

McDermid, E.J. and Manlove, D.F. (2010) Keeping partners together:
algorithmic results for the hospitals/residents problem with couples.
Journal of Combinatorial Optimization, 19 (3). pp. 279-303. ISSN 1382-
6905

http://eprints.gla.ac.uk/25729/

Deposited on: 07 April 2010

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Keeping partners together:

Algorithmic results for the Hospitals /

Residents problem with couples∗

Eric J. McDermid and David F. Manlove

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK

E-mail : {mcdermid,davidm}@dcs.gla.ac.uk.

Abstract

The Hospitals / Residents problem with Couples (HRC) is a generalisation of the
classical Hospitals / Residents problem (HR) that is important in practical applica-
tions because it models the case where couples submit joint preference lists over pairs
of hospitals (hi, hj). We consider a natural restriction of HRC in which the members
of a couple have individual preference lists over hospitals, and the joint preference list
of the couple is consistent with these individual lists in a precise sense. We give an
appropriate stability definition and show that, in this context, the problem of decid-
ing whether a stable matching exists is NP-complete, even if each resident’s preference
list has length at most 3 and each hospital has capacity at most 2. However, with
respect to classical (Gale-Shapley) stability, we give a linear-time algorithm to find
a stable matching or report that none exists, regardless of the preference list lengths
or the hospital capacities. Finally, for an alternative formulation of our restriction of
HRC, which we call the Hospitals / Residents problem with Sizes (HRS), we give a
linear-time algorithm that always finds a stable matching for the case that hospital
preference lists are of length at most 2, and where hospital capacities can be arbitrary.

1 Introduction

An instance I of the classical Hospitals / Residents problem (HR) [6] involves two sets,
namely a set R = {r1, . . . , rn} of residents and a set H = {h1, . . . , hm} of hospitals.
Each resident in R seeks to be assigned to a hospital, whilst each hospital hj ∈ H has a
capacity cj ∈ Z

+ indicating the maximum number of residents who could be assigned to
hj . Each resident ri ∈ R ranks a subset of H, his acceptable hospitals, in strict order of
preference, and each hospital hj ∈ H ranks, again in strict order, those residents who find
hj acceptable. A solution of I is a matching (i.e., an assignment of mutually acceptable
(resident, hospital) pairs such that no resident is assigned more than one hospital, and
no hospital is assigned more residents than its capacity) that is stable [6, 9]. A matching
is stable if it admits no blocking pair. Informally, a blocking pair of M is a resident and
hospital who would prefer to be assigned to one another than remain with their allocations
in M . It is known that every instance of HR admits a stable matching, and that such a
matching can be found in linear time using the extended Gale-Shapley algorithm [6];[9,
Section 1.6].

∗Supported by Engineering and Physical Sciences Research Council grant EP/E011993/1.

1

HR is a many-one extension of the classical Stable Marriage problem [6], so called
because of its widespread application to centralised automated matching schemes that al-
locate graduating medical students (residents) to hospital posts. In particular the National
Resident Matching Program (NRMP) in the USA [21], the Canadian Resident Matching
Service [22] and the Scottish Foundation Allocation Scheme (SFAS) [10, 23] all essentially
incorporate extensions of the Gale-Shapley algorithm for HR.

Couples

In the above practical applications, the existence of couples who wish to be located at the
same hospital, or at hospitals close to one another, gives rise to an important variant of
HR called the Hospitals / Residents problem with Couples (HRC) [18, 17, 5, 2, 12, 13, 14].
The study of this problem was motivated by the fact that, over the years, participation in
the NRMP was observed to decrease, possibly as a result of the original algorithm being
unable to accommodate the complicated preference structure of couples [9, p.4];[20, p.7].

An instance of HRC involves both single residents and couples (pairs of residents) such
that each resident belongs to at most one couple. Each couple (ri, rj) has a preference
list over pairs of hospitals (hk, hl), representing the assignment of ri to hk and of rj to hl.
Ronn [17] (see also [9, Section 1.6.6]) described a stability criterion for a matching in HRC
that is a natural generalisation of the analogous concept in the HR context (we define
this stability concept formally in Section 2). Roth [18] showed that an HRC instance need
not admit a stable matching, whilst Ronn proved that the problem of deciding whether
an HRC instance admits a stable matching is NP-complete, even if there are no single
residents and each hospital has capacity 1 [17].

Consistent couples

In this paper we consider a natural restriction of HRC in which each member of a given
couple (ri, rj) has an individual preference list over a subset of hospitals, and the joint
preference list of the couple is consistent with the individual preferences of ri and rj in
a precise sense. That is, (ri, rj) ranks distinct pairs of hospitals in order of preference,
such that (hp, hq) precedes (hr, hs) on this list implies that (i) either ri prefers hp to hr

or hp = hr, and (ii) either rj prefers hq to hs, or hq = hs. We refer to this restriction of
HRC as the Hospitals / Residents problem with Consistent Couples (HRCC).

Thus HRCC models a situation in which the members of each couple can agree to
construct a joint preference list from their individual preferences consistently, in the sense
that if a couple jointly prefers (hp, hq) to (hr, hs), then when comparing hp to hr, ri

would be no worse off, and similarly when comparing hq to hs, rj would be no worse off.
This includes the case where both members of a given couple have identical individual
preference lists, with the intended outcome being that they are either matched to the
same hospital or not matched at all.

HRCC does not seem to have been studied previously in the literature from an algo-
rithmic point of view. In this paper we show that an instance I of HRCC need not admit
a stable matching, and that the problem of deciding whether I admits a stable matching is
NP-complete. This result holds even if the length of each resident’s individual list and the
length of each couple’s joint list is at most 3, and the capacity of each hospital is at most
2, thus providing another highly restricted version of HRC that remains NP-complete, in
addition to the case considered by Ronn [17]. This restriction is important from a practical
viewpoint, because in many applications the preference lists on one side tend to be short
(for example in the context of SFAS, residents are asked to rank up to 6 hospitals in order
of preference).

2

By contrast, we also give a linear-time algorithm to find a stable matching or report
that none exists, for the case that stability is defined with respect to classical (Gale-
Shapley) stability (that is, each member of a couple can form a blocking pair with a
hospital without regard to the other member of the couple). This version of stability can
be motivated in the HRCC context as follows. Suppose that a given couple (ri, rj) is
given the joint assignment (hr, hs) by a matching algorithm. Now suppose that ri prefers
some hospital hp to hr, whilst the joint assignment (hp, hs) is not acceptable to the couple
for whatever reason. The previously stated acceptance of the couple to supply a joint
(consistent) preference list could be overridden in practice if ri has an overarching desire
to be allocated to hp as opposed to hr (where hp may be far away from hr). In reality this
could mean that either rj moves with ri to remain geographically close, and attempts to
make an arrangement with hp (or a hospital nearby) outside of the matching scheme, or
rj changes career, or indeed the couple even split up. In the spirit of “keeping partners
together”, as indicated by the title of this paper, this is a situation that we seek to avoid,
thus motivating this stronger form of stability in the context of HRCC. Hence we obtain
a natural restriction of HRC that, unlike the general problem, is solvable in polynomial
time. Our algorithm does not make any assumptions on the lengths of the preference lists
or on the hospital capacities.

