

Manlove, D.F. and O'Malley, G. (2008) Student-project allocation with
preferences over projects. Journal of Discrete Algorithms, 6 (4). pp. 553-
560. ISSN 1570-8667

http://eprints.gla.ac.uk/25739/

Deposited on: 08 April 2010

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Student-Project Allocation with

Preferences over Projects∗

David F. Manlove†,‡ and Gregg O’Malley†

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.

Email: {davidm,gregg}@dcs.gla.ac.uk.

Abstract

We study the problem of allocating students to projects, where both stu-
dents and lecturers have preferences over projects, and both projects and lec-
turers have capacities. In this context we seek a stable matching of students
to projects, which respects these preference and capacity constraints. Here,
the stability definition generalises the corresponding notion in the context of
the classical Hospitals / Residents problem. We show that stable matchings
can have different sizes, which motivates max-spa-p, the problem of finding a
maximum cardinality stable matching. We prove that max-spa-p is NP-hard
and not approximable within δ, for some δ > 1, unless P=NP. On the other
hand, we give an approximation algorithm with a performance guarantee of
2 for max-spa-p.

Keywords: Matching problem; Stable matching; NP-hardness; Approximation hardness;

Approximation algorithm

1 Introduction

As part of the senior level of many undergraduate degree courses, students are
required to undertake some form of project work. Typically the available projects
are advertised to the students, and having browsed through the descriptions, each
student (either explicitly or implicitly) forms a preference list over the projects
that he/she finds acceptable. Lecturers may also have preferences over the students
and/or the projects that they offer. There may also be upper bounds on the number
of students that can be assigned to a particular project, and the number of students
that a given lecturer is willing to supervise.

We refer to the problem of assigning students to projects subject to these prefer-
ence lists and capacity constraints as the Student-Project Allocation problem (spa).

∗A preliminary version of this paper appeared in Proceedings of ACiD 2005: the 1st Algo-

rithms and Complexity in Durham workshop, volume 4 of Texts in Algorithmics, pages 69-80, KCL
Publications, 2005.

†Supported by Engineering and Physical Sciences Research Council grant GR/R84597/01.
‡Supported by Royal Society of Edinburgh/Scottish Executive Personal Research Fellowship.

1

Given the large numbers of students that are typically involved in such applica-
tions, there is a growing interest in automating the process of allocating students
to projects using centralised matching schemes that incorporate efficient algorithms
for spa. Examples of such automated systems are in use at the Department of Com-
puter Science, University of York [4, 9, 13], the University of Southampton [3, 8]
and elsewhere [12].

spa is a generalisation of the classical Hospitals / Residents problem (hr) [5, 6]
which has applications to the annual match of graduating medical students (or res-
idents) to their first hospital posts in a number of countries [11]. In the US, for
example, the National Resident Matching Program (NRMP) deals with the alloca-
tion of some 31,000 medical students annually. The NRMP utilises an algorithm
that essentially solves an extension of hr, forming a stable matching of residents to
hospitals, taking into account hospital capacities, and the preferences of residents
over hospitals and vice versa. Informally, a matching guarantees that no resident
is assigned to more than one hospital, and no hospital is assigned more residents
than its capacity, whilst the concept of stability ensures that no resident and hos-
pital who are not matched together would rather be assigned to each other than
remain with their current assignees. Such a pair could improve their situations by
coming to a private arrangement outside of the matching, undermining its integrity.
It has been convincingly argued [11] that, when preference lists exist on both sides
of a two-sided matching market (for example involving residents and hospitals, or
students and lecturers), the key property that a matching should satisfy is that of
stability.

Stable matchings in the context of spa have been considered previously. In [1],
a model for spa was introduced in which students have preferences over projects,
whilst lecturers have preferences over students. A linear-time algorithm for finding
a stable matching of students to projects in this context was described, in terms of
a stability definition that is a natural generalisation of stability in the context of
hr. This algorithm constructs the student-optimal stable matching, in which each
student obtains the best project that he/she could obtain in any stable matching. A
second linear-time algorithm [2] finds the lecturer-optimal stable matching, in which
each lecturer obtains the best (in a precise sense) set of students that he/she could
obtain in any stable matching.

In some cases, neither lecturers nor students find it desirable that lecturers should
form preference lists over students. For example, if such lists are derived largely on
the basis of academic merit, then students who have performed poorly in previous
examinations are less likely to be assigned to preferable projects if these projects
are popular, and could therefore struggle to improve their academic performance.
However, often it is the case that lecturers have tangible preferences over the projects
that they offer. For example, a lecturer may strongly prefer to supervise a particular
project if it is closely connected with his research. In this paper we consider the
variant of spa in which lecturers rank in strict order of preference the projects that
they offer. Under this condition, implicitly each lecturer is indifferent among those
students who find acceptable a given project that he/she offers.

