise, H. will be accepted.

The results of the Diebold-Mariano test are shown in Table 5. This shows S is always negative and po is
always less than 0.05, which demonstrates that the output power estimated by NSFM RBFNN is significantly

better than the other compared models.

Table 5

Results of the Diebold-Mariano tests.

SFM K-Means

No. RBENN RBENN MLPNN DLNN

So -57.7355 -61.0097 -18.1354 -16.0603

1 Po 0.00E+00 0.00E+00 1.30E-72 1.72E-57
Result Always accept Hi, decline Ho

So -48.8173 -50.6970 -14.6082 -16.2888

2 Po 0.00E+00 0.00E+00 5.96E-48 4.54E-59
Result Always accept Hi, decline Ho

So -52.4504 -51.0306 -19.4932 -6.4624

3 Po 0.00E+00 0.00E+00 1.98E-83 1.07E-10
Result Always accept Hi, decline Ho

So -37.0568 -39.3437 -13.0935 -4.0886

4 Po 6.69E-285 0.00E+00 6.57E-39 4.37E-05
Result Always accept Hi, decline Ho

45 Robustness

Most evaluations regarding WTPC modelling are carried out on filtered datasets [1, 14, 20, 33]. However,
this is not consistent with reality as anomalies are inevitable due to the nature of measuring. As a result, we
perform additional tests to investigate the performance of robustness of each method under raw
measurements, with no anomaly detection or filtering being performed. Only NSFM RBFNN and DLNN are
taken into considerations for the comparison in this section according to the result in Section 4.4. To pass
numeric data into models, if a parameter of measurement is missing, it will be replaced with the previous

value. This is easily implemented and often used in industry as a holder.
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Prediction error results for the two methods for each case are presented in the form of box plots in Fig. 11.
For an ideal WTPC model, the median and mean of prediction error should be close to and symmetrical
about 0 kW. According to Fig. 11, it is obvious that the medians for both NSFM RBFNN and DLNN are
around 0 kW, suggesting both models make reasonable estimates for normal data. However, only the mean
of error of NSFM RBFNN is close to 0 kW, whilst for DLNN it averages over 160 kW. This is the result of the
compounding of two interrelated factors: poor approximation of the WTPC and type i anomalies. This
produced a small number of extremely large error predictions, so producing a large mean prediction error.

This serves as an illustration of the ease at which accuracy can be lost when dealing with datasets containing

anomalies.
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Fig. 11. Error distributions of NSFM RBFNN and DLNN tested on raw datasets.
Table 6

Comparison of NSFM RBFNN and DLNN on raw datasets.

NSFM

No. Metrics RBENN DLNN
NRMSE 0.1535 0.3780
MAE 38.8511 31.8656
1 R? 0.9606 0.7613
So -73.31
Po 0
NRMSE 0.1514 0.3527
MAE 46.4843 38.2208
2 R? 0.9610 0.7881
So -66,78
Po 0
NRMSE 0.1668 0.3006
MAE 42.3746 33.3178
3 R? 0.9536 0.8492
So -49.47
Po 0
NRMSE 0.1720 0.4213
4 MAE 59.7408 55.6823
R? 0.9477 0.6861
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So -83.51

Po 0
NRMSE 0.1609 0.3631
Mean MAE 46.8627  39.7716
R? 0.9557 0.7712

As presented in Table 6, the accuracy metrics of NRMSE and R’ are significantly worse for DLNN compared
to NSFM RBFNN. NRMSE averages 0.36 for DLNN, approximately 125% greater than that of NSFM RBFNN.
Additionally, R* drops to 0.77 for DLNN, significantly worse than NSFM RBFNN'’ s 0.96. These results suggest
NSFM RBFNN is the more robust of the two models to anomalous inputs. Conversely, the metric of MAE is
marginally greater for NSFM RBFNN compared to DLNN, at 46.9 kW and 39.8 kW respectively. However, this
is acceptable considering the WTs’ installed capacities of 3,600 kW. From the results, including the Diebold-
Mariano test, there is no doubt that the output power of offshore WTs forecasted by NSFM RBFNN is
significantly more accurate than DLNN for real-world, anomaly-containing data so showing NSFM RBFNN

to have good robustness.

5. Conclusion

This paper proposed an NSFM RBFNN based method for offshore WTPC modelling, in which Algorithm 1
provided initial RBF centres and widths and Algorithm 2 optimized the nonsymmetric fuzzy partition for
NSFM. Four SCADA datasets were used to compare NSFM RBFNN with other neural network models across
multiple metrics and the Diebold-Mariano test. Advantages of our proposed method include fast
convergence speed, high accuracy, and robustness. The main conclusions drawn from the case study
conducted can be summarized as:

a. SFM RBFNN and K-Means RBFNN are not suitable for offshore WTPC modelling due to their low
accuracies, which implies that a radius-based Gaussian kernel is insufficient to capture the
characteristics of offshore WT SCADA data.

b. MLPNN cannot be used for estimating WTPC for scattered WT datasets, such as WT-4. DLNN fairs
better than MLPNN thanks to its sophisticated architecture, however, performance is still significantly
worse compared to that of a cleaned dataset.

c. NSFM RBFNN can deliver accurate and reliable offshore WTPC models. Additionally, this model is more
robust to anomalies than DLNN. As proven by the multiple metrics and error distributions, NSFM
RBFNN intends to capture characteristics of a group rather than individual instances, which accounts

for its robustness.
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As a result, our NSFM RBFNN can aid the Energy industry in monitoring and controlling offshore wind

turbines by establishing an accurate and robust WTPC model.