We remark that a matching that satisfies classical stability in the context of HRCC is
stable with respect to the criteria defined earlier by Roth and Ronn [19, 17] for HRC (see
Section 2 for a formal definition of this stability criterion). Note that the converse, however,
is not true in general. Our algorithm for HRCC under classical stability helps to narrow
the search for the boundary between polynomial time solvable and NP-complete variants
of HRC. In particular, HRCC under classical stability is the most general restriction of
HRC that we are aware of that remains solvable in polynomial time.

Hospitals / Residents problem with Sizes

As alluded to above, a special case of HRCC arises when each couple (ri, rj) satisfies
the property that the individual preference lists of ri and rj are identical, and the joint
preference list of (ri, rj) satisfies the property that hp = hq for any element (hp, hq) on this
list. Thus ri and rj wish to be either assigned to the same hospital, or both be unassigned.
We refer to this restriction of HRIC as the Hospitals / Residents problem with Inseparable
Couples (HRIC).

Let I be an instance of HRIC and let (ri, rj) be a couple in I. Given the structure
of (ri, rj)’s preference list, it is natural to replace (ri, rj) by a single entity Ci,j whose
preference list is obtained from that of (ri, rj) by replacing each occurrence of (hk, hk) by
hk. Thus each single resident occupies one post at a given hospital, whilst each couple
occupies two posts. This suggests a natural generalisation of HRIC to the case where each
resident ri ∈ R has a size si ∈ Z

+, indicating the number of posts that ri occupies at
any hospital. Hospitals will now rank residents of any size (including couples) as a single
entity. We refer to this variant of HRC as the Hospitals / Residents problem with Sizes
(HRS).

A formal definition of HRS is given in Section 2, in which we formulate an appropriate
notion of stability in the HRS context. With this stability definition we later prove that,
given an HRS instance where the size of each resident is at most 2 and the capacity of
each hospital is at most 2, the problem of deciding whether a stable matching exists is
NP-complete, even if the length of each preference list is at most 3. We also show that
the restriction of HRS in which each resident has size at most 2 is reducible to HRCC
(essentially each resident of size 2 becomes a couple), thus implying the aforementioned
NP-completeness result for HRCC.

3

However by contrast we also prove that, given an instance of HRS in which the length
of each hospital’s preference list is at most 2, a stable matching always exists and can be
found in linear time. The result holds for arbitrary resident sizes and hospital capacities.
This result therefore indicates a boundary between the polynomial-time solvability and
NP-completeness of HRS with respect to the length of a hospital’s preference list.

Related work

A version of HRS, called the Unsplittable Stable Marriage problem, was studied previously
by Dean et al. [4]; their version differs from ours in that they permit a hospital hj ’s
capacity to be exceeded by the assignment of a couple to hj . Dean et al. formulate the
problem in terms of assigning jobs (residents) with integral sizes to machines (hospitals)
with capacities. They provide a polynomial-time integral variant of the Gale-Shapley
algorithm that finds a stable matching in which each machine is congested by at most the
processing time of the largest job. In the analogous HRS setting, their algorithm finds a
stable matching in which the capacity of each hospital is oversubscribed by at most the
size of the largest resident. Until now, the complexity of determining the existence of a
stable matching in which none of the hospitals’ capacity constraints are exceeded was an
open problem.

Organisation of the paper

The remainder of this paper is organised as follows. In Section 2 we give a formal definition
of each of HRS and HRCC. We also show that a restricted version of the former problem
can be reduced to the latter, and that an instance of either problem need not admit a
stable matching. In Section 3 we prove that the problem of determining whether an HRS
instance admits a stable matching is NP-complete, even if the size and capacity of each
resident and hospital is at most 2 respectively, and the preference list of each resident and
hospital is at most 3. Together with the reduction given in Section 2, this also establishes
the NP-completeness of determining whether an HRCC instance admits a stable matching.
In Section 4, we consider HRCC under classical (Gale-Shapley) stability, and show that
the problem of finding, given an HRCC instance, a matching that satisfies this form of
stability, or reporting that none exists, is solvable in linear time. In Section 5 we revisit
HRS and consider the case where the length of each hospital’s preference list is at most 2.
Given an instance of this restricted version of the problem, we give a linear-time algorithm
for finding a stable matching.

2 Formal definitions of HRS and HRCC

We firstly give a formal definition of the Hospitals / Residents problem with Sizes (HRS).
An instance I of this problem is defined in the same way as an instance of HR (as defined
in Section 1) except that each resident ri ∈ R has a size si ∈ Z

+. An assignment M in
I is a set of (resident,hospital) pairs such that (ri, hj) ∈ M only if ri and hj find each
other acceptable. For ri ∈ R we denote {hj ∈ H : (ri, hj) ∈M} by M(ri), for hj ∈ H we
denote {ri ∈ R : (ri, hj) ∈ M} by M(hj), and for hj ∈ H we denote

∑
{si : ri ∈ M(hj)}

by OM
j and refer to this as the occupancy of hj in M . We say that hj is undersubscribed

if OM
j < cj .

A matching is an assignment M such that |M(ri)| ≤ 1 for each ri ∈ R and OM
j ≤ cj

for each hj ∈ H. In other words, each resident is assigned to at most one hospital, and
the sum of the sizes of the residents assigned to a hospital does not exceed its capacity.
Given a matching M in which a resident ri is matched to a hospital hj , with a slight abuse

4

1 : r1 : h2 h1

1 : r2 : h1 h2

2 : r3 : h1

2 : h1 : r1 r3 r2

1 : h2 : r2 r1

Figure 1: An HRS instance for which no stable matching exists

of notation we let M(ri) denote hj . A pair (ri, hj) ∈ R×H blocks a matching M , or is a
blocking pair for M , if

1. ri is unmatched, or ri prefers hj to M(ri), and

2. OM
j + si ≤ cj , or hj prefers ri to residents rk1

, . . . rkt ∈M(hj) such that

OM
j + si −

t∑

p=1

skp ≤ cj .

The definition implies that hj could participate in a blocking pair with ri if (i) either hj

currently has room for ri, or (ii) hj can make room for ri by rejecting a set of residents it
finds worse than ri. A matching is stable if it admits no blocking pair.

We assume without loss of generality that, for each ri ∈ R and for each hospital hj on
ri’s preference list, si ≤ cj , for otherwise (ri, hj) could never belong to a stable matching,
nor could (ri, hj) form a blocking pair.