Our contribution is as follows. In Section 2 we give a formal definition of the
variant of spa in which lecturers have preferences over projects, which we refer to
as spa-p, formulating an appropriate stability definition in this context. A stable

2

Student preferences Lecturer preferences
s1 : p1 p2 l1 : p1

s2 : p1 l2 : p2

c1 = c2 = d1 = d2 = 1

Figure 1: An instance I1 of spa-p.

matching M guarantees that (i) no student and lecturer could improve relative to
M by forming a private arrangement involving some project, and (ii) no coalition of
students could permute their assigned projects in M so as to improve their allocation.
We show that, in a given instance of spa-p, stable matchings can have different
sizes. In most practical situations we seek to allocate as many students to projects
as possible, and this motivates the problem of finding a maximum cardinality stable
matching (henceforth a maximum stable matching). In Section 3 we show that
this problem is NP-hard and not approximable within δ, for some δ > 1, unless
P=NP. The result holds even in the special case that each project and lecturer
can accommodate only one student, and each person’s preference list is of bounded
length. However in Section 4, we give an approximation algorithm for the problem
that admits a performance guarantee of 2. This algorithm also demonstrates that
every instance of spa-p admits at least one stable matching. Finally, Section 5
contains some concluding remarks.

We remark that spa-p is an example of a matching problem in which the members
of two sets of entities (namely the students and lecturers) each have preferences over
the members of a common third entity (namely the projects). As far as we are aware,
spa-p is the first matching problem of this type to be considered in the literature.
The previous formulations of spa to have been considered either do not permit
lecturer preferences [10, 12, 3, 8] (so stability is not relevant in these contexts) or
involve lecturer preferences over students [4, 9, 1, 13, 2].

2 Definition of spa-p

We begin by defining an instance of spa-p, the Student-Project Allocation problem
with preferences over Projects. An instance of spa-p involves a set S of students,
a set P of projects, and a set L of lecturers. Each lecturer lk ∈ L offers a set of
projects, denoted by Pk. We assume that P1, . . . , Pq partitions P, where q = |L|, so
that each project is offered by a unique lecturer. Also, each student si ∈ S has an
acceptable set of projects Ai ⊆ P. Moreover si ranks Ai in strict order of preference.
Similarly lk ranks Pk in strict order of preference. Finally, each project pj ∈ P and
lecturer lk ∈ L has a positive capacity, denoted by cj and dk respectively.

An example spa-p instance with S = {s1, s2}, P = {p1, p2} and L = {l1, l2},
where A1 = {p1, p2}, A2 = {p1}, P1 = {p1} and P2 = {p2}, is shown in Figure 1.

An assignment M is a subset of S×P such that (si, pj) ∈ M implies that pj ∈ Ai

(i.e. si finds pj acceptable). If (si, pj) ∈ M , we say that si is assigned to pj, and pj

is assigned si. For ease of exposition, if si is assigned to pj and lk is the lecturer

3

who offers pj, we may also say that si is assigned to lk, and lk is assigned si.
For each r ∈ S ∪ P ∪ L, we denote by M(r) the set of assignees of r in M .

If si ∈ S and M(si) = ∅, we say that si is unassigned, otherwise si is assigned.
Similarly, any project pj ∈ P is under-subscribed, full or over-subscribed according
as |M(pj)| is less than, equal to, or greater than cj, respectively. The same three
terms are defined for a lecturer lk ∈ L with respect to lk’s capacity dk. A project
pj ∈ P is said to be non-empty if |M(pj)| > 0. Similarly a lecturer lk ∈ L is said to
be non-empty if |M(lk)| > 0.

A matching M is an assignment such that |M(si)| ≤ 1 for each si ∈ S, |M(pj)| ≤
cj for each pj ∈ P, and |M(lk)| ≤ dk for each lk ∈ L (i.e. each student is assigned to
at most one project, and no project or lecturer is over-subscribed). For notational
convenience, given a matching M and a student si ∈ S such that M(si) 6= ∅, where
there is no ambiguity the notation M(si) is also used to refer to the single member
of M(si).

A (student,project) pair (si, pj) ∈ (S × P)\M blocks a matching M , or is a
blocking pair of M , if the following conditions are satisfied relative to M :

1. pj ∈ Ai (i.e. si finds pj acceptable);

2. either si is unassigned or si prefers pj to M(si);

3. pj is under-subscribed and either

(a) si ∈ M(lk) and lk prefers pj to M(si), or

(b) si /∈ M(lk) and lk is under-subscribed, or

(c) si /∈ M(lk) and lk is full and lk prefers pj to his worst non-empty project,

where lk is the lecturer who offers pj.

