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An Analytical Model for Solar Energy Reflected from Space with Selected
Applications

Onur Çelika,∗, Colin McInnesa

aJames Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom

Abstract

Orbiting solar reflectors can be employed to redirect incoming sunlight to provide/reject additional
solar energy to/from a planetary body. The concept has been studied in the past for a variety
of applications, among which enhancing terrestrial solar power generation, supporting lunar ex-
ploration and terraforming Mars are the most prominent. Despite the potential of the concept,
previous studies have assumed a perfect reflector, and have only relied on simplified geometric
analyses to calculate the quantity of energy delivered with minimal consideration of geometric
and physical losses. In this paper, an analytical model is developed for a reflector in a circular
orbit to calculate the total energy delivered to a stationary ground-target, such as a solar power
farm. A perfectly ideal flat reflector is also assumed to avoid material specific considerations but
atmospheric transmission losses, fixed ground-target size and solar panel orientation are included.
Case studies demonstrate the significance of high-fidelity modelling, provide new insights into the
scalability of the results to test the effectiveness of the concept at different solar system objects
including delivering solar energy at the Earth, Moon and Mars.

Keywords: orbiting solar reflectors, space-based solar energy, mathematical modelling, solar
system applications

Nomenclature

A = area, km2

a = semi-major axis of solar image, km
b = semi-minor axis of solar image, km
c = empirical parameter
D = diameter, km
d = slant range, km
E = energy, GWh
h = altitude, km
I = solar intensity, GW/km2

k = empirical parameter
P = power, GW
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R = radius, km
r = radius, km
q = generic parameter
T = orbit period, sec
t = time, sec
u = polar angle, rad
x, y = cartesian coordinates
α = angle subtended by the Sun, rad
β = half of central angle, rad
γ = instantaneous angle during orbital pass, rad
δ = tilt angle, rad
ε = elevation angle, rad
κ = scaling coefficient
µ = gravitational parameter, km3/s2

ω = orbital angular rate, rad/s
ψ = angle between incoming and outgoing sunlight, rad
φ = generic angle
ρ = distance to the Sun, AU
σ = power density, GW/km2

τ = atmospheric transmission efficiency
θ = generic angle
Subscripts
a = semimajor axis
b = semiminor axis
E = Earth
el = elevation
im = image
lim = limit
lx = lux
M = reflector/mirror
o = orbit
pass = orbital pass
sf = solar farm/ground target
sun = Sun
Superscripts
0 = beginning; first
circ = circle
eff = effective
ell = ellipse
f = end; last

1. Introduction

Orbiting solar reflectors are mirrors that can be utilised to redirect sunlight to a planetary body
or back to space, either to input or to reject additional solar energy. Such reflectors have been
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of interest for night-time illumination and other solar energy related applications even before the
modern space era (Oberth, 1929). The idea had a considerable traction from the late 1960s through
the beginning of the 1980s, and a number of studies have been performed to assess the feasibility
of orbiting solar reflectors for terrestrial electricity generation (Buckingham & Watson, 1968; Bill-
man et al., 1977; Ehricke, 1979), night-time illumination (Rush, 1977; Canady & Allen, 1982) and
agricultural and climate applications (Ehricke, 1979). However, some of these applications antici-
pated falling launch costs through regular space shuttle flights, which never materialised. Further
attempts to demonstrate the effectiveness of orbiting solar reflectors in the early 1990s have also
been discontinued (Leary, 1993). With the growing interest towards renewable energy, commer-
cialisation of launch services, as well as advances in on-orbit fabrication, the concept of orbiting
solar reflectors has been revisited in the 21st century (Potter & Davis, 2009; Fraas, 2012; Fraas
et al., 2013; Lior, 2013; Bonetti & McInnes, 2019). Recent studies primarily focus on extending the
utilisation hours of terrestrial solar energy in the critical dawn/dusk period, where demand is high
but supply is limited or non-existent, due to the low elevation of the Sun (Fraas, 2012; Fraas et al.,
2013). Employment of orbiting solar reflectors on appropriate orbits, such that they regularly visit
terrestrial solar farms, would help offset the shortfall of solar energy supply and address one of
the drawbacks of terrestrial solar energy, i.e. daylight only limitation. Furthermore, orbiting solar
reflectors have also been proposed for a variety of other applications at the Moon and Mars, e.g.
to supplement the power requirements of a potential human outpost and long-term applications
such as Mars climate engineering (Bewick et al., 2011; Gillespie et al., 2020; McInnes, 2009).

However, despite the promise, and nearly a century-old history of the orbiting solar reflector
concept, previous work has relied on simplified algebraic expressions to calculate the energy deliv-
ered to a ground target. Ignoring the full dynamics of the orbital pass, the solar energy delivered
has previously been calculated at the zenith point, and the results extrapolated with minimal con-
sideration of losses due to the fixed ground target size, orientation and atmospheric transmission
losses during the reflector’s orbital pass. In Canady & Allen (1982), the authors used the entire
reflected solar image for illumination purposes and considered energy transfer at the zenith point
only, despite the geometric losses during an orbital pass. The authors then added fixed physical
loss coefficients to account for atmospheric losses, reflectance and reflector wrinkling but did not
account for geometric losses (Canady & Allen, 1982). In Fraas (2012), the authors attempted
to implement the geometric losses in a simplified calculation without the physical losses due to
atmospheric transmission (Fraas, 2012). This latter work also ignored the effect of fixed ground
target area and solar panel orientation which are imperative for more accurate calculations of the
quantity of the energy delivered to a solar farm (Fraas, 2012). Even though Bonetti & McInnes
(2019) presented more accurate modelling, they did not provide detailed analytical insights into
the various aspects of solar energy delivery to a ground target (Bonetti & McInnes, 2019).

In this paper, an analytical model of the energy delivered through reflected sunlight to a
stationary ground target is presented. The main assumptions are that the reflector is in a polar
or near-polar circular orbit in the dawn/dusk terminator region and a direct overhead pass is
considered. The former assumption means that the reflector has a fixed pitch angle relative to the
Sun, which simplifies the final integral expression of the energy delivered, but does not discount
its relevance for solar energy applications. Moreover, the reflector is assumed ideal, i.e., flat and
perfectly reflecting, to avoid material-specific considerations. However, the analysis will capture the
full time-varying geometry of the energy transfer process, including the losses due to atmospheric
transmission. Furthermore, the results are expanded to other solar system bodies and the scalability
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aspects of the problem are discussed.
The paper begins by providing the basic geometric relationships relevant to determining the

reflected solar image size in Sec. II. After presenting the ideal form of an energy integral and its
closed-form solution in Sec. III, the impact of fixed ground-target area, ground-target orientation
and time-dependent atmospheric transmission efficiency due to the motion of the reflector are
implemented in the model. In Sec. IV, case studies are presented for various terrestrial and solar
system applications. Conclusions and the implications of the results are presented in the final
section of the paper.

2. Geometry of the solar image

The geometry between a reflector in orbit and a ground target during an orbital pass is illus-
trated in Figure 1.