We firstly observe that clearly HR is the special case of HRS in which si = 1 for each
ri ∈ R. The blocking pair definition for HR (which gives rise to the classical stability
definition) can then be deduced from that for HRS by interpreting Condition 2 as follows:
either hj is undersubscribed or prefers ri to some resident in M(hj).

We next observe that, in contrast to HR, an HRS instance may not admit a stable
matching. An example instance I that illustrates this is shown in Figure 1 (in this figure,
and throughout the paper, sizes and capacities are written next to the residents and
hospitals, respectively). Suppose for a contradiction that I admits a stable matching M .
If (r3, h1) ∈ M , then (r1, h2) ∈ M or else (r1, h1) blocks M . Hence (r2, h2) blocks M , a
contradiction. Hence (r3, h1) /∈ M . Then (r2, h1) ∈ M , or else (r2, h1) blocks M . Hence
(r1, h2) ∈M or else (r1, h2) blocks M . Hence (r3, h1) blocks M , a contradiction.

Our third observation is that the restriction of HRS where each resident has size at
most 2 is reducible to the Hospitals / Residents problem with Consistent Couples (HRCC),
which is a special case of the Hospitals / Residents problem with Couples (HRC). We now
demonstrate this, but first we give a formal definition of each of HRC and HRCC.

An instance I of HRC involves a set R = {r1, . . . , rn} of residents, a set H =
{h1, . . . , hm} of hospitals, and a set C of couples, i.e., ordered pairs of residents such
that each resident appears in at most one pair. As in the HR case, each hospital hj ∈ H
has a capacity cj ∈ Z

+.
Each single resident ri ∈ R (i.e., a resident who does not belong to a couple) submits

a strict preference list of acceptable hospitals. Each couple (ri, rj) submits a joint (strict)
preference list over pairs of acceptable hospitals. Each entry in this list is an ordered
pair (hk, hl) of (not necessarily distinct) hospitals representing the assignment of ri to hk

and of rj to hl. Finally, each hospital hj ∈ H ranks those residents (whether single or a
member of a couple) who find hj acceptable in strict order of preference.

In this context, the definition of a matching M is the same as in the classical HR
setting, with the additional requirement that, for each couple (ri, rj), if (ri, hk) ∈M and
(rj , hl) ∈M then the pair (hk, hl) must appear on the joint preference list of that couple.
A matching M is unstable if at least one of the following holds:

5

1. The matching is blocked by a hospital hj and a single resident ri, as in the classical
HR problem.

2. The matching is blocked by a hospital hk and a resident ri who is coupled, say with
rj ; that is, (ri, rj) prefers (hk,M(rj)) to (M(ri),M(rj)), and hk is either undersub-
scribed in M or prefers ri to some member of M(hk)\{rj}.

3. The matching is blocked by a couple (ri, rj) and (not necessarily distinct) hospitals
hk 6= M(ri), hl 6= M(rj); that is, (ri, rj) prefers the joint assignment (hk, hl) to
(M(ri),M(rj)), and either

(a) hk 6= hl, and hk (respectively hl) is either undersubscribed in M or prefers ri

(respectively rj) to at least one of its assigned residents in M ; or

(b) hk = hl, and hk has at least two free posts in M , i.e., ck − |M(hk)| ≥ 2; or

(c) hk = hl, and hk has one free post in M , i.e., ck − |M(hk)| = 1, and hk prefers
at least one of ri, rj to some member of M(hk); or

(d) hk = hl, hk is full in M , hk prefers ri to some rs ∈M(hk), and hk prefers rj to
some rt ∈M(hk)\{rs}.

The above stability definition for HRC extends that given in [9, Section 1.6.6], in order to
deal with the case that hk = hl, given a couple (ri, rj) who prefer (hk, hl) to (M(ri),M(rj)).
As far as we are aware, this possibility does not appear to have been covered adequately
by previous stability definitions for HRC in the literature [18, 9, 17, 5, 2, 12, 13, 14].

HRCC is the special case of HRC in which each resident (i.e., whether single or a
member of a couple) ranks a subset of H in strict order of preference. Each couple (ri, rj)
ranks a subset of H×H in strict order, subject to the constraint that this joint preference
list be consistent with the individual preference lists of ri and rj . That is, (ri, rj) prefers
(hp, hq) to (hr, hs) only if (i) either ri prefers hp to hr or hp = hr, and (ii) either rj prefers
hq to hs or hq = hs. We now show that the restriction of HRS in which each resident has
size at most 2 is polynomially reducible to HRCC.

Lemma 2.1. The restriction of HRS in which each resident has size at most 2 can be
reduced in polynomial time to HRCC.

Proof. Given an instance I of the above version of HRS, construct an instance I ′ of
HRCC in the following way. For each resident ri of size 2, create a couple (ri,1, ri,2)
in I ′. Suppose the preference list of ri in I is h1, h2, . . . ht. Assign to each of ri,1 and ri,2

an individual list equal to that of ri. Let the joint preference list of (ri,1, ri,2) in I ′ be
(h1, h1), (h2, h2), . . . , (ht, ht) – this is clearly consistent with the lists of ri,1 and ri,2.

For each hospital hj that finds ri acceptable in I, replace the entry ri on hj ’s preference
list in I ′ with ri,1 and ri,2 in arbitrary order. Leave all residents of size 1 the same in both
I and I ′. This ends the transformation. We claim that a stable matching exists for I ′ if
and only if one exists for I.

Suppose a stable matching M exists for I. Then, construct a stable matching M ′ for
I ′ in the following way. If (ri, hj) is in M , place (ri, hj) into M ′ if ri has size 1, else place
(ri,1, hj) and (ri,2, hj) into M ′. Notice that the capacities of the hospitals are preserved
in the reduction, and also that if a hospital hj has an occupancy of t in M , then hj is
assigned t residents in M ′. Suppose a blocking pair exists for M ′ in I ′. Then, the blocking
pair must take the form of Rule 1 or 3 above, as Rule 2 is impossible by the special nature
of the couple’s preference lists. If there is a blocking pair (ri, hj) by Rule 1, M surely
also had the same blocking pair in I. If instead M ′ is blocked by Rule 3, then it must be

6

because a couple (ri,1, ri,2) block with the pair (hj , hj) in I ′. But then resident ri of size
2 in I must also block with hospital hj in M .

Conversely suppose a stable matching M ′ exists for I ′. Then, construct a stable
matching M for I in the following way. If (ri, hj) is in M ′, place (ri, hj) into M , if ri has
size 1 in I, else if (ri,1, hj) and (ri,2, hj) are in M ′, place (ri, hj) into M . By the nature of
the preference lists, ri,1 and ri,2 are always assigned the same hospital. Suppose (ri, hj)
blocks M in I. Then, by an argument similar to the above, (ri, hj) must have blocked
M ′ in I ′ if ri has size 1, otherwise the pair (ri,1, ri,2) must have blocked M ′ in I ′ with
(hj , hj).