We now give some intuition for the definition of a blocking pair. Suppose that
(si, pj) forms a blocking pair with respect to matching M , and let lk be the lecturer
who offers pj.

We assume that si prefers to be assigned to an acceptable project pj rather than
remain unassigned, so Condition 2 indicates how a student could improve relative to
M . We now consider Condition 3. If pj is already full, then lk would not improve by
rejecting a student assigned to pj and taking on si instead (recall that lk is indifferent
among those students who find pj acceptable). Thus pj must be under-subscribed.
Firstly suppose that si was already assigned to a project pr offered by lk. In this case
lk would only let si change projects from pr to pj if he prefers pj to pr – Condition
3(a). Secondly suppose that si was not already assigned to a project offered by lk.
If lk is under-subscribed then both pj and lk have a free place for si – Condition
3(b). Otherwise if lk is full and lk prefers pj to his worst non-empty project pr, then
lk could improve by rejecting a student from pr and taking on si to do pj instead –
Condition 3(c).

A blocking pair thus gives a situation in which a given matching M could be
undermined. Another way in which this could occur is through the existence of a
coalition. A coalition is a set of students {si0, . . . , sir−1

}, for some r ≥ 2, each of
whom is assigned in M , such that sij prefers M(sij+1

) to M(sij) (0 ≤ j ≤ r−1, where
addition is taken modulo r). That is, the students in the coalition could permute

4

Student preferences Lecturer preferences
s1 : p2 p1 l1 : p1 p2

s2 : p1 p2

c1 = c2 = 1; d1 = 2

Figure 2: An instance I2 of spa-p.

the projects that they have been assigned to in M so as to be better off. Notice
that, were such a permutation of projects to occur, the number of students assigned
to each project and lecturer would not change. Moreover, since each lecturer lk is
implicitly indifferent between those students who find acceptable a given project
offered by lk, the lecturers involved in the permutation have no explicit incentive
to prevent the switch from occurring. Figure 2 gives a simple instance of spa-p in
which the matching M = {(s1, p1), (s2, p2)} admits no blocking pair but does admit
a coalition, namely {s1, s2}. Define a matching to be coalition-free if it admits no
coalition. We remark that, in the context of hr, or spa variants involving lecturer
preferences over students, a matching that admits no blocking pair cannot admit a
coalition of students (or residents), since the lecturers (or hospitals) involved would,
by definition of a blocking pair, be worse off were the switch to occur, and hence
would not, in practice, agree to such a switch.

Define a matching to be stable if it admits no blocking pair and is coalition-
free. It turns out that, with respect to this definition, for a given instance of spa-p,
stable matchings can have different sizes, as the example instance I1 shown in Figure
1 illustrates. It may be verified that each of the matchings M1 = {(s1, p1)} and
M2 = {(s1, p2), (s2, p1)} is stable in I1. In practical situations, often a key priority
is to match as many students to acceptable projects as possible, so this naturally
leads one to consider the complexity of finding a maximum stable matching, given
a spa-p instance.

3 Hardness of approximating a maximum stable

matching

Given an instance I of spa-p, let s+(I) denote the maximum size of a stable matching
in I. Define max-spa-p to be the problem of computing s+(I), given an instance I
of spa-p. In this section we show that max-spa-p is NP-hard, and moreover that
there exists a constant δ1 > 1 such that it is NP-hard to approximate max-spa-p

within δ1. The result holds even if each project and lecturer has capacity 1, and all
preference lists are of bounded length.

We prove this result using a reduction from a problem relating to matchings in
graphs. A matching M in a graph G is said to be maximal if no proper superset of
M is a matching in G. Let β−

1 (G) denote the minimum size of a maximal matching
in G. Define min-mm to be the problem of computing β−

1 (G), given a graph G. The
following result regarding the inapproximability of min-mm is proved in [7].

5

Theorem 1. Let G = (V, E) be an instance of min-mm, where m = |E|. Then there
exist constants c0 > 0 and δ0 > 1 such that it is NP-hard to distinguish between the
cases β−

1 (G) ≤ c0m and β−

1 (G) > δ0c0m. Hence it is NP-hard to approximate
min-mm within δ0. The result holds even for subdivision graphs1 of cubic graphs.

We will use Theorem 1 together with the notion of a gap-preserving reduction
[14, p.308], which may be defined as follows.