Figure 1: Geometry during an orbital pass. Image not to scale. Sun-line is into the page. During the orbital pass
in a dawn/dusk orbit, the reflector is pitched at a fixed angle relative to the Sun, such that it reflects the incoming
sunlight towards the planetary body.

The reflector will first rise above the horizon of the ground target at the point where a line
extended in the local horizontal plane of the ground target intersects the orbit, as shown in Fig.
1. Another point symmetric with respect to the ground target defines the point where contact
with the ground target ceases. Two lines extended from the center of the planetary body to these
intersection points, defining an angle, denoted as 2β, which the reflector covers during its pass over
the ground target. Because the pass is symmetric from rise to zenith, and zenith to set, β can be
found by using the trigonometric relationships as follows:

β = arccos
R

R+ h
(1)
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The pass duration, Tpass, will then be the time it takes for the reflector to cover the angle 2β,
which is a fraction of the orbit period. First the period of a circular Keplerian orbit is calculated
as follows:

T = 2π

√
(R+ h)3

µ
(2)

where µ denotes the gravitational parameter, R is the average radius of the planetary body and h
is the orbit altitude from the surface. Then, pass duration can be expressed as

Tpass =
2βT

2π
=
T

π
arccos

R

R+ h
(3)

so that Tpass is the time during which solar energy can be delivered to the ground target. During
this time, the size and shape the solar image reflected on the ground will vary depending on the
reflector’s location in the sky with respect to the ground target. The image will have the shape
of an ellipse at the beginning of a pass and will gradually circularise until the reflector is exactly
above the ground target halfway through its pass, before stretching back to an ellipse. The exact
shape of the image is determined by the elevation and an associated slant range d of the reflector
from the ground target, as shown in Figure 1. If the angle between the line connecting the centre
of the planetary body to the reflector and the line connecting the centre of the planetary body to
the ground target at a given time is γ ∈ [-β, β], the slant range d can be found as:

d =
√
R2 + (R+ h)2 − 2R(R+ h) cos γ(t) (4)

Moreover, since the rate of change of γ is equal to the orbit angular rate ωo = 2π
T , it can also be

written as γ(t) = ωot - β, where at t = 0, γ(0) = -β and t = Tpass, γ(Tpass) = β. One can confirm
then from the geometry in Fig. 1 and from Eq. 4 that halfway through the pass, γ = 0 and d = h.

As the reflector sweeps an angle 2β, it also covers π radians of elevation, ε, from rise to set
with respect to the ground target. From the triangle that the semi-major axis, the slant range and
the radius of planetary body form in Fig. 1, a relationship can be written to express the elevation
angle as a function of time by using the sine law:

R+ h

sin(π/2 + ε(t))
=

d(t)

sin(ωot− β)

⇒ ε(t) = arccos
(R+ h) sin(ωot− β)

d(t)

(5)

If the orbital altitude is high enough, such that the rate of elevation change is slow, the rate at
which the elevation angle changes can also be written as

ωel =
π

Tpass
=

π
2βT
2π

=
πωo
2β

(6)

The elevation angle as a function of time can then be written as:

ε(t) = ωelt =
πωo
2β

t (7)

The difference between the two elevation angle expressions in Eq. 5 and 6 is that the for-
mer changes with a variable angular rate whereas the latter changes at a constant angular rate.
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Figure 2: Geometry of the reflected image (adapted from (Canady & Allen, 1982)). Orbital motion is into the page.
Larger image shows the general appearance of the reflected solar image when the finite size of the reflector is included
in the size of the solar image on ground. The insert shows the geometry of the reflected solar image when the reflector
is assumed point-like, which is the case in this study. The assumption of fixed pitch angle is also considered in the
point-like mirror.

The validity of the constant rate elevation angle approximation must be tested according to the
application considered.

Then, from the geometry provided in Fig. 2, the semi-major axis a and semi-minor b of the
solar image on the ground can be written as follows:

b(t) = d(t) tan (α/2) (8a)

a(t) =
b(t)

sin ε(t)
(8b)

where α is the angle subtended by the Sun and calculated according to Fig. 2 as follows:

α = 2 arctan
Rsun −R
ρsun

(9)

where Rsun denotes the radius of the Sun, i.e., 696500 km (Giorgini, 2015), and ρsun denotes the
distance from the Sun. According to Eq. 9, α is equal to 0.0093 radians at the mean Earth distance
from the Sun, i.e. 1 Astronomical Unit (AU).

At this stage, it is helpful to make use of the trigonometric relationship sin(arccos θ) =
√

1− θ2
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to rewrite sin ε(t) as

sin ε(t) =

√√√√1−

(
(R+ h) sin(ωot− β)

d(t)

)2

=

√
R2 − 2R(R+ h) cos (ωot− β)− (R+ h)2(1− sin(ωot− β)2)

d(t)2

=

√
(R− (R+ h) cos(ωot− β))2

d(t)2

= ±R− (R+ h) cos(ωot− β)

d(t)

(10)

As the length must be a positive value, after evaluating the outputs of Eq. 10 in Eq. 8b, the
appropriate sin ε(t) expression would then be:

sin ε(t) =
(R+ h) cos(ωot− β)−R

d(t)
(11)

Then, a(t) in Eq. 8 can also be rewritten as

a(t) =
d(t)2 tan(α/2)

(R+ h) cos(ωot− β)−R
(12)

One may notice from the analysis that the image semi-major axis a is stretched to infinity at
the instant the spacecraft rises (and sets) at the horizon since the elevation angle ε = 0 (and π) and
becomes equal to b at the zenith (ε = π/2), i.e. the solar image becomes circular. Then, finally,
the area of the solar image, Aim is written as (Canady & Allen, 1982):

Aim(t) = πa(t)b(t) = π
[d(t) tan (α/2)]2

sin ε(t)
(13)

from Eq. 8 and by substituting Eq. 11 into Eq. 13, the image area yields

Aim(t) =
πd(t)3 tan (α/2)2

(R+ h) cos(ωot− β)−R
(14)

In this form, the reflector is assumed to be a point source. If the area of the finite size of the
reflector is added in the analysis, then Eq. 13 should be modified as follows:

Aim(t) =
π

sin ε(t)

[
(d(t) tan (α/2))2 +

(DM cosψ/2)2

4

]
(15)

where DM denotes the reflector diameter and ψ denotes the angle between the incoming and
reflected sunlight, as shown in Fig. 2. The first term in Eq. 15 can also be expressed in terms
of Eq. 14. Even though it will not be considered in this work, the impact of the finite-size of
the reflector may not negligible in the energy delivery calculations, especially when the reflector is
large and/or at lower altitudes, where the solar image is small. For example, at 1000 km altitude
for a polar Earth orbit, where ψ = 90o, the area of the circular solar image at the zenith point
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is found 67.93 km2 from Eq. 13, whereas by using Eq. 15, the same area is equal to 68.33 km2,
i.e., the contribution of the finite size of a 1 km reflector to the area of the solar image is only 0.4
km2 or approximately 0.5% of the area with the point-mass reflector. Therefore, the finite size of
a reflector may be ignored in cases similar to this, but it needs to be evaluated in relation with the
orbit altitude and the size of the reflector when large reflectors and/or low altitudes are considered.