It follows immediately from Figure 1 and Lemma 2.1 that an HRCC instance need not
admit a stable matching.

3 NP-completeness of HRS and HRCC

This section describes the polynomial-time reduction that establishes NP-completeness for
the problem of deciding whether a stable matching exists, given an HRS instance where
the sizes and capacities of the residents and the hospitals respectively is at most 2, and
the length of each preference list is at most 3. This reduction begins from a problem
we refer to as (3, 3)-COM-SMTI. In order to define this problem, we make the following
preliminary definitions. The Stable Marriage problem with Incomplete lists (SMI) is the
restriction of HR in which each hospital has capacity 1. The Stable Marriage problem with
Ties and Incomplete lists (SMTI) is a generalisation of SMI in which preference lists can
include ties. A matching M in an instance I of SMTI is stable if there is no man-woman
pair, each of whom is either unmatched in M and finds the other acceptable, or prefers
the other to his/her partner in M . We then define (3, 3)-COM-SMTI to be the problem of
deciding whether a complete stable matching exists (i.e., a stable matching that matches
everybody), given an instance of SMTI in which each preference list is of length at most
3, every woman’s preference list is strictly ordered, and each man’s preference list is either
strictly ordered or is a tie of length 2 (these conditions holding simultaneously). Using a
modification of a reduction appearing in [11], we may deduce the following result, whose
proof appears in the Appendix.

Theorem 3.1. (3, 3)-COM-SMTI is NP-complete.

Given an instance I of (3, 3)-COM-SMTI with n men m1,m2, . . . ,mn and n women
w1, w2, . . . , wn, we create an instance I ′ of HRS, whose residents and hospitals are con-
structed as follows. Firstly, a hospital ht is created for each woman wt in I.

Next, for each man mi in I with a preference list consisting of a two-way tie (wk, wl)
where k < l, create eight residents {ri,1, ri,2, ri,3, ri,4, riα,1 , riα,2 , riβ,1

, riβ,2
} and six hospitals

{hi,1, hi,2, hiα,1 , hiα,2 , hiβ,1
, hiβ,2

}. The preference lists, sizes and capacities of these eight
residents and six hospitals are shown in Figure 2. For each man ms in I with a strictly or-
dered preference list, create three residents {rs, rsγ,1 , rsγ,2} and two hospitals {hsγ,1 , hsγ,2}.
The preference lists, sizes and capacities of these three residents and two hospitals are also
shown in Figure 2.

Finally, for each hospital ht created from a woman wt with preference list mt1 , . . . ,mtz ,
set the preference list of ht to initially be equal to mt1 , . . . ,mtz , temporarily placing “men”
on ht’s preference list. Now, suppose that wt finds some man mj acceptable. If mj’s
preference list is strictly ordered in I, replace mj on ht’s preference list with rj . If mj’s
preference list is not strictly ordered, his preference list consists of a two-way tie, say,
(wt, wk). If t < k, replace mj with rj,1 on ht’s preference list, else, replace mj with rj,2 on
ht’s preference list. Set the capacity of ht to be 2.

7

2 : ri,1 : hi,1 hk hiα,1 2 : hi,1 : ri,4 ri,1 ri,3

2 : ri,2 : hi,2 hl hiβ,1
2 : hi,2 : ri,3 ri,2 ri,4

1 : ri,3 : hi,1 hi,2

1 : ri,4 : hi,2 hi,1

1 : riα,1 : hiα,2 hiα,1 2 : hiα,1 : riα,1 ri,1 riα,2

1 : riα,2 : hiα,1 hiα,2 1 : hiα,2 : riα,2 riα,1

1 : riβ,1
: hiβ,2

hiβ,1
2 : hiβ,1

: riβ,1
ri,2 riβ,2

1 : riβ,2
: hiβ,1

hiβ,2
1 : hiβ,2

: riβ,2
riβ,1

2 : rs : hs1
hs2

. . . hsy hsγ,1

1 : rsγ,1 : hsγ,2 hsγ,1 2 : hsγ,1 : rsγ,1 rs rsγ,2

1 : rsγ,2 : hsγ,1 hsγ,2 1 : hsγ,2 : rsγ,2 rsγ,1

Figure 2: Preference lists in the constructed instance of HRS

This ends the reduction. Clearly, it is computable in polynomial time. We now argue
that it is correct by the following sequence of lemmas, each of which states a property of
any stable matching M ′ in I ′.

Lemma 3.2. Let ms be a man with a strictly ordered preference list in I, and let mi be
a man with a preference list consisting of a two-way tie in I. Then, every resident in the
set {rs, ri,1, ri,2} is matched to some hospital in M ′, and that hospital is not the last entry
on his preference list.

Proof. Suppose that rs is unmatched in M ′. Then, rsγ,1 must be matched to hsγ,1 , to
prevent rs from forming a blocking pair with hsγ,1 . Resident rsγ,2 must be matched to
hsγ,1 as well, for otherwise he forms a blocking pair with hsγ,1 . But this implies (rsγ,1 , hsγ,2)
is a blocking pair for M ′.

Suppose instead that rs is matched to hsγ,1 . Then, neither rsγ,1 nor rsγ,2 is matched
to hsγ,1 , else its capacity would be exceeded. So, if rsγ,1 is matched to hsγ,2 , rsγ,2 is
unmatched, and forms a blocking pair with hsγ,2 . If, instead, rsγ,2 is matched to hsγ,2 ,
then rsγ,1 is unmatched, and forms a blocking pair with hsγ,1 . Clearly, if neither rsγ,1

nor rsγ,2 is matched to hsγ,2 , they form blocking pairs with hsγ,2 . This exhausts every
possibility. It follows that if rs is unmatched in M ′ or is matched to the last hospital on
his preference list, a blocking pair cannot be avoided.

The same argument holds for ri,1 by substituting hiα,1 and hiα,2 for hsγ,1 and hsγ,2 ,
respectively, and riα,1 and riα,2 for rsγ,1 and rsγ,2 , respectively. Similarly, the argument is
analogous for ri,2, by replacing rsγ,1 and rsγ,2 with riβ,1

and riβ,2
, respectively, and hsγ,1

and hsγ,2 with hiβ,1
and hiβ,2

, respectively.

Lemma 3.3. For all i, ri,3 and ri,4 are matched to some hospital in M ′. Moreover, ri,3

and ri,4 are matched to the same hospital in M ′.

Proof. If ri,3 is not matched in M ′, he clearly forms a blocking pair with hi,2, who has ri,3

first on its preference list. Similarly, if ri,4 is not matched, he blocks with hi,1.
For the second claim, suppose (ri,3, hi,1) and (ri,4, hi,2) are in M ′. Then ri,1 cannot

be matched to hi,1 and ri,2 cannot be matched to hi,2 in M ′, for otherwise the capacities
of hi,1 and hi,2 would be exceeded. However, this implies (ri,1, hi,1) and (ri,2, hi,2) form

8

blocking pairs for M ′. On the other hand, if (ri,3, hi,2) and (ri,4, hi,1) are in M ′, then
(ri,3, hi,1) form a blocking pair in M ′, for hi,1 has enough spare capacity to admit ri,3.