Definition 2. Let Π1 be a minimisation problem and let Π2 be a maximisation
problem. Denote by OPTi(x) the optimal measure over all feasible solutions for a
given instance x of Πi (i ∈ {1, 2}). Let α ≥ 1 be some constant and let g1 be
a function that maps an instance x of Π1 to a positive rational number. Then a
gap-preserving reduction from Π1 to Π2 is a tuple 〈f, β, g2〉 such that:

• f maps an instance x of Π1 to an instance f(x) of Π2 in polynomial time;

• β ≥ 1 is a constant;

• g2 maps an instance f(x) of Π2 to a positive rational number;

• for any instance x of Π1:

– if OPT1(x) ≤ g1(x), then OPT2(f(x)) ≥ g2(f(x));

– if OPT1(x) > αg1(x), then OPT2(f(x)) < (1/β)g2(f(x)).

The following proposition is an immediate consequence of Definition 2.

Proposition 3. Let Π1 be a minimisation problem and let Π2 be a maximisation
problem, and suppose that there is a gap-preserving reduction from Π1 to Π2. As-
suming the notation of Definition 2, suppose further that it is NP-hard to distinguish
between instances x of Π1 such that OPT1(x) ≤ g1(x) and OPT1(x) > αg1(x). Then
it is NP-hard to distinguish between instances f(x) of Π2 such that OPT2(f(x)) ≥
g2(f(x)) and OPT2(f(x)) < (1/β)g2(f(x)). Hence it is NP-hard to approximate Π2

within β.

We use Proposition 3, together with Theorem 1, to prove the NP-hardness and
inapproximability result for max-spa-p.

Theorem 4. max-spa-p is NP-hard. Moreover it is NP-hard to approximate max-

spa-p within δ1, for some δ1 > 1. The result holds even if each project and lecturer
has capacity 1, and all preference lists are of bounded length.

Proof. Let G (a subdivision graph of some cubic graph G′) be an instance of min-mm.
Then G is a bipartite graph, so that G = (U, W, E), where without loss of generality
each vertex in U has degree 2 and each vertex in W has degree 3. Suppose that
n1 = |U | and n2 = |W |. Let U = {u1, u2, . . . , un1

} and W = {w1, w2, . . . , wn2
}. For

each ui ∈ U , let wji
and wki

be the two neighbours of ui in G, where ji < ki.

1Given a graph G, the subdivision graph of G, denoted by S(G), is obtained by subdividing
each edge {u, w} of G in order to obtain two edges {u, v} and {v, w} of S(G), where v is a new
vertex.

6

Student preferences:











u1
i : ri pji

pki
ti (1 ≤ i ≤ n1)

u2
i : ri pki

pji
(1 ≤ i ≤ n1)

si : qi (1 ≤ i ≤ n2)

Lecturer preferences:











wj : pj qj (1 ≤ j ≤ n2)
xj : rj (1 ≤ j ≤ n1)
yj : tj (1 ≤ j ≤ n1)

Figure 3: Preference lists for the constructed instance of spa-p.

We construct an instance I of spa-p as follows: let U 1 ∪ U2 ∪ S be the set of
students, where U z = {uz

1, u
z
2, . . . , u

z
n1
} (1 ≤ z ≤ 2) and S = {s1, s2, . . . , sn2

}; let
P∪Q∪R∪T be the set of projects, where P = {p1, p2, . . . , pn2

}, Q = {q1, q2, . . . , qn2
},

R = {r1, r2, . . . , rn1
} and T = {t1, t2, . . . , tn1

}; and let W ∪ X ∪ Y be the set of
lecturers, where X = {x1, x2, . . . , xn1

} and Y = {y1, y2, . . . , yn1
}. Each project and

lecturer has capacity 1. The preference lists in I are shown in Figure 3. Clearly the
length of each student’s list is at most 4, whilst the length of each lecturer’s list is
at most 2. These lists also indicate the acceptable projects for each student, and
the projects offered by each lecturer. We claim that s+(I) = 2n1 + n2 − β−

1 (G).
Suppose firstly that G has a maximal matching M , where |M | = β−

1 (G). We
construct a matching M ′ in I as follows. For each edge {ui, wj} in M , if j = ji,
add (u1

i , pji
) and (u2

i , ri) to M ′. If j = ki, add (u1
i , ri) and (u2

i , pki
) to M ′. For each

ui ∈ U , if ui is unassigned in M , add (u1
i , ti) and (u2

i , ri) to M ′. For each wj ∈ W ,
if wj is unassigned in M , add (sj, qj) to M ′.