The geometric relationships presented in this section will be used to calculate the total energy
delivered in the next section.

3. Integral of Delivered Energy

The energy collected by the reflector with area AM is delivered across an image area Aim(t)
during an orbital pass. The power density on the ground can be expressed by the following
relationship:

σM = Io
AM
Aim(t)

cos
ψ

2
(16)

where σM is power density, Io is the solar constant defined as the mean solar energy per unit area,
decreasing by the inverse-square of the distance from the Sun, ψ is defined as the incidence angle
between incoming and outgoing sunlight and is fixed in this study due to the dawn/dusk type orbit
selected. From Eq. 16, it can be observed that the larger the image is, the lower the power density
on the ground. This is why a lower altitude orbit is in principle preferable, as the power density
is higher with the smaller image area for a given size of reflector. The penalty for lower altitude
orbits is a shorter pass duration as well as increasing perturbations, e.g. atmospheric drag for the
Earth, which are out of scope this study. The power received by a ground target with area Asf
can then be written as:

Psf = σMAsf = Io
AMAsf
Aim(t)

cos
ψ

2
(17)

Finally, one can determine the total energy delivered by integrating Eq. 17 such that:

Esf =

∫ Tpass

o
Psfdt = IoAMAsf cos

ψ

2

∫ Tpass

o

1

Aim(t)
dt

= IoAMAsf
cosψ/2

π(tanα/2)2

∫ Tpass

o

(R+ h) cos(ωot− β)−R
(
√
R2 + (R+ h)2 − 2R(R+ h) cos (ωot− β))3

dt

(18)

Equation 18 can be analytically solved by using Mathematica and the following solution is found
after rearranging the result:

Esf = IoAMAsf
cosψ/2

π(tanα/2)2
1

ωo

[F (m|n)

Rh
− E(m|n)

R(2R+ h)
− 2(R+ h) sin(β − ωot)

(2Rh+ h2)
√

2R(R+ h)(1− cos(β − ωot)) + h2

]∣∣∣∣∣
Tpass

0
(19)

where F (m|n) and E(m|n) are elliptic integrals of first and second kind, respectively. Their pa-
rameters m, n are given as

m =
β − ωot

2
(20a)

n =
−4R(R+ h)

h2
(20b)
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The quantity of solar energy delivered can then be computed within the integral bounds [0, Tpass].
However, even before solving the integration in Eq. 18, one can infer the energy delivery properties
at a given instant during a pass from Eq. 17. Given that the reflector and the ground-target area,
as well as the incidence angle are fixed, the only property that determines the energy delivered
at each instant of time is the image area. Recall that the solar image starts from being infinitely
stretched and reaches to its minimum area at the zenith, before becoming infinitely stretched at
the end of the pass. Hence, the power density begins from zero, reaching its maximum before
decreasing to zero again.

The above integral in Eq. 18 is presented for an idealised case with no losses, for a flat surface
or solar panels on the ground, and assumes that the entire ground target is available for energy
reception during a pass. The last assumption may especially be strong and not true for all altitudes
if the solar image is not large enough to cover the entire ground target. In the following subsections,
this and a number of other non-ideal conditions will be discussed.

3.1. Effective ground-target area

In the ideal case of a circular ground target, such as a solar power farm, there will be a minimum
altitude at which the minimum image size at zenith will be exactly the same size as the ground
target. From Fig. 1, consider the following relationship for the image diameter at the zenith point
as:

Dim = h tanα (21)

Note that the finite size of the reflector is not included in Eq. 21. The altitude at which the
minimum image size would be the same size Dsf as the ground target size can then be found as:

hlim =
Dsf

tanα
(22)

Note the ground-target diameter Dsf , instead of the image diameter Dim, is used to find this
limiting altitude. Moreover, hlim can also be found by rewriting Eq. 22 in terms of Rsf and
tanα/2. In that case, it is found that there occurs a slight underestimation of this limiting altitude
due to the tangent function, which may be important when optimising the image size for a given
ground target. As an example, hlim = 1074.2 km for Dsf = 10 km and α = 0.0093 rad from Eq.
22, whereas hlim = 1074.3 km for Rsf = 5 km and α/2 = 0.00465 rad, when Eq. 22 is rewritten
to define this altitude in terms of the ground target radius, Rsf and α/2.

The implication of hlim is that, for any altitude h ≥ hlim, the entire ground target area can be
used to receive energy delivered from a reflector spacecraft. On the other hand, when h < hlim a
more detailed area relationship must be considered to model the delivered energy more accurately.
This relationship can be expressed as:

Aeffsf =

{
h ≥ hlim Asf

h < hlim Aeffsf

(23)

where Aeffsf is the effective ground target area. As expressed in Eq. 23, Aeffsf (t) needs to be
evaluated with respect to Aim(t) during an orbital pass to calculate the ground-target area that is
illuminated. For a reflector spacecraft at an altitude h < hlim, three distinct cases can be identified
as shown in Fig. 3.
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Figure 3: Three distinct cases of the solar image area in relation to the ground target area. Top figure: the solar
image is stretched initially and becomes a circle at the zenith point before stretching through the end of orbital pass.
At time tb and ta, the semi-minor and semi-major axes dimensions of the solar image become equal to the ground
target radius, respectively. Bottom figure: Depending on the time during the orbital pass, the effective ground target
area changes as the solar image changes during the pass.

At the beginning of the pass, in principle the entire ground target area would be available for
energy reception. This is essentially the same case as for h ≥ hlim, except that it does not hold
when the semi-minor of the solar image b(t) is less than the ground-target radius, Rsf , after some
time tb, which can be calculated as

Rsf = b(tb) = d(tb) tanα/2

=
√
R2 + (R+ h)2 − 2R(R+ h) cos (ωotb − β) tanα/2

⇒ tb =
1

ωo

[
arccos

(R2 + (R+ h)2 − (Rsf/ tan(α/2))2

2R(R+ h)

)
+ β

] (24)

Equation 24 provides tb after the zenith point, denoted as tfb , i.e., when the reflector is descend-
ing to the horizon. To calculate tb before the zenith point, i.e., t0b , following expression must be
used:

tb =
1

ωo

[
β − arccos

(R2 + (R+ h)2 − (Rsf/ tan(α/2))2

2R(R+ h)

)]
(25)

Note that semi-minor axis b(t) of the solar image may be smaller than Rsf at all times depending
on the size of the ground target and the orbit altitude, and this phase may never occur.
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One can also calculate point the time point ta, at which the semi-major axis of the solar image
a(t) is equal to the ground target radius, Rsf , as

Rsf = a(ta) =
d(ta)

2 tan(α/2)

sin ε(t)

=
[R2 + (R+ h)2 − 2R(R+ h) cos (ωota − β)] tan(α/2)

R− (R+ h) cos(ωota − β)

⇒ ta =
1

ωo

[
arccos

( [R2 + (R+ h)2] tan(α/2)−RsfR
(R+ h)[2R tan(α/2)−Rsf ]

)
+ β

] (26)

The same arrangement in Eq. 25 can be made to find ta before the zenith point. Once t ≥ ta, the
solar image would be contained entirely inside the ground target, and the effective ground-target
area would equal the image area itself, i.e. Aeffsf = Aim(t). An important point to note for this

phase is that, because the energy is only received via the ground-target area equal to Aeffsf = Aim(t),
the power received by the ground target would be constant and equal to Psf = IoAM cosψ/2, with
no other effect considered. Also note that, contrary to tb, ta can always be found, as a(t) becomes
infinite in the beginning of the pass before decreasing and tending again towards infinity.