Lemma 3.4. For all i, exactly one of {ri,1, ri,2} is matched to his first choice, and the
other is matched to his second choice in M ′.

Proof. By Lemma 3.3, it is clear that ri,1 and ri,2 cannot both be matched to their first
choice in M ′, for this would result in ri,3 and ri,4 being unassigned in M ′, a contradiction.

On the other hand, if ri,1 and ri,2 are both matched to their second choice, then if ri,3

and ri,4 are both matched to hi,1, then ri,2 forms a blocking pair with hi,2. If instead ri,3

and ri,4 are both matched to hi,2, then ri,1 forms a blocking pair with hi,1.
Finally, by Lemma 3.2, ri,1 and ri,2 cannot be unmatched or matched to the last

hospitals on their preference lists, so exactly one of {ri,1, ri,2} is matched to his first choice
in M ′, and the other to his second.

Lemmas 3.2-3.4 lead us to the following corollary.

Corollary 3.5. Every resident is matched in any stable matching M ′ for I ′.

Proof. The only residents not yet shown to be matched in M ′ are those residents riδ,k
for

δ ∈ {α, β} and k ∈ {1, 2} created from a man mi with a preference list consisting of a tie
of size 2 in I, and the residents rsγ,k

for k ∈ {1, 2} created from a man ms with a strictly
ordered preference list in I. Each of these residents must be matched in M ′, for otherwise
they would form a blocking pair with the last hospital on their preference list.

We are now in a position to prove the first direction of the reduction.

Lemma 3.6. If the derived HRS instance I ′ admits a stable matching M ′, then the given
instance I of (3,3)-COM-SMTI admits a complete stable matching M .

Proof. Given a stable matching M ′ for I ′, we describe how to construct a complete stable
matching M in I as follows. Consider the residents ri,k for k ∈ {1, 2, 3, 4} that were created
in correspondence to a man mi in I with a preference list consisting of (wk, wl), a tie of size
2, where k < l. By Lemma 3.4, either ri,1 is matched to hk or ri,2 is matched to hl in M ′,
and, since the capacity of every hospital in I ′ is either 2 or 1, no other resident is assigned
to hk if ri,1 is, and similarly for ri,2 and hl. Hence, we construct M by placing (mi, wk)
into M if and only if (ri,1, hk) ∈ M ′, and (mi, wl) into M if and only if (ri,2, hl) ∈ M ′.
Again, Lemma 3.4 ensures we always place exactly one such pair into M . To complete the
construction of M , for each resident ri corresponding to a man mi with a strictly ordered
preference list, place (mi, wj) into M if and only if (ri, hj) ∈ M ′. Corollary 3.5 ensures
every man in I is assigned to some woman in M ; in what follows we will show that M is
indeed a matching, and is also stable.

We have already argued by Lemma 3.4 that no two men with ties on their preference
lists are matched to the same woman in M . For any resident ri corresponding to a man
mi in I with a strictly ordered preference list, ri must have size 2, and is matched to a
hospital hj , which is not his last choice by Lemma 3.2, and which therefore corresponds
to woman wj in I. Hospital hj has capacity 2, and so is matched to only ri in M ′. This
means exactly one man is matched to wj in M . Therefore, M is a matching.

We will show M ′ is stable by demonstrating that no man can be part of a blocking
pair relative to M . For any man mi with a preference list consisting of a tie of size two,
this must true, for they are indifferent between the only two women on their preference
list. Suppose instead mi has a strictly ordered preference list. Consider any woman wl

whom mi prefers in M . Then, in M ′, resident ri must also have preferred hospital hl.

9

By Lemma 3.2 and the construction of the hospitals of I ′, hl’s preference list contains
residents of size 2 only. Since M ′ is stable, hl is assigned a resident it strictly prefers over
ri, and hence wl is assigned a man she strictly prefers over mi in M . It follows that M is
a complete stable matching in I.

We now prove the reduction is correct in the other direction.

Lemma 3.7. If the given instance I of (3,3)-COM-SMTI admits a complete stable match-
ing M , then, the derived HRS instance I ′ admits a stable matching M ′.

Proof. Given a complete stable matching M for I, we describe how to construct a complete
stable matching M ′ in I. For each man mi with a strictly ordered preference list, place
(ri, hj) into M ′ if and only if (mi, wj) ∈ M . For each man mi in M with a tie of size 2
consisting of, say, (wk, wl), where k < l, construct M ′ by the following two rules:

1. If (mi, wk) ∈M , place (ri,1, hk), (ri,2, hi,2), (ri,3, hi,1), (ri,4, hi,1) into M ′ , and assign
all residents riδ,k

∀δ ∈ {α, β} and ∀k ∈ {1, 2} with their first choice.

2. If (mi, wl) ∈ M , place (ri,1, hi,1), (ri,2, hl), (ri,3, hi,2), (ri,4, hi,2) into M ′, and assign
all residents riδ,k

∀δ ∈ {α, β} and ∀k ∈ {1, 2} with their first choice.

It is easy to verify that the capacities of each hospital are not exceeded in M ′, and that
M ′ is a matching. We claim that M ′ is also stable.

For, suppose residents ri,t for t ∈ {1, 2, 3, 4} are matched by Rule 1 above. Immediately
we may notice that ri,2 and ri,3 are matched with their first choices, and hence cannot
form a blocking pair with any hospital in I ′. Resident ri,1 prefers only hospital hi,1 to
his assignment in M ′, but does not form a blocking pair with it because ri,3 and ri,4 are
matched to hi,1. The remaining resident, ri,4 prefers only hi,2, who is matched with ri,2,
and hence does not form a blocking pair with ri,4. All residents riδ,k

∀δ ∈ {α, β} and
∀k ∈ {1, 2} are matched with their first choice and cannot form a blocking pair with any
hospital.

Suppose residents ri,t for t ∈ {1, 2, 3, 4} are matched by Rule 2 above. In a symmetric
argument to the previous rule, ri,1 and ri,4 are matched with their first choices, and cannot
be part of a blocking pair. Resident ri,2 prefers only hospital hi,2 to his assignment in M ′,
but does not form a blocking pair with it because ri,3 and ri,4 are matched to hi,2. The
remaining resident, ri,3 prefers only hi,1, who is matched with ri,1, and hence cannot form a
blocking pair with ri,3. Again, the residents riδ,k

∀δ ∈ {α, β} and ∀k ∈ {1, 2} are matched
with their first choice and cannot form a blocking pair with any hospital.