No project in Q∪R can be involved in a blocking pair of M ′, since each member
of W ∪ X is full in M ′. Hence no student in S can be involved in a blocking pair
of M ′. Similarly no u2

i ∈ U2 can be involved in a blocking pair of M ′, since u2
i

is assigned in M ′ to either his first or second choice. Also no project in T can be
involved in a blocking pair of M ′, since each member of U 1 is assigned in M ′. Now
suppose that (u1

i , pj) blocks M ′. Then (u1
i , ti) ∈ M ′ and pj is under-subscribed.

Thus no edge of M is incident to ui or wj in G. Hence M ∪{{ui, wj}} is a matching
in G, contradicting the maximality of M . Thus M ′ admits no blocking pair.

We next verify that M ′ is also coalition-free. Clearly no student in S can be
involved in a coalition, since any such student who is assigned in M has his first
choice. Similarly no student who is assigned in M to a project in R can be in
a coalition. As a consequence no student in U who has his second choice can be
in a coalition, since each such student prefers only a project in R. Finally, no
student in U1 who has his fourth choice can be in a coalition, since no assigned
student prefers a project in T to his project in M . Hence M ′ is stable. Finally we
note that |M ′| = 2|M | + 2(n1 − |M |) + (n2 − |M |) = 2n1 + n2 − |M |, and hence
s+(I) ≥ 2n1 + n2 − β−

1 (G).
Conversely, suppose that M ′ is a stable matching in I such that |M ′| = s+(I).

For each rj ∈ R, it follows that rj is assigned either u1
j or u2

j , for otherwise (u1
j , rj)

blocks M ′, a contradiction. Hence

M =
{

{ui, wj} ∈ E : (u1

i , pj) ∈ M ′ ∨ (u2

i , pj) ∈ M ′

}

7

is a matching in G. Suppose that M is not maximal. Then there is some edge
{ui, wj} in G such that no edge of M is incident to ui or wj. Thus by construction
of M , either (i) (u1

i , ti) ∈ M ′, or u1
i is unassigned in M ′, or (ii) u2

i is unassigned in
M ′. Also pj is under-subscribed, and either wj is under-subscribed or (sj, qj) ∈ M ′.
In Case (i), it follows that (u1

i , pj) blocks M ′, whilst in Case (ii), it follows that
(u2

i , pj) blocks M ′. This contradiction to the stability of M ′ implies that M is
indeed maximal.

For each {ui, wj} ∈ M , it follows that (uz
i , pj) ∈ M ′ for some z (1 ≤ z ≤ 2).

Thus (u3−z
i , ri) ∈ M ′. Hence at most n1 − |M | projects in T are full in M ′. Also by

construction of M , it follows that |M | projects in P are full in M ′. Hence at most
n2 − |M | projects in Q are full in M ′. It follows that |M ′| ≤ |M | + (n2 − |M |) +
n1 + (n1 − |M |) = 2n1 + n2 − |M | and thus s+(I) ≤ 2n1 + n2 − β−

1 (G).
Hence s+(I) + β−

1 (G) = 2n1 + n2. Now 2n1 = 3n2, as G is the subdivision graph
of the cubic graph G′. Also m = 2n1, where m is the number of edges in G. Let n
be the number of students in I. Then n = 2n1 + n2.

Let c0 and δ0 be the constants given by Theorem 1, such that it is NP-hard
to distinguish between the cases β−

1 (G) ≤ c0m and β−

1 (G) > δ0c0m. Hence if
β−

1 (G) ≤ c0m, then s+(I) ≥ c1n, whilst if β−

1 (G) > δ0c0m, then s+(I) < (1/δ1)c1n,
where c1 = 4−3c0

4
and δ1 = 4−3c0

4−3δ0c0
. The result then follows by Theorem 1 and

Proposition 3.

4 Approximation algorithm

The NP-hardness of max-spa-p naturally leads to the question of the approxima-
bility of this problem. In this section we present an approximation algorithm for
max-spa-p that has a performance guarantee of 2.

Consider the algorithm spa-p-approx shown in Figure 4, which is an extension of
the resident-oriented Gale/Shapley algorithm for the Hospitals/Residents problem
[6, Section 1.6.3]. Our algorithm involves a sequence of apply and delete operations
to obtain a stable matching that is at least half the size of optimal. At each iteration
of the while loop, some unassigned student si with a non-empty preference list applies
to the first project pj on his list. If pj is full, then si is rejected and pj is deleted from
si’s list. If lk is full (where lk offers pj), and pj is lk’s worst non-empty project, then
si is also rejected and pj is deleted from si’s list. Otherwise si becomes provisionally
assigned to pj. If lk becomes over-subscribed as a result of this assignment, then
lk rejects an arbitrary student sr from pz, and pz is deleted from sr’s list. Next,
if lk is full (irrespective of whether lk was over-subscribed earlier in the same loop
iteration), then each project pt that lk finds less desirable than his worst non-empty
project is deleted from the preference list of each student who finds pt acceptable.