In between the tb and ta time points, there is a phase where only a portion of the solar image
would overlap with a portion of the ground target, with the rest of the image outside the ground-
target boundary. This case requires a more detailed effective ground-target area calculation, as the
area contained within the ground target is not a simple geometric shape anymore, but is within
the intersection of the ground-target boundary and the instantaneous image ellipse, as shown in
Fig. 3. If a cartesian axis set is centered at the common origin of the ground-target circle and the
image ellipse, the intersecting area can be divided to four equal parts and the intersecting area can
be calculated by a combination of elliptical and circular sections in one of those parts. A schematic
of this division is shown in Fig. 4. First, the intersection point of the ground-target circle and

Figure 4: Schematic of intersecting area calculation
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the instantaneous image ellipse is found in cartesian coordinates from the mutual solution of the
definition of the circle and ellipse, by rewriting both as y = f(x). The intersection point can
therefore be found from:√

x2 −R2
sf =

√
(a(t)b(t))2 + (b(t)x)2

a(t)2

⇒ x(t) =

√
(a(t)b(t))2 + (a(t)Rsf )2

a(t)2 − b(t)2
=

√
b(t)2 +R2

sf

1−
( b(t)
a(t)

)2 =

√
b(t)2 +R2

sf

cos ε(t)

⇒ x(t) =
d(t)

√
[d(t) tan(α/2)]2 +R2

sf

(R+ h) sin(ωot− β)

(27)

where the intersection coordinate y(t) can be found by substituting x(t) in the equation defining
the circle formed by the ground target. Then, the angle of this point in polar coordinates is
calculated as θ(t) = arctan y(t)/x(t). Using the fact that the radial distance from the origin equals
the ground-target radius at the intersection point, the area of the circular portion defined by angle
θ can be found as

Acircθ =
θ

2π
πR2

sf =
θ

2
R2
sf (28)

The remaining portion of the intersecting area is defined by an elliptical portion of the solar
image. The generic formula of the area of an elliptical section can be found by parameterising the
ellipse (for the details of the derivation, see Appendix A):

Aellθ =
1

2
ab arctan

a tan θ

b
(29)

However, in this problem, the area of the elliptical portion needed is defined by the angle π/2-
θ(t). Simply substituting π/2-θ(t) in Eq. 29 would result in an erroneous area due to the geometry
of the ellipse. Instead, the area of the elliptical portion defined by the angle θ must be subtracted
from the area of the elliptical portion defined by the angle π/2 to find the desired area. Note that
the latter is equal to the quarter of the area of an ellipse. Then, the following expression can be
used to find Aellθ :

Aellθ (t) =
πa(t)b(t)

4
− 1

2
a(t)b(t) arctan

a(t) tan θ(t)

b(t)

=
πb(t)2

4 sin ε(t)
− b(t)2

2 sin ε(t)
arctan

tan θ(t)

sin ε(t)

(30)

The sum of the circular and elliptical areas from above expressions then yield a quarter of the
total intersecting area contained within the ground-target boundaries. Then, the total area can be
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found as:

Aeffsf (t) = 4(Acircθ (t) +Aellθ (t)) = 4
[θ(t)

2
R2
sf +

πb(t)2

4 sin ε(t)
− b(t)2

2 sin ε(t)
arctan

tan θ(t)

sin ε(t)

]
= 2θ(t)R2

sf +
2b(t)2

sin ε(t)

[π
2
− arctan

tan θ(t)

sin ε(t)

]
= 2θ(t)R2

sf +
2d(t)3 tan(α/2)

R− (R+ h) cos(ωot− β)

[π
2
− arctan

y(t)

x(t)

d(t)

(R− (R+ h) cos(ωota − β))

]
(31)

As noted earlier, if b(t) is already smaller than the ground target radius at the beginning of an
orbital pass, the above expression would then describe the effective ground target area before the
solar image is fully contained in the ground target boundaries at ta.

Finally, after the effective ground-target area expressions for each phase are presented, the
following conditions can be defined:

Aeffsf =


πR2

sf , t ∈ [0, t0b ]; t ∈ [tfb , Tpass]

πa(t)b(t), t ∈ [t0a, t
f
a ]

Eq. 31, t ∈ (t0b , t
0
a); t ∈ (tfa , t

f
b )

(32)

As a result, the integration presented in Eq. 18 now needs to be separated into three phases
with appropriate integration limits in accordance with Eq. 32, with no other effects considered.
Because the profile is symmetric, it is in fact sufficient to integrate the appropriate expressions
until Tpass/2 and then multiply by two.

In addition to the areal relationships, the ground-target orientation will also introduce further
issues to consider for solar energy delivery from space. This case would be most relevant to tilted
photovoltaic panels at a solar power farm, as will be considered next.

3.2. Solar panel tilt

Thus far, the analysis has intrinsically assumed that the ground target is parallel to the local
horizontal plane. This is often not the case in real solar farms, where a tilt angle is introduced
to optimise the collected solar energy. However, in the case of reflected solar energy during an
orbital pass, the tilt angle reduces the effectiveness of the energy delivery. That is to say, even if
the reflector spacecraft projects the solar image on ground, after a certain elevation angle, it would
project this image to the “back” of the panels. While this does not alter the energy delivered to
the ground, the reflected sunlight becomes ineffective as the back of solar panels are generally not
designed to transform the solar energy into electricity.

The panel tilt means that there is in fact an effective pass duration, T effpass < Tpass, and it is a

function of the panel tilt angle. From Fig. 1, T effpass occurs when the elevation angle ε(t) becomes
π − δ. Then, the following quadratic equation can be derived to determine when this occurs, i.e.,
T effpass:

ε(t) = π − δ = arccos
(R+ h) sin(ωot− β)√

R2 + (R+ h)2 − 2R(R+ h) cos(ωot− β)

⇒ cos(ωot− β)2 − 2
( R

R+ h

)
cos(δ)2 cos(ωot− β) +

[
cos(δ)2

(( R

R+ h

)2
+ 1

)
− 1

]
= 0

(33)
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If the transformation q = cos(ωot − β) is made, the real roots of Eq. 33 after the transformation

can be used to find T effpass as

T effpass =
1

ωo
[arccos(q1,2) + β] (34)

where T effpass is selected for 0 < T effpass ≤ Tpass and δ ≤90o. The introduction of T effpass makes the

separate cases in the previous subsection further separated depending on which phase T effpass occurs.
The power profile will no longer have symmetry, in at least one of the phases, as long as δ > 0.
While the integration itself is the same throughout, each phase needs to be calculated separately
before being summed to yield the total delivered energy.