In the final case, a resident ri corresponding to a man mi with a strictly ordered
preference list in I ′ cannot block for the same reasons that mi did not block in M . If
mi preferred a woman wj in M , then ri must also prefer hj in M ′. However, hj must be
matched to a resident that precedes ri on its preference list, since wj is matched to a man
preceding mi on her preference list. The capacity of hj is 2, and the size of ri is also 2, so
that ri cannot be “added” to hj . Therefore, M ′ is a stable matching for I ′.

Lemmas 3.6 and 3.7 immediately imply the following theorem.

Theorem 3.8. The problem of determining whether an HRS instance admits a stable
matching is NP-complete, even if the size of each resident and the capacity of each hospital
is at most 2, and the lengths of the residents’ and hospitals’ preference lists are at most 3
(these conditions holding simultaneously).

The following corollary follows immediately by Theorem 3.8 and Lemma 2.1.

10

Corollary 3.9. The problem of determining whether an HRCC instance admits a stable
matching is NP-complete, even if the individual preference list of each resident and the
joint preference list of each couple has at most 3 entries, and the capacity of each hospital
is at most 2 (these conditions holding simultaneously).

4 HRCC under classical (Gale-Shapley) stability

We begin this section by defining the variant of HRCC in which stability is defined with
respect to classical (Gale-Shapley) stability. We provide a linear time algorithm for this
problem, without any assumptions about the lengths of the preference lists or capacities
of the hospitals. The problem is defined in the same manner as HRCC, the difference,
however, lies in the definition of a blocking pair. So, as before, each hospital hj ∈ H
provides a preference list of acceptable residents, denoted Lhj

, and each resident ri ∈ R
(whether they are a member of a couple or not) submits an individual preference list Lri

of acceptable hospitals. Each couple ck then constructs a joint preference list Lck
that is

consistent as defined in Section 2. A blocking pair for a matching, then, is defined to be a
(resident,hospital) pair (ri, hj) such that (i) according to Lri

, ri prefers hj to M(ri) and
(ii) either hj is undersubscribed, or according to Lhj

, hj prefers ri to at least one member
of M(hj). Notice the difference in the stability definition to that defined in Section 2
for HRC is that blocking pairs are defined with respect to the individual preference lists,
rather than the couples’ joint preference lists. We partition the set of preference lists L of
an instance of HRCC into three sets L = LC ∪LR ∪LH where LR is the set of individual
preference lists of the residents, LH is the set of hospitals’ preference lists, and LC is the
set of joint lists created by the couples. The goal in this setting is to find a matching
satisfying the following two criteria:

1. The matching contains no blocking pairs relative to LR and LH under the classical
definition of Gale-Shapley stability as defined above.

2. Each couple ck = (ri, rj) is assigned to a pair of hospitals (hp, hq) ∈ Lck
or both ri

and rj are unassigned.

The instance induced by the preference lists LR and LH is a classical Hospitals /
Residents instance, so finding a matching satisfying (1) above simply involves using the
extended Gale-Shapley algorithm to compute a stable matching M . Of course, M may not
satisfy (2), in which case we need to determine if there is a different stable matching which
does. Efficient algorithms are known for enumerating the set of all stable matchings [8],
however, there may be exponentially many of them [15]. Thus we need a direct approach
to determine if a matching satisfying (1) and (2) exists. Henceforth, let such a stable
matching be called a feasible stable matching.

Given an instance I of HRCC, let M denote the set of all stable matchings under
classical stability with respect to LR and LH . We shall obtain a polynomial time algorithm
for determining the existence of a feasible stable matching by exploiting the known results
about the rich structure of M. We begin with the following so-called rural hospitals
theorem [18, 7] (see also [9, Section 1.6.5]).

Theorem 4.1. For any given hospitals/residents instance, (i) each hospital is assigned
the same number of residents in all stable matchings; (ii) exactly the same set of residents
are unassigned in all stable matchings; (iii) any hospital which is undersubscribed in one
stable matching is matched with precisely the same set of residents in all stable matchings.

11

Since our goal in this section is to develop an algorithm to match couples together,
part (ii) of the previous theorem implies that if for some instance of the problem we have
a stable matching in which it is the case that one member of a couple is assigned and the
other is unassigned, no feasible stable matching exists, for there is no stable matching in
which they are either both assigned or both unassigned. By the same token, we cannot in
general trivially obtain a feasible stable matching by selecting every resident in a couple
to simply be unassigned. We continue with the following known relation which induces a
partial order onM [9].

Definition 4.2. Let M and M ′ be stable matchings for an HR instance. We say that M
dominates M ′ (denoted M � M ′) if, for each assigned resident r, M(r) = M ′(r), or r
strictly prefers M(r) to M ′(r). Intuitively, M dominates M ′ if each resident is at least as
happy in M as in M ′ (the case that M �M ′ and M 6= M ′ is denoted by M ≻M ′).

Notice in fact that a stable matching dominates itself. While we do not necessarily
need the result here, it is interesting to note that the set of stable matchings along with
� forms a distributive lattice. When the extended Gale-Shapley algorithm is run, if the
sequence of proposals come from the residents, the resulting matching is the resident-
optimal stable matching, denoted MR, in which each matched resident is assigned to the
best hospital he can ever be assigned to in any stable matching, whilst each unmatched
resident is unmatched in every stable matching [9, Theorem 1.6.2]. If instead the sequence
of proposals come from the hospitals, the resulting stable matching is the hospital-optimal
stable matching, denoted MH , in which each undersubscribed hospital hj is assigned the
residents in MH(hj) in every stable matching, and each full hospital hj is assigned its best
cj partners in any stable matching [9, Theorem 1.6.1]. MR and MH are the maximum
and minimum elements, respectively of the lattice of stable matchings [9, Section 1.6.5].
It is this underlying structure of M that will allow us to develop the efficient algorithm
presented in this section. We continue with the following proposition [9, Section 1.6.5].

Proposition 4.3. The resident-optimal stable matching MR dominates all stable match-
ings in M.

4.1 Breakmarriage

The algorithm we develop will use as a subroutine a generalised version of an algorithm
known as Algorithm Breakmarriage, first defined by McVitie and Wilson [16] and used
again by Gusfield [8]. Our modified version of Algorithm Breakmarriage takes as input any
stable matching M 6= MH , and takes as a second parameter any resident r who is matched
in M such that M(r) 6= MH(r), and always outputs a new stable matching dominated by
M . A description of this algorithm is as follows:

Breakmarriage(M, r)
Given the stable matching M and a matched resident r as input, let R′ ⊆ R denote
the set of residents r′ matched to M(r) = h in M such that r′ = r or r′ succeeds r
on the preference list of h. Restart the extended Gale-Shapley algorithm by unassigning
all pairs (r′, h) for all r′ ∈ R′. All residents in R′ are now free and are pushed onto a
stack S in arbitrary order. Hospital h is defined to be “semi-free” in that it only accepts
new proposals from residents it strictly prefers to r. Algorithm Breakmarriage iteratively
pops a resident r′′ from S with r′′ proposing to the first hospital following M(r′′) on
his preference list, and this initiates a sequence of proposals, rejections, and acceptances
as given by the resident-oriented Gale-Shapley algorithm [9, Section 1.6.3] in which free
residents that have not become rejected by every hospital on their preference list become

12

pushed onto S. Algorithm Breakmarriage terminates when S becomes empty. The current
set of assignments M ′ is then output.