We will show that spa-p-approx produces a stable matching at least half the size
of optimal. Firstly, using the following four lemmas, we prove that the algorithm
returns a matching (Lemma 5) that admits no coalition (Lemma 6) and no blocking
pair (Lemmas 7 and 8), and therefore the algorithm returns a stable matching.

Lemma 5. spa-p-approx terminates with a matching.

Proof. Clearly the while loop terminates. For, at the beginning of some loop iter-
ation, let si be a student who is unassigned and has a non-empty list, and let pj

8

M = ∅;
while (some student si is unassigned and si has a non-empty list) {

pj = first project on si’s list;
lk = lecturer who offers pj;
pz = lk’s worst project;
if (lk is non-empty)

pz = lk’s worst non-empty project;
/* si applies to pj */
if (pj is full or (lk is full and pj = pz))

delete pj from si’s list; −− (1)
else {

M = M ∪ {(si, pj)};
/* si is provisionally assigned to pj and to lk */
if (lk is over-subscribed) {

sr = some student in M(pz);
M = M\{(sr, pz)};
delete pz from sr’s list; −− (2)

}
if (lk is full) {

pz = lk’s worst non-empty project;
for (each successor pt of pz on lk’s list)

for (each student sr who finds pt acceptable)
delete pt from sr’s list; −− (3)

}
}

}

Figure 4: Approximation algorithm spa-p-approx for max-spa-p.

be the first project on si’s list. If si does not become provisionally assigned to pj

during the same loop iteration, then pj is removed from si’s list. If si does become
provisionally assigned to pj during this loop iteration then some student sr may
become unassigned; in this case pj is deleted from sr’s list. Hence eventually, we are
guaranteed that each student is either assigned to some project or has an empty list.
Let M be the assignment relation upon termination of spa-p-approx. It is immedi-
ate that each student is assigned to at most one project in M , whilst no project or
lecturer is over-subscribed in M .

Lemma 6. spa-p-approx returns a matching that is coalition-free.

Proof. By Lemma 5, let M be the matching output by an execution E of spa-p-
approx. Suppose for a contradiction that M admits a coalition {si0, si1 , . . . , sir−1

}
for some r ≥ 2. In what follows, the concept of a pair (si, pj) being deleted refers to
the operation of pj being deleted from si’s preference list during some iteration of
the while loop during E. For each j (0 ≤ j ≤ r − 1), (sij , M(sij+1

)) must have been
deleted during an iteration of the while loop during E. Without loss of generality
suppose that the coalition is ordered such that (si0, M(si1)) is the first deletion of
the form (sij , M(sij+1

)) (0 ≤ j ≤ r−1) to take place during E. Let pz = M(si1) and
let lk be the lecturer who offers pz. We consider the following four cases (in what

9

follows, all instances of the term deletion point i, for i = 1, 2, 3, refer to the deletion
operation commented by (i) in the pseudocode shown in Figure 4).

Case 1: pz was deleted from si0 ’s list at deletion point 1, as a result of pz being
full during E. Then si1 must have applied to pz after si0 did, for if not, then si1

was already assigned to pz when si0 applied to pz. Hence M(si2) must already have
been deleted from si1 ’s list, a contradiction, since (si0, pz) is the first deletion of
the form (sij , M(sij+1

)) (0 ≤ j ≤ r − 1). Therefore pz must have gone from being
full to being under-subscribed during E. This can only happen if lk became over-
subscribed during E, and pz was lk’s worst non-empty project at that point. Thus
when si1 applied to pz, it follows that pz was still lk’s worst non-empty project, and
lk was full. Therefore lk rejected si1 from pz, a contradiction. Hence no coalition
exists in this case.

Case 2: pz was deleted from si0 ’s list at deletion point 1, as a result of lk being
full during E, and pz was lk’s worst non-empty project. As in Case 1, si1 must have
applied to pz after si0 did. Thus when si1 applied to pz, lk must have been full and
his worst non-empty project was pz. Hence si1 was rejected from pz, a contradiction.
Hence no coalition exists in this case.

Case 3: pz was deleted from si0 ’s list at deletion point 2, as a result of lk being
over-subscribed during E. Then just before the deletion occurred, pz was lk’s worst
non-empty project. The remainder of this case is similar to Case 2.

Case 4: pz was deleted from si0 ’s list at deletion point 3, as a result of lk being
full during E. Then pz is removed from si1’s list as well, a contradiction. Hence no
coalition exists in this case.