In addition to effective ground-target area and the solar panel orientation, the energy received
on the ground will experience further losses due to atmospheric transmission, which is discussed in
the next subsection.

3.3. Atmospheric Losses

3.3.1. Transmission losses in the atmospheres

Solar energy passing through the atmosphere experiences scattering, attenuation and absorp-
tion before reaching the ground. Whilst the exact expressions for each physical phenomena may
be difficult to incorporate into the solar energy delivery integral, it is possible to implement trans-
mission losses in the form of transmission efficiency. One such empirical expression can be found
for the Earth from Hottel (1976):

τ(t) = c0 + c1e
−k sec(π/2−ε(t)) (35)

where τ(t) is a time-dependent coefficient that describes the transmission efficiency of solar radia-
tion through an atmosphere that is free of clouds. This empirical expression provides a simple and
straightforward measure to assess the transmission losses for a given elevation angle, ε, hence time
t during an orbital pass. The constants c0, c1, and k are provided in a table format for different
ground-target altitudes from sea level up to 2.5 km with 0.5 km intervals (Hottel, 1976). A set of
correction coefficients were also suggested by Hottel (1976) to account for the climatic variations
which include tropical, mid-latitude summer and winter, and sub-arctic summer (Hottel, 1976). In
this paper, sea-level conditions will be considered without any climate correction. The equation
then has the following form:

τ(t) = 0.1283 + 0.7559e−0.3878 sec(π/2−ε(t)) (36)

When specific ground targets are considered, appropriate interpolations can be made from the
tables provided in Hottel (1976) according to geographical information, including altitude and
climate. Figure 5 shows τ during an orbital pass according to Eq. 36.

The atmospheric loss increases at low elevations due to large slant ranges and gradually de-
creases until the zenith point, i.e. ε = 90o, where the slant range is minimum. However, even at
the zenith point, the transmission efficiency remains at approximately 64%. This value decreases
to levels approximately 13% at the beginning and the end of a pass, hence large losses may be
expected during solar energy transfer to the ground. According to Hottel (1976), the transmission
efficiency improves at locations higher than sea level, but does not exceed 70% (Hottel, 1976). Note
also for Eq. 35 and Fig. 5 that the energy lost in transmission can also be used for the calculation
of heat added to the Earth’s atmosphere during solar energy delivery.
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Figure 5: Atmospheric transmission efficiency τ during a pass for the Earth.

As for atmospheric transmission losses on Mars, Levine et al. (1977) provides a table of solar
radiation at the top of the atmosphere and on ground for Mars for varying atmospheric conditions
from clear sky to Martian dust storm (Levine et al., 1977). The transmission efficiency can then
be calculated for different regions and is provided as a table for yearly average daily solar radiation
(Levine et al., 1977). According to this study, the transmission efficiency is found between 0.7 and
0.85 from poles to equator, respectively. Equatorial regions are envisaged for near-term Martian
applications, hence the value 0.85 will be used to scale the energy delivery with no atmosphere for
the remainder of the paper.

For the Moon, the transmission is assumed perfect and any other transmission losses due
to lunar dust are assumed negligible. When other solar systems objects considered later in the
manuscript, the transmission losses will not be taken into account, and solar energy delivery will
be considered without any losses.

3.3.2. Cloud cover

Another source of loss in solar energy delivery is cloud cover. To the knowledge of the authors,
there is currently no expression that can be used similar to Eq. 35. That is because a model has
to incorporate both the global cloud coverage and solar irradiation at the same time, and do so in
a way that it can be implemented in the energy integrals presented throughout. However, Canady
& Allen (1982), Ehricke (1979), and Ehnberg & Bollen (2005) state that solar illumination in a
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cloudy day is no less than the quarter that of a clear day, and no less than the one-third in places
partly cloudy on average throughout the year for the Earth (Canady & Allen, 1982; Ehricke, 1979;
Ehnberg & Bollen, 2005), at least in the zenith point of a pass. In this study a cloudless sky will
be assumed throughout and no losses due to cloud cover will be implemented.

3.4. Final form of the energy integral

The final form of the integral includes the effective ground target area, orientation and atmo-
spheric transmission losses. As discussed earlier, the effective ground target area introduces three
different cases. Introduction of the ground target orientation introduces three further cases. There-
fore, even though the solution to the energy integral is the same as Eq. 18 throughout, different
cases must be considered for each phase. Their sum then yields the total solar energy received.
The nine cases are presented as follows:

• T effpass > tfb

Esf = IoAM cos(ψ/2)



Asf

π(tanα/2)2

[ ∫ t0b
0 τ(t) 1

Aim(t)dt+
∫ T eff

pass

tfb
τ(t) 1

Aim(t)dt

]
, t ∈ [0, t0b ]; t ∈ [tfb , T

eff
pass]

∫ tfa
t0a
τ(t)dt, t ∈ [t0a, t

f
a ]

2
π(tanα/2)2

∫ t0a
t0b
τ(t)

Aeff
sf (t)

Aim(t) dt, t ∈ (t0b , t
0
a); t ∈ (tfa , t

f
b )

(37)

• tfa < T effpass < tfb

Esf = IoAM cos(ψ/2)



Asf

π(tanα/2)2

∫ t0b
0 τ(t) 1

Aim(t)dt, t ∈ [0, t0b ]

∫ tfa
t0a
τ(t)dt, t ∈ [t0a, t

f
a ]

1
π(tanα/2)2

[ ∫ t0a
t0b
τ(t)

Aeff
sf (t)

Aim(t) dt+
∫ T eff

pass

tfa
τ(t)

Aeff
sf (t)

Aim(t) dt

]
, t ∈ (t0b , t

0
a); t ∈ (tfa , T

eff
pass]

(38)

• T effpass < tfa

Esf = IoAM cos(ψ/2)



Asf

π(tanα/2)2

∫ t0b
0 τ(t) 1

Aim(t)dt, t ∈ [0, t0b ]

∫ tfa
t0a
τ(t)dt, t ∈ [t0a, T

eff
pass]

1
π(tanα/2)2

∫ t0a
t0b
τ(t)

Aeff
sf (t)

Aim(t) dt, t ∈ (t0b , t
0
a)

(39)
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The above nine cases are presented for the sake of completeness. However, in most practical
situations, some of the cases presented can be discarded. For Earth-based solar energy applications,
the solar panel tilt angle δ is no greater than 45o (Jacobson & Jadhav, 2018), therefore the cut-off
in Tpass is likely to occur through the end of the pass at most low Earth orbit altitudes. This
implies that Eqs. 38 and 39 can be ignored while Eq. 37 is solved. Furthermore, if the reflector
altitude is high enough, such that h > hlim, then the entire ground-target area would be available
for solar energy delivery, reducing the number of equations to be solved to just one, i.e. Eq. 18.
It is indeed possible today, or in the future, that some solar energy applications at the Earth and
for other planetary bodies require higher tilt angles, lower or higher altitude orbits. The above
equations would then provide the complete set of solutions.