The following facts hold about Algorithm Breakmarriage.

Proposition 4.4. Suppose M and M ′ are stable matchings such that M �M ′, and that
resident r is matched in M and satisfies M(r) 6= M ′(r). Then, in the resulting execution of
Algorithm Breakmarriage(M, r), no resident r′ ∈ R ever proposes to a hospital succeeding
M ′(r′) on his preference list (in the case that M(r′) = M ′(r′), this implies that r′ remains
matched to M(r′) in the execution of Breakmarriage(M, r)).

Proof. Let h = M(r), and let R′ ⊆ R denote the set of residents r′ ∈ M(h) such that
r′ = r or r′ succeeds r on the preference list of h. Since r /∈M ′(h) and M �M ′, it follows
that r prefers h to M ′(r). Hence h is full in M ′ and prefers each of its assignees in M ′ to
r. It follows that h prefers each of its assignees in M ′ to each member of R′.

Now suppose that a resident r′ who is matched in M is the first resident in the execution
of Algorithm Breakmarriage(M, r) to be rejected by the hospital he is assigned to in
M ′. Let h′ = M ′(r′). Clearly if h′ = h and r′ ∈ R′ then M(r′) = M ′(r′), which
is impossible by the first paragraph. Hence r′ was rejected by h′ during the phase of
Algorithm Breakmarriage that corresponds to the restart of the resident-oriented Gale-
Shapley algorithm. Let MA be the matching at the point during the execution of the
algorithm when h′ rejected r′. Then h′ is full in MA and prefers each of its assignees in
MA(h′) to r′. Since r′ ∈ M ′(h′)\MA(h′) and h′ is full in MA, it follows that there exists
some rw ∈MA(h′)\M ′(h′).

If rw is matched in M ′, then rw cannot yet have proposed to M ′(rw) (as h′ 6= M ′(rw),
and hence this would contradict the fact that r′ is the first resident to be rejected by the
hospital that he is assigned to in M ′). Hence either rw is unmatched in M ′ and finds h′

acceptable, or rw prefers h′ to M ′(rw). But this implies that (rw, h′) form a blocking pair
for M ′, as h′ prefers rw to r′. Therefore, r′ is not rejected by h′ in the call to Algorithm
Breakmarriage(M, r).

Corollary 4.5. Let M 6= MH be a stable matching and r an arbitrary resident with
M(r) 6= MH(r). Then, no resident r′ ∈ R is ever rejected by MH(r′) in a call to Algorithm
Breakmarriage(M, r).

Proposition 4.6. When Algorithm Breakmarriage(M, r) terminates, the set of assign-
ments M ′ output by the algorithm is a stable matching.

Proof. We first observe that M(r) is full in M , by Theorem 4.1, since M(r) 6= MH(r). We
proceed by showing that every hospital that is full in M is also full in M ′. Throughout the
execution of Algorithm Breakmarriage(M, r), no hospital that was full in M can become
undersubscribed except for M(r), as no other hospital rejects a resident without gaining a
better one. Therefore, the set of hospitals that are undersubscribed at some point in the
execution of the algorithm are those that are undersubscribed in every stable matching
(by Theorem 4.1) and M(r). Suppose that a resident r′ were to propose to a hospital
h′, such that h′ is undersubscribed in M , during the algorithm’s execution. By Theorem
4.1, h′ is undersubscribed in MH , and also (r′, h′) /∈ MH , since (r′, h′) /∈ M . If r′ is
unmatched in MH then (r′, h′) blocks MH , a contradiction. Hence r′ is matched in MH .
As h′ 6= MH(r′), by Corollary 4.5, h′ precedes MH(r′) on r′’s preference list, implying
that (r′, h′) blocks MH , a contradiction. Hence, no resident may propose to a hospital
that is undersubscribed in M at any point in the execution of the algorithm, implying
that proposals are only made to those hospitals that are full in M . It follows by a simple
counting argument that M(r) is full in M ′.

13

To see that M ′ is stable, we know that any resident other than those in R′ has not been
rejected by a hospital without proposing to it, and hospitals only improve throughout the
execution of the algorithm, so that these residents cannot be a part of a blocking pair.
For any resident r′ ∈ R′, r′ also is not rejected by a hospital without proposing to it, with
the exception of hospital M(r′). By the above discussion, M(r′) is full in M ′, and by the
description of the algorithm, M(r′) only accepts proposals from residents it prefers to r′,
hence r′ cannot be a part of a blocking pair either.

Proposition 4.7. Let M and M ′ be distinct stable matchings, and suppose that M dom-
inates M ′. Then, if r is a resident with M(r) 6= M ′(r), Algorithm Breakmarriage either
returns M ′ or a stable matching M ′′ that dominates M ′ (i.e., M ≻M ′′ �M ′).

Proof. This is an immediate consequence of Propositions 4.4 and 4.6.

Proposition 4.8. Any stable matching M can be obtained by a series of calls to Algorithm
Breakmarriage from the resident-optimal stable matching MR in O(L) time, where L is
the sum of the lengths of the preference lists.

Proof. The fact that an arbitrary stable matching M can be obtained from MR by a series
of calls to Algorithm Breakmarriage is a straightforward consequence of Proposition 4.7.
A total of O(L) time is spent, as any arbitrary series of calls to the algorithm constitutes
at most one left to right traversal of each resident’s preference list, and similar time is
spent traversing the hospitals’ preference lists.

So, in light of Proposition 4.8, we can see that an approach to computing a feasible
stable matching (if one exists) can be achieved by first finding the resident-optimal stable
matching MR, and making a suitable selection of calls to Algorithm Breakmarriage. In
the next subsection, we will show that because the preference lists in Lck

are consistent,
we can always compute an appropriate sequence of calls to Algorithm Breakmarriage in
linear time.

We also note that repeated calls to Algorithm Breakmarriage ultimately yield the
hospital-optimal stable matching, in which every resident is, of course, assigned to MH(r).
Thus this is the only stable matching Algorithm Breakmarriage cannot take as input.