Lemma 7. Suppose that some project pt is deleted from a student sr’s list during
an execution of spa-p-approx. Then (sr, pt) cannot block a matching output by spa-

p-approx.

Proof. Let lk be the lecturer who offers pt. Let E be an execution of the algorithm
during which pt is deleted from sr’s list. By Lemma 5, let M be the matching output
at the termination of E. Suppose for a contradiction that (sr, pt) blocks M . We
consider the following four cases.

Case 1: pt was deleted from sr’s list at deletion point 1, as a result of pt being
full during E. Since (sr, pt) blocks M , pt is under-subscribed in M . Hence pt

changed from being full during E to being under-subscribed, which can only occur
as a result of lecturer lk being over-subscribed during E, where pt was lk’s worst
non-empty project at that point. Thus lk is full in M , and lk’s worst non-empty
project is either pt or better. Hence (sr, pt) does not block M in this case.

Case 2: pt was deleted from sr’s list at deletion point 1, as a result of lk being
full during E, and pt was lk’s worst non-empty project. Clearly on termination of
E, lk is full, and lk’s worst non-empty project is pt or better. Hence (sr, pt) does not
block M in this case.

Case 3: pt was deleted from sr’s list at deletion point 2, as a result of lk being
over-subscribed during E. Then just before the deletion occurred, pt was lk’s worst
non-empty project. Now lk is full in M , and lk’s worst non-empty project is either
pt or better. Hence (sr, pt) does not block M in this case.

Case 4: pt was deleted from sr’s list at deletion point 3, as a result of lk being
full during E. Then lk is full in M , and lk prefers his worst non-empty project to
pt. Hence (sr, pt) does not block M in this case.

10

Lemma 8. spa-p-approx returns a stable matching.

Proof. Let E be an execution of the algorithm, and by Lemma 5, let M be the
matching output upon termination of E. Suppose that (si, pj) blocks M . By Lemma
7, pj is not deleted from si’s list during E. Hence si’s list is non-empty upon
termination of E. If si is unassigned in M then the while loop would not have
terminated, a contradiction. Hence si is assigned in M and prefers pj to pr = M(si).
But when si applied to pr, pr was the first project on si’s list, a contradiction. Hence,
and by Lemma 6, M is stable.

It follows by Lemma 8 that spa-p-approx is an approximation algorithm for max-

spa-p. Moreover, using a suitable choice of data structures, the algorithm may be
implemented to run in time linear in the length of the given preference lists. The
following is therefore immediate.

Corollary 9. Every instance I of spa-p admits at least one stable matching, and
such a matching may be found in O(λ) time, where λ is the total length of the
preference lists in I.

The next result shows that spa-p-approx has a performance guarantee of 2.

Lemma 10. Let I be an instance of spa-p. Then |M | ≤ 2|M ′| for any stable
matchings M , M ′ in I.

Proof. Suppose for a contradiction that |M ′| < |M |/2. Let X (respectively Y) be
those students who are assigned in M but not M ′ (respectively M ′ but not M), and
let Z be those students who are assigned in both M and M ′. Then

|X| = |M | − |Z| > 2|M ′| − |Z| = 2|Y | + |Z| ≥ |M ′|. (1)

Now suppose that the students in X are collectively assigned in M to projects
P ′ = {p1, . . . , ps} offered by lecturers l1, . . . lt. Suppose that P ′

1, . . . , P
′

t is a partition
of P ′ such that lecturer lk (1 ≤ k ≤ t) offers the projects in P ′

k. Similarly let
S1, . . . , St be a partition of X such that each student in Sk is assigned in M to a
project in P ′

k (1 ≤ k ≤ t).
Now let k be given (1 ≤ k ≤ t) and let pj be any project in P ′

k. Then there is
some student si ∈ Sk who is assigned to pj in M but unassigned in M ′. Hence in
M ′, either (i) pj is full, or (ii) lk is full (or both), for otherwise (si, pj) blocks M ′. It
follows that, in M ′, either (a) all projects in P ′

k are full, or (b) lk is full (or both).
Hence

|M ′| ≥
t

∑

k=1

min



dk,
∑

pj∈P ′

k

cj



 . (2)

Since no project or lecturer is over-subscribed in M , it follows that, for each k (1 ≤

k ≤ t),
∑

pj∈P ′

k

cj ≥ |Sk| and dk ≥ |Sk|. Hence (2) implies that |M ′| ≥
t

∑

k=1

|Sk| = |X|,

which is a contradiction to (1). Thus |M ′| ≥ |M |/2 as required.

The above lemmas lead to the following conclusion.