4. Selected applications

4.1. Solar energy delivery from polar orbits at the Earth

Terrestrial solar energy generation is restricted to daylight hours due to the rotation of the
Earth. The most prominent application of orbiting reflectors is therefore to extend the utilisation
hours of solar farms on the Earth. This extension may be considered for the dawn/dusk period
of each day, which is critical in terms of energy consumption, where demand is high but solar
energy supply is low (Fraas, 2012; Fraas et al., 2013). An orbiting solar reflector placed on a polar
orbit along the day/night terminator line could provide additional solar power to offset the drop in
supply. Such an orbit would ideally be a Sun-synchronous orbit, tracking the Sun throughout the
Earth’s orbit around the Sun and free of eclipses. If the same ground target is to be illuminated,
repeating ground-track orbits may also be considered.

In this paper, a circular polar orbit around the Earth perpendicular to the equator at 1000
km altitude is analysed for simplicity and conciseness. The Earth’s radius is taken as 6378.2 km
and its gravitational parameter µ as 3.986×105 km3/s2. As the orbit plane is perpendicular to the
incoming sunlight, the reflector attitude is pitched at 45o, such that ψ = 90o. During the pass
it is assumed that the reflector tracks the ground target, although the pitch angle relative to the
Sun remains fixed. In addition, this case study considers a 1 km diameter reflector and the ground
target is a 10 km diameter circular solar farm whose panels are tilted at δ = 15o. The comparison
is made with a case where during the pass there is no loss in atmospheric transmission, the entire
solar farm area is available for energy reception and the solar panels are parallel to the ground.
The delivered power profile is then presented in Fig. 6.

At 1000 km altitude, a reflector would have an orbit period T = 105 min and Tpass = 1057.4
sec or 17.6 min. At δ = 15o, only 850.8 sec would be effectively used for solar energy reception
at the solar power farm. This may seem a modest loss, but it is 15% of the total available pass
duration, and eventually further decreases the total energy delivered. During this effective pass
duration, the reflected solar image is larger than the solar farm most of the time (blue dotted
line), and is contained within the farm boundaries (yellow dotted line) after a brief period where
a portion of the solar image illuminates a portion of the solar farm (red dotted line). The total
energy delivered, Esf , as the area under the curve, equals 0.0350 GWh. If δ = 0, Esf would be
0.0352 GWh. Although this difference is small, a slight increase in the tilt angle would result in
a much higher loss in the delivered energy as the profile is exponential-like before and after the
zenith point.

The contrast with the no-loss case is stark. In the case where there are no losses considered, the
total deliverable energy is exaggerated by the absence of atmospheric losses and the availability of
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Figure 6: Delivered solar power profile from a 1000-km polar orbit around Earth. The diameters of reflector and
solar farm are 1 km and 10 km, respectively. Solar panel tilt is 15o.

the entire solar farm at all times. The total delivered energy in this case is equal to 0.063 GWh,
i.e. 1.8 times the value calculated with losses. It may also be considered for simplicity that all of
the solar image area is available for energy reception. In that case, Aim(t) = Asf , therefore the
delivered energy equals Esf = IoAM (cosπ/4)Tpass from Eqs. 17 and 18. The delivered energy
would then be Esf = 0.223 GWh, or more than 6 fold of the delivered energy with losses. While
all of the image area would be available for nighttime illumination applications, the finite size of
the solar farm must be considered in electricity generation applications.

The most relevant comparison with the literature may be made with Fraas (2012). In Fraas
(2012), the authors consider a 10 km diameter reflector spacecraft at a 1000-km circular polar
sun-synchronous orbit (Fraas, 2012). The authors then provide the delivered energy from a single
spacecraft to a 10-km diameter solar farm. No panel tilt is implemented in Fraas (2012). For the
validity of the point-mass reflector approximation in the calculation of the solar image size, the
results in Fraas (2012) are adapted in this study for a 1 km diameter reflector. Table 1 shows a
comparison of Fraas (2012) and this study.
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Table 1: Delivered energy comparison between Fraas (2012) and this study for a 1 km diameter reflector at a 1000
km polar orbit

Study Losses
Effective
ground area

Delivered energy
during a pass [GWh]

Fraas (2012) Slant range losses, fixed ∼25% Fixed 0.161

This study
Atmospheric transmission,
variable during a pass

Variable 0.0352

As seen in Table 1, Fraas (2012) introduces a loss factor called “slant range losses,” which
the authors use as a source of loss that decreases the power density (Fraas, 2012). It is not clear
whether slant range losses are intended for losses due to a stretched elliptical solar image or both
for the stretched image and the atmospheric losses. To the understanding of this paper’s authors,
it is intended for areal losses and not for atmospheric losses. The value of 25% is calculated from
the solar power density values (ideal and with losses) given in Fraas (2012). If the power density
at the Earth is multiplied by the circular ground target area according to Eq. 17, it is understood
that Fraas (2012) finds that 0.549 GW of solar power is constantly delivered to the ground at each
instant of an orbital pass with a 1 km diameter reflector (the actual value is 54.9 GW with a 10 km
diameter reflector). Recall that the orbital pass duration at a 1000 km circular orbit is 17.6 min,
or 0.29 h. Then the total delivered energy to the ground would be 0.161 GWh in Fraas (2012).
Under the same assumptions of the reflector, ground target and orbit sizes, the energy delivered is
found to be 0.0352 GWh in this study. The value found in Fraas (2012) is ∼4.6 times more than
that of this study. The overestimation appears to result from both the omission of atmospheric
losses and the variable area relationships. The power delivered is extremely low at low elevations
which seems to be ignored in Fraas (2012). Combined with atmospheric transmission losses, which
themselves are also higher at low elevations, the discrepancy between this study and Fraas (2012)
study can be seen, which also underscores the importance of higher fidelity modelling.

In addition to terrestrial applications, one may also consider speculative reflected solar en-
ergy applications at different solar system objects, especially the Moon and Mars, which will be
investigated in the next section.

4.2. Non-terrestrial solar energy delivery

4.2.1. Energy delivery to different solar system objects

It may also be desirable to utilise solar energy for a number of applications, not only for the
Earth but also for the Moon, Mars or potentially for other planetary bodies. These applications
may be for providing additional solar energy to future crewed and robotic exploration missions, for
water extraction at the lunar poles or simply for illumination purposes to extend surface operation
hours, as well as long-term applications such as terraforming Mars. In the Moon’s case, the
absence of an atmosphere means no transmission losses and potentially extremely low altitude (or
periapsis) orbits, which, in turn, translates as high solar power density due to a smaller solar image
size. Similarly, the thinner atmosphere of Mars allows lower altitude orbits and a smaller solar
image, despite the low solar flux due to its distance from the Sun. For both the Moon and Mars,
their smaller sizes and gravitational parameters mean that for a given altitude, the orbit period,
hence the pass duration, is longer compared to the orbits around the Earth, as shown in Fig. 7.
This may allow more energy to be delivered for a given altitude.
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Figure 7: Orbital pass duration at circular orbits around the Earth, Moon and Mars.