Acknowledgement

The authors would like to thank @rsted for providing the SCADA data.

References

[1]

Z. Lin, X. Liu, and M. Collu, "Wind power prediction based on high-frequency SCADA data along with
isolation forest and deep learning neural networks,” /nternational Journal of Electrical Power & Energy
Systems, vol. 118, 2020.

l. Pineda, "Wind energy and economic recovery in Europe: How wind energy will put communities at the
heart of the green recovery,” WindEurope, Oct 2020, [Online]. Available: https://windeurope.org/data-

and-analysis/product/wind-energy-and-economic-recovery-in-europe/.

V. Sohoni, S. C. Gupta, and R. K. Nema, "A Critical Review on Wind Turbine Power Curve Modelling
Techniques and Their Applications in Wind Based Energy Systems," Journal of Energy, vol. 2016, pp. 1-
18, 2016.

M. Schlechtingen, I. F. Santos, and S. Achiche, "Using Data-Mining Approaches for Wind Turbine Power
Curve Monitoring: A Comparative Study," /EEE Transactions on Sustainable Energy, vol. 4, no. 3, pp. 671-
679, 2013.

M. Lydia, A. I. Selvakumar, S. S. Kumar, and G. E. P. Kumar, "Advanced Algorithms for Wind Turbine Power
Curve Modeling," /EEE Transactions on Sustainable Energy, vol. 4, no. 3, pp. 827-835, 2013.

M. Morshedizadeh, M. Kordestani, R. Carriveau, D. S. K. Ting, and M. Saif, "Improved power curve
monitoring of wind turbines,” Wind Engineering, vol. 41, no. 4, pp. 260-271, 2017.

S. Li, D. C. Wunsch, E. A.O' Hair, and M. G. Giesselmann, "Using neural networks to estimate wind turbine
power generation," /EEE Transactions on Energy Conversion, vol. 16, no. 3, pp. 276-282, Sep 2001.

M. Carolin Mabel and E. Fernandez, "Analysis of wind power generation and prediction using ANN: A
case study," Renewable Energy, vol. 33, no. 5, pp. 986-992, 2008.

F. Pelletier, C. Masson, and A. Tahan, "Wind turbine power curve modelling using artificial neural network,"
Renewable Energy, vol. 89, pp. 207-214, 2016.

M. N. Jyothi and P. V. R. Rao, "Very-short term wind power forecasting through Adaptive Wavelet Neural
Network," presented at the 2016 Biennial International Conference on Power and Energy Systems:
Towards Sustainable Energy (PESTSE), 2016.

R. P. Shetty, A. Sathyabhama, P. P. Srinivasa, and A. A. Rai, "Optimized Radial Basis Function Neural
Network model for wind power prediction,” presented at the 2016 Second International Conference on
Cognitive Computing and Information Processing (CCIP), Mysore, 2016.

P. Zhao, J. Wang, J. Xia, Y. Dai, Y. Sheng, and J. Yue, "Performance evaluation and accuracy enhancement
of a day-ahead wind power forecasting system in China,” Renewable Energy, vol. 43, pp. 234-241, 2012.
J. Liu, X. Wang, and Y. Lu, "A novel hybrid methodology for short-term wind power forecasting based on
adaptive neuro-fuzzy inference system," Renewable Energy, vol. 103, pp. 620-629, 2017.

D. Karamichailidou, V. Kaloutsa, and A. Alexandridis, "Wind turbine power curve modeling using radial

27



basis function neural networks and tabu search," Renewable Energy, vol. 163, pp. 2137-2152, 2021.
S. AG. (2011). Siemens Wind Turbine SWT-3.6-120 [Online]. Available: www.siemens.com/energy.
Y. Zhao, J. Pei, and H. Chen, "Multi-layer radial basis function neural network based on multi-scale kernel

learning," Applied Soft Computing, vol. 82, 2019.

V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection,” ACM Computing Surveys, vol. 41, no. 3, pp.
1-58, 20009.

Y. Zhu, C. Zhu, C. Song, Y. Li, X. Chen, and B. Yong, "Improvement of reliability and wind power generation
based on wind turbine real-time condition assessment," /nternational Journal of Electrical Power & Energy
Systems, vol. 113, pp. 344-354, 2019.

Y. Jiang, L. Guo, and S. You, "Research on nodal wind power values and optimal accommodation based
on locational marginal price," /nternational Journal of Electrical Power & Energy Systems, vol. 109, pp.
343-350, 2019.