11

Student preferences Lecturer preferences
s2i−1 : p2i−1 p2i (1 ≤ i ≤ n) lk : p2k−1 p2k (1 ≤ k ≤ n)
s2i : p2i−1 (1 ≤ i ≤ n)

cj = 1 (1 ≤ j ≤ 2n)
dk = 2 (1 ≤ k ≤ n)

Figure 5: An instance I3 of spa-p.

Theorem 11. spa-p-approx is an approximation algorithm for max-spa-p with a
performance guarantee of 2.

To demonstrate that the analysis given in the proof of Lemma 10 is tight, it is
straightforward to construct an instance of spa-p such that the algorithm spa-p-
approx could produce a stable matching that is half the size of optimal. For, consider
the instance of spa-p shown in Figure 5, where S = {s1, . . . , s2n}, P = {p1, . . . , p2n}
and L = {l1, . . . , ln}. The matching M = {(s2i−1, p2i), (s2i, p2i−1) : 1 ≤ i ≤ n} is
the unique maximum stable matching, of size 2n. On the other hand, during an
execution of spa-p-approx, if the students apply to projects in increasing indicial
order, we obtain the stable matching M ′ = {(s2i−1, p2i−1) : 1 ≤ i ≤ n}, of size n.

5 Concluding remarks

In this paper we have considered a model for the Student-Project Allocation problem
(spa) in which both students and lecturers have preferences over projects. As noted
in Section 1, a spa model in which lecturers have preferences over students has also
been studied [1, 2]. It remains to investigate algorithmic issues for a more general
preference model for the lecturers, involving preferences over (student,project) pairs.
Some detailed initial observations regarding this case are made in [2].

For the spa-p model, involving lecturer preferences over projects, this paper
showed that the problem of finding a maximum stable matching is NP-hard, though
admits an approximation algorithm, spa-p-approx, with a performance guarantee
of 2. In practice, spa-p-approx is likely to construct a stable matching whose size
is closer to optimal than a factor of 1/2, nevertheless the question remains as to
whether there exists an approximation algorithm for max-spa-p that has a perfor-
mance guarantee less than 2.

Acknowledgement

We would like to thank Rob Irving and an anonymous referee for helpful comments
on previous drafts of this paper.

References

[1] D.J. Abraham, R.W. Irving, and D.F. Manlove. The Student-Project Alloca-
tion Problem. In Proceedings of ISAAC 2003: the 14th Annual International

12

Symposium on Algorithms and Computation, volume 2906 of Lecture Notes in
Computer Science, pages 474–484. Springer-Verlag, 2003.

[2] D.J. Abraham, R.W. Irving, and D.F. Manlove. Two algorithms for the
Student-Project allocation problem. To appear in Journal of Discrete Algo-
rithms, 2006.

[3] A.A. Anwar and A.S. Bahaj. Student project allocation using integer program-
ming. IEEE Transactions on Education, 46(3):359–367, 2003.

[4] J. Dye. A constraint logic programming approach to the stable marriage prob-
lem and its application to student-project allocation. BSc Honours project
report, University of York, Department of Computer Science, 2001.

[5] D. Gale and L.S. Shapley. College admissions and the stability of marriage.
American Mathematical Monthly, 69:9–15, 1962.

[6] D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and
Algorithms. MIT Press, 1989.

[7] M. Halldórsson, R.W. Irving, K. Iwama, D.F. Manlove, S. Miyazaki, Y. Morita,
and S. Scott. Approximability results for stable marriage problems with ties.
Theoretical Computer Science, 306(1-3):431–447, 2003.

[8] P.R. Harper, V. de Senna, I.T. Vieira, and A.K. Shahani. A genetic algo-
rithm for the project assignment problem. Computers and Operations Research,
32:1255–1265, 2005.

[9] D. Kazakov. Co-ordination of student-project allocation. Manuscript, Univer-
sity of York, Department of Computer Science, 2002.

[10] L.G. Proll. A simple method of assigning projects to students. Operational
Research Quarterly, 23(2):195–201, 1972.

[11] A.E. Roth. The evolution of the labor market for medical interns and residents:
a case study in game theory. Journal of Political Economy, 92(6):991–1016,
1984.

[12] C.Y. Teo and D.J. Ho. A systematic approach to the implementation of final
year project in an electrical engineering undergraduate course. IEEE Transac-
tions on Education, 41(1):25–30, 1998.

[13] M. Thorn. A constraint programming approach to the student-project alloca-
tion problem. BSc Honours project report, University of York, Department of
Computer Science, 2003.

[14] V.V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

13

	citation_temp (2).pdf
	http://eprints.gla.ac.uk/25739/