In this case study, solar energy delivery from a range of circular orbit altitudes will first be
investigated for the Moon and Mars in comparison with the Earth. For the Moon, the radius R
and the gravitational parameter µ are equal to 1738 km and 4.9×103 km3/s2. The solar constant
and the solar angle α are assumed the same as that of the Earth with no atmosphere for the Moon.
As for Mars, R = 3389.9 km, µ = 4.28×104 km3/s2 and the average distance to the Sun ρsun =
1.52 AU, whereas the solar constant and the solar angle α reduce to 0.598 GW/km2 and 0.0062
rad, respectively.

First, the total energy collected by a 1 km diameter reflector and reflected onto the ground will
be calculated at a given range of altitudes between 100 and 2000 km. Note from the previous subsec-
tion that, when the entire solar image is considered, Eq. 17 simplifies as Esf = IoAM (cosπ/4)Tpass,
in an idealised case with no atmospheric losses. Here, the energy delivery is calculated both with
and without atmospheric losses and is presented in Fig. 8.

The results show a large difference between the Moon and the Earth and Mars, and similar
values between the Earth and Mars. These results may at first seem counter-intuitive. The
significant energy delivered for the lunar case can in part be accounted for by the absence of an
atmosphere. However, given the fact that especially Mars is farther from the Sun, hence the solar
constant is less than half of that of for the Earth and the Moon, one might expect energy delivery
at Mars to be much lower than for the Earth, not similar. But in fact it can even be higher than
on the Earth if atmospheric effects are included.

The result is driven by a combination of parameters. Assuming the idealised case with no
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(a) No atmospheric loss (b) Losses included

Figure 8: Delivered energy for a range of altitudes at Earth, the Moon and Mars, with and without atmospheric
losses

atmosphere, the parameters that drive the energy delivery are the solar constant Io and the pass
duration, Tpass, from Eq. 18. The former is scaled with the inverse square of the distance from
the Sun, whereas the latter is a function of the size and mass of the celestial body, from Eqs. 1
and 2. When all the constant terms are ignored, the energy delivered is scaled with the following
coefficient, κ:

κ =
1

ρ2sun

√
(R+ h)3

M
β =

1

ρ2sun

√
(R+ h)3

M
arccos

R

R+ h
(40)

It can be seen that κ includes the distance to the Sun, orbit period and the angle β. If a length
unit is defined as the distance between the Earth and the Sun, LU = 1 AU, or 1.496×108 km,
and a mass unit as the mass of the Earth MU = ME , then κ can be used as a non-dimensional
indicator of the reflected solar energy delivered at different celestial bodies.

As an example, one could consider a 1000 km altitude to compare different cases. Note from
Fig. 8a that the energy delivered for the Earth, Moon and Mars are 0.223, 0.764, and 0.179 GWh,
respectively, when no atmospheric loss is considered. For the Earth, then, κ is equal to 1.824×10−7.
On the other hand, κ is 6.234×10−7 and 1.438×10−7 for the Moon and Mars, respectively, in
nondimensional units. The ratio for the κ values between celestial bodies is equal to the ratio
between the energy delivered to each body when atmospheric losses are not considered. If the κ
values are normalised with the κ value of the Earth, then the values become 1, 3.41, and 0.788
for the Earth, the Moon and Mars and a more intuitive comparison can be made. In its non-
dimensional form, κ then allows for a simple scaling and a relative comparison between different
celestial bodies.

The indicator κ can then be utilised to assess solar energy delivery at a number of planetary
bodies that may be of interest for future exploration missions. Figure 9 presents the κ values
normalised with the Earth’s κ value for all the solar system planets, Jovian moon Europa, Saturnian
moons Titan and Enceladus, the asteroid Ceres and the dwarf planet Pluto. The planetary bodies
are selected to represent some of the past and future space missions to these.
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Figure 9: κ value for a number of solar system bodies and different reflector altitudes.

From Fig. 9, note that the Earth as κ = 1. With Mercury being the closest to the Sun and a
relatively small object, the reflected solar energy is the highest. However, some of the results shown
in Fig. 9 are not as intuitive and immediately apparent. The second highest, for instance, is not
Venus but the Moon, in which it appears that the proximity of Venus to the Sun cannot compensate
for short duration orbital passes. Another potentially interesting result is for Ceres, which has lower
delivered energy at the lowest altitude (100 km) than the Earth but increases gradually, surpassing
both the Earth and Venus after approximately 900 km altitude. For Enceladus, despite its large
distance from the Sun, energy delivery is similar to that of Mars and the Earth at 2000 km altitude.
Similarly, the energy delivered is higher for Pluto, the farthest object considered in this analysis
(∼40 AU), than Uranus and Neptune, which is due to its small size and low mass and hence long
duration orbit passes.

In this section, the general case of solar energy delivery at different solar system objects has
been investigated and their scalability discussed. One of the specific non-terrestrial solar energy
applications is for lunar night-side illumination to enable and/or extend crewed and robotic explo-
ration activities. This will be discussed in the next section.

4.2.2. Lunar night-side illumination

It may also be desirable to use reflected solar energy to enhance the lunar surface operations
by providing illumination. This type of application was considered for the Earth in the 1970s
and early 1980s (Rush, 1977; Ehricke, 1979; Canady & Allen, 1982). As discussed in the previous
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subsection, orbital passes around the Moon are longer for a given orbit altitude than those at the
Earth due to the smaller size of the Moon. Combined with the absence of an atmosphere, more
solar energy can be delivered to a surface site during a single pass for the same size of reflector at
the same altitude.

The level of solar illumination before atmospheric transmission losses is determined to be
128,000 lux on the Earth (IES Calculation Procedures Committee, 1984). The illumination is
likely to be in this order for the Moon, as well, if reflected light from the Earth is ignored. In order
to determine the level of illumination on the surface, the following relationship is adopted:

σlx = Ilx
AM
Aim

cos
ψ

2
(41)

Equation 41 is the same as Eq. 16 except that the solar constant Io and power density, σM , are
replaced by their equivalent in lux, Ilx and σlx, again assuming an ideal flat reflector. In this
way, the illumination levels can be compared with some known reference levels on the Earth. The
reflector is again assumed pitched at 45o, such that ψ = 90o. First, the illumination profile is
investigated for a 1000 km altitude orbit around the Moon with reflectors sized between 20 m and
1 km, as presented in Fig. 10.

Figure 10: Variation in illumination on the lunar surface during an orbital pass.

Note that the pass duration at this altitude is 30 min. The reference illumination values are
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for the illumination on the Earth1. The illumination is extremely low in the beginning of a pass,
increasing rapidly before decreasing again. The illumination never reaches average full daylight
conditions (17500 lux) at this altitude, although it reaches the level of an overcast day (1000 lux)
for 1 km and 500 m sized reflectors. If smaller reflectors are to be considered, the illumination level
is on the order or below living room conditions (50 lux (Pears, 1998)), and for most of the pass it
is higher than full-moon-level (0.143 lux (Canady & Allen, 1982)) illumination on the Earth. The
auditorium level illumination (∼1 lux) is considered sufficient to read a newspaper with normal
eyesight, whereas low streetlight (∼2 lux) is considered sufficient for slow driving with little traffic
(Canady & Allen, 1982). It then appears that the peak illumination levels achieved by a 20 m
reflector may be sufficient for certain tasks on the Moon, although a 100 m reflector may be more
desirable.