A. Kisvari, Z. Lin, and X. Liu, "Wind power forecasting — A data-driven method along with gated recurrent
neural network," Renewable Energy, vol. 163, pp. 1895-1909, 2021.

F. T. Liu, K. M. Ting, and Z.-H. Zhou, "Isolation Forest," presented at the 2008 Eighth IEEE International
Conference on Data Mining, 2008.

S. Haykin, Neural Networks and Learning Machines, 3rd ed. Pearson Education, Inc., 2009.

S.-K. Oh, W.-D. Kim, W. Pedrycz, and S.-C. Joo, "Design of K-means clustering-based polynomial radial
basis function neural networks (pRBF NNs) realized with the aid of particle swarm optimization and
differential evolution,” Neurocomputing, vol. 78, no. 1, pp. 121-132, 2012.

H. Sarimveis, A. Alexandridis, G. Tsekouras, and G. Bafas, "A Fast and Efficient Algorithm for Training Radial
Basis Function Neural Networks Based on a Fuzzy Partition of the Input Space,” /ndustrial & Engineering
Chemistry Research, vol. 41, 4, pp. 751-759, 2002.

A. Alexandridis, E. Chondrodima, and H. Sarimveis, "Radial basis function network training using a
nonsymmetric partition of the input space and particle swarm optimization," /EEE Trans Neural Netw
Learn Syst, vol. 24, no. 2, pp. 219-30, Feb 2013.

A. Alexandridis, H. Sarimveis, and K. Ninos, "A Radial Basis Function network training algorithm using a
non-symmetric partition of the input space — Application to a Model Predictive Control configuration,”
Advances in Engineering Software, vol. 42, no. 10, pp. 830-837, 2011.

A. Alexandridis and E. Chondrodima, "A medical diagnostic tool based on radial basis function classifiers
and evolutionary simulated annealing," J Biomed Inform, vol. 49, pp. 61-72, Jun 2014.

J. Nie, "Fuzzy control of multivariable nonlinear servomechanisms with explicit decoupling scheme," /EEE
Transactions on Fuzzy Systems, vol. 5, no. 2, pp. 304-311, May 1997 1997.

A. Alexandridis, P. Patrinos, H. Sarimveis, and G. Tsekouras, "A two-stage evolutionary algorithm for
variable selection in the development of RBF neural network models,” Chemometrics and Intelligent
Laboratory Systems, vol. 75, no. 2, pp. 149-162, 2005.

A. Hertz and D. d. Werra, "The tabu search metaheuristic: How we used it,” Annals of Mathematics and
Artificial Intelligence, vol. 1, pp. 111-121, September 1990.

M. Kumar, A. Sahu, and P. Mitra, "A comparison of different metaheuristics for the quadratic assignment
problem in accelerated systems," Applied Soft Computing, vol. 100, 2021.

M. Abadi et al, 12th USENIX Symposium on Operating Systems Design and Implementation (OSD/° 16)
(TensorFlow: A System for Large-Scale Machine Learning). Savannah, GA: USENIX Association, 2016.
Y.-Y. Hong and C. L. P. P. Rioflorido, "A hybrid deep learning-based neural network for 24-h ahead wind
power forecasting," Applied Energy, vol. 250, pp. 530-539, 2019.

N. Chen, Z. Qian, I. T. Nabney, and X. Meng, "Wind Power Forecasts Using Gaussian Processes and
Numerical Weather Prediction," /EEE Transactions on Power Systems, vol. 29, no. 2, pp. 656-665, 2014.

28



[35]

M. G. Lobo and I|. Sanchez, "Regional Wind Power Forecasting Based on Smoothing Techniques, With
Application to the Spanish Peninsular System," /EEE Transactions on Power Systems, vol. 27, no. 4, pp.
1990-1997, 2012,

J. Wang, W. Yang, P. Du, and Y. Li, "Research and application of a hybrid forecasting framework based on
multi-objective optimization for electrical power system,” Energy, vol. 148, pp. 59-78, 2018.

S. Hanifi, X. Liu, Z. Lin, and S. Lotfian, "A Critical Review of Wind Power Forecasting Methods—Past, Present
and Future," Energies, vol. 13, no. 15, 2020.

C. M. St. Martin, J. K. Lundquist, A. Clifton, G. S. Poulos, and S. J. Schreck, "Wind turbine power production
and annual energy production depend on atmospheric stability and turbulence,” Wind Energy Science,
vol. 1, no. 2, pp. 221-236, 2016.

Z. Lin and X. Liu, "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA
data and deep learning neural network," £nergy, vol. 201, 2020.

F. X. Diebold and R. S. Mariano, "Comparing Predictive Accuracy," Journal of Business & Economic Statistic,
vol. 13, no.3, pp. 253-263, July 1995.

D. Harvey, S. Leybourne, and P. Newbold, "Testing the equality of prediction mean squared errors,"
International Journal of Forecasting, vol. 13, no. 2, pp. 281-291, June 1997.

29