4.2 The algorithm

Before presenting the main algorithm of this section, we require some preliminary lemmas
and definitions. Let M be a stable matching. Recall Theorem 4.1, which states that
precisely the same set of residents are matched in every stable matching. With this in
mind, we define a matched couple ck = (ri, rj) to be a couple such that ri and rj are
matched in M (and hence in every stable matching). Similarly, we define an unmatched
couple ck = (ri, rj) to be a couple such that one or both of ri and rj are unmatched in M
(and hence in every stable matching). Let ck = (ri, rj) be a matched couple. We define the
next acceptable pair on Lck

(denoted nextM (ck)) to be the first pair of hospitals (hp, hq)
on Lck

such that hp succeeds or is equal to M(ri) on Lri
and hq succeeds or is equal to

M(rj) on Lrj
. If no such pair exists, we say nextM (ck) = ∅ with slight abuse of notation.

Example To illustrate the notion of the next acceptable pair for a couple, we refer the reader to

Figure 3. This shows an HRCC instance with 8 residents r1, r2, . . . , r8 and 5 hospitals h1, h2, . . . , h5.

There are a total of three couples, namely (r2, r3), (r4, r5), and (r7, r8). A stable (but not fea-

sible) matching M for this instance is denoted by underlining. In M , nextM (r2, r3) = (h3, h2),

nextM (r4, r5) = (h4, h4), and nextM (r7, r8) = (h2, h2).

14

Lr1
: h1 h2 h3 h5 1 : Lh1

: r8 r5 r1 r7 r6 r2

Lr2
: h1 h2 h3 2 : Lh2

: r3 r8 r2 r5 r7 r1

Lr3
: h4 h3 h2 2 : Lh3

: r7 r1 r2 r3 r6 r4

Lr4
: h3 h4 2 : Lh4

: r7 r8 r4 r5 r3

Lr5
: h4 h2 h1 1 : Lh5

: r6 r1

Lr6
: h3 h1 h5

Lr7
: h2 h3 h4 h1

Lr8
: h1 h2 h4

L(r2,r3) : (h1, h3) (h3, h2)

L(r4,r5) : (h4, h4) (h4, h2) (h4, h1)

L(r7,r8) : (h2, h2) (h4, h4)

Figure 3: An HRCC instance with a stable but not feasible matching

The next two lemmas will help us to develop the algorithm to determine an appropriate
selection of calls to Algorithm Breakmarriage to obtain a feasible stable matching, if one
exists.

Lemma 4.9. Let M be a non-feasible stable matching that dominates a feasible stable
matching Mf . Let ck = (ri, rj) be any matched couple who are not matched to a pair
of hospitals on Lck

. Then, in Mf , (ri, rj) is either assigned to nextM(ck) or a pair of
hospitals succeeding nextM (ck) on Lck

.

Proof. Since M dominates Mf , each resident r either has M(r) = Mf (r) or Mf (r) succeeds
M(r) on Lr by Definition 4.2. So, for a couple ck = (ri, rj), their partners in Mf are either
their current hospitals or hospitals that appear further down their individual preference
lists. It follows then, that nextM (ck) is the first pair of hospitals on Lck

that ck could be
assigned to in Mf . So, in Mf , ck is either assigned to nextM (ck) or to a pair of hospitals
that succeeds nextM(ck) on Lck

.

Lemma 4.10. Let M be a non-feasible stable matching that dominates a feasible stable
matching Mf . Let ck = (ri, rj) be any matched couple who are not matched to a pair of
hospitals on Lck

. Let (hp, hq) = nextM (ck). Then,

1. Either M(ri) 6= hp or M(rj) 6= hq (or both). Let r∗ denote whichever of ri or rj

satisfy (1).

2. The stable matching obtained by calling Algorithm Breakmarriage with M and r∗

dominates Mf .

Proof. For the first claim, ri and rj cannot both be assigned to hp and hq, respectively in
Mf , for Mf is feasible, and this pair does not appear on Lck

, by the assumption of the
lemma. Let r∗ denote whichever of ri and rj have M(r∗) 6= Mf (r∗), choosing arbitrarily
if both do.

For the second claim, since M is not feasible and M dominates Mf , the members of ck

must be assigned to nextM(ck) or to a pair of hospitals succeeding nextM(ck) by Lemma
4.9. By the nature of the construction of the joint preference list Lck

, and by the fact that
M dominates Mf , this implies that r∗ is assigned to a hospital succeeding M(r∗) on Lr∗ in
Mf . Hence by Proposition 4.7, calling Algorithm Breakmarriage on the current matching
and r∗ yields a stable matching that dominates Mf .

15

We are now ready to describe the algorithm for finding a feasible stable matching or
reporting “none exists”. The algorithm begins by computing the resident-optimal stable
matching MR and the hospital-optimal stable matching MH . By Proposition 4.3, MR

dominates all stable matchings in M – hence it dominates every feasible stable matching
(if any exist) as well. If MR is itself feasible, the algorithm returns MR. Otherwise, if for
any couple (ri, rj) it is the case that ri is assigned and rj is unassigned, the algorithm
halts, correctly reporting that no feasible stable matching exists by Theorem 4.1.

Only if no such couple exists do we enter the while loop which maintains the loop
condition that the current matching M is not feasible – hence there is some couple ck =
(ri, rj) who are not assigned to a hospital on Lck

. If nextM (ck) = ∅, the algorithm
outputs “No feasible stable matching exists”. Otherwise the algorithm identifies a resident
r∗ ∈ {ri, rj} such that M(r∗) is not equal to r∗’s partner in nextM (ck). If r∗ has the same
partner in M and in MH , the algorithm outputs “No feasible stable matching exists”.
Otherwise, we call Algorithm Breakmarriage with M and r∗. The loop is exited only
when the algorithm outputs “No feasible stable matching exists” or when the current
matching M is feasible. The pseudocode for the algorithm is presented in Figure 4 as
Algorithm HRCC.

4.2.1 Correctness

If no feasible stable matching exists, Algorithm HRCC will clearly correctly output “no
feasible stable matching exists” in one of three places. If, before entering the while loop,
it is the case that there is a couple with one member assigned and the other unassigned,
the algorithm correctly halts. Otherwise, the algorithm enters the while loop, and since
no feasible stable matching exists, the algorithm continues to make calls to Algorithm
Breakmarriage. This process must eventually halt, either when nextM (ck) = ∅ for some
couple ck, or when the successive calls to Algorithm Breakmarriage eventually yield MH ,
at either point Algorithm HRCC will correctly output in the negative.

So, instead, let us suppose a feasible stable matching Mf does exist. We claim that
Algorithm HRCC maintains the invariant that at each iteration of the while loop the cur-
rent matching M dominates Mf . The claim is clearly true when M = MR, by Proposition
4.3, so let us assume the invariant is true at the end of the ith iteration. Let Mi denote
the stable matching at the end of iteration i of the while loop and suppose that Mi is
not feasible. Since Mi is not feasible, there is some assigned couple ck = (rs, rt) that is
not assigned a pair from Lck

. By Lemma 4.10, there is at least one resident r∗ ∈ {rs, rt}
that is not assigned to a hospital