The results presented in Fig. 10 can be extended to a range of altitudes for peak illumination.
In this case, orbit altitudes between 100 and 2000 km are considered and the light intensity at the
zenith point (i.e., ε = 90o) is calculated. The results are presented in Fig. 11.

Figure 11: Peak light intensity on lunar surface from reflectors at different altitudes

In this case, both peak illumination levels higher than full daylight and lower than full-moon can

1 The reference illumination values for sunrise/sunset, overcast day and full daylight are obtained from “Ra-
diometry on photometry on astronomy” at http://stjarnhimlen.se/comp/radfaq.html\#10. Accessed on June 16,
2021.
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be observed at the lowest and the highest altitudes, respectively. The trade-off for a given reflector
size with altitude is between high illumination and short pass duration or low illumination and
long pass duration. Note that to achieve living room illumination condition as a reference working
conditions for astronauts, reflectors must be larger than 100 m in diameter. At this lower boundary,
the altitude must also be lower than 500 km. This level of illumination can always be achieved
by a reflector 500 m or larger in diameter. Alternatively, a train of reflectors may be considered
at a very low lunar orbit with the smallest size reflector necessary to achieve near living room
conditions.

The results in this section suggest that orbiting solar reflectors can be used for lunar illumination
applications to support crewed and uncrewed operations. Alternatively, the reflectors can also be
used to supply the energy needs in future lunar and Martian endeavours, not only for night-side
but also day-side and polar regions, which is discussed in the next subsection.

4.2.3. Solar energy delivery to a fixed sized ground-target on the Earth, Moon and Mars

Another case study in this section is the energy delivered to a fixed 1 km diameter ground
target with no panel tilt for a potential human outpost with a single 1 km reflector. The total
energy delivered on ground will be compared again for the Earth, Moon and Mars. Applications
include enhancing solar power generation on the surface of the Moon or Mars, where the Earth is
presented for reference. The results are shown in Fig. 12.

Figure 12: Energy received at a 1 km diameter area on ground at the Earth, the Moon and Mars.

The solar energy delivered to a 1 km diameter target on the Moon and Mars is always higher
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than that for the Earth. In the Moon’s case, the difference results from the absence of atmospheric
losses and a much longer pass duration for the same altitude with respect to the Earth, again due
to its much smaller size and gravitational parameter, from Eq. 2 and as shown in Fig. 7. Note
for both the Moon and Earth that an optimum altitude is not reached for the range of altitudes
considered in the analysis (i.e., 100-1000 km), which occurs at approximately 80 km at the Moon,
and at a slightly higher altitude (but below 100 km) for the Earth. In the case of Mars, despite
the low solar flux, the smaller angle α results in a smaller image size, which, combined with the
longer pass duration at a given altitude (as shown in Fig. 7), allows more efficient use of the
given 1 km diameter target for energy reception. In fact, an optimum altitude is available at
which approximately 7.5 MWh energy can be received. Combined with more efficient atmospheric
transmission, as well as a longer pass duration due to the smaller size and gravitational parameter
with respect to the Earth, solar energy delivery to the Martian surface appears more efficient than
for the Earth surface at all times. Relevant to this latter point, the results presented in Fig. 12
have the following implication. A reflector whose size is smaller than 1 km can be used in the
lunar environment to evaluate the effectiveness of a 1 km size reflector for terrestrial applications.
In either case, employment of orbiting solar reflectors in the lunar environment would allow not
only supplying energy and illumination on the surface of the Moon, but also tests orbiting solar
reflectors for the Earth and potentially Mars.

5. Conclusion

In this paper, an analytical model for solar energy delivery to a stationary ground target from
an ideal flat reflector in a circular orbit has been presented. The idealised form of energy transfer
has a closed form analytical solution using elliptic integrals. Moreover, a higher fidelity model
incorporates varying solar image area, fixed ground target size and solar panel orientation, as
well as atmospheric transmission losses to calculate the energy delivered accurately for different
applications. The final integral expression for the energy delivered has multiple discrete cases
depending on the characteristics of the application. The case study presented for a terrestrial
application demonstrates the importance of higher fidelity modelling as opposed to the simplified
calculations previously used in the literature. A subsequent case study for solar energy delivery
at the Earth, Moon and Mars shows that the energy delivered can be scaled with a simple scaling
parameter. The results also suggest that the employment of orbiting solar reflectors in the lunar
environment may be strategically useful to obtain insights into the usefulness of the reflectors for
all three planetary bodies for future applications.
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Appendix A. Area of an elliptical section

The area of an elliptical section defined by the angle θ is found by parameterising the ellipse
with inner and outer circles, whose radii are the ellipse semi-minor and semi-major axes with
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dimensions b and a, respectively, as shown in Fig. A.1.

Figure A.1: Parameterisation of an ellipse with inner and outer circles

If a cartesian axis set is centered at the origin of the ellipse and the circles, the x and y
coordinates of the point on the ellipse described by angle θ can be written as:

x = a cosφ

y = b sinφ
(A.1)

where φ is an auxiliary angle defined by the associated circle. The angle θ can then found by
trigonometry:

tan θ =
b sinφ

a cosφ
(A.2)

The angle φ can be found as a function of θ by rearranging the above equation:

φ = arctan
b tan θ

a
(A.3)

Before substituting φ into Eq. A.1, note the following trigonometric half-angle relationships:

cos 2φ =
1− (tanφ)2

1 + (tanφ)2

sin 2φ =
2 tanφ

1 + (tanφ)2

(A.4)
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If cos 2φ = 2 cos2 φ − 1 and sin 2φ = 2 sinφ cosφ, rearranging and substituting the above
equations yields

cosφ =
1√

1 + (a tan θb )2

sinφ =
a tan θ
b√

1 + (a tan θb )2

(A.5)

Then, substituting the above equations in Eq. A.1 yields

x =
a√

1 + (a tan θb )2

y =
a tan θ√

1 + (a tan θb )2

(A.6)

The area of an ellipse by integration in polar coordinates can be expressed as follows:

A =

∫ u

0

∫ R

0
rdrdθ

=
1

2

∫ u

0
R2dθ =

∫ u

0
x2 + y2dθ

=
1

2

∫ u

0

[ a2

1 + (a tan θb )2
+

(a tan θ)2

1 + (a tan θb )2

]
dθ

=
1

2

∫ u

0

dθ
sin2 θ
b2

+ cos2 θ
a2

(A.7)

where r denotes the length of an infinitesimally small bounded segment at the elliptical region
defined by angle θ, R is distance from the center of the ellipse at a given angle θ defined as
R(θ) =

√
x2 + y2, and the upper bound u of the integral denotes the polar angle measured from

the x-axis that the area of the portion of ellipse is calculated. The integration in Eq. A.7 eventually
yields

A =
1

2
ab arctan(

a tanu

b
) (A.8)

Note that for the integral bounds [0, 2π], the integration in Eq. A.7 yields A = πab, i.e. the area
of an ellipse. More relevant to this study, the area of the elliptical portion defined by π/2 can
be found by setting the upper bound u = π/2, which equals the quarter of the area of an ellipse,
A = π

4ab.
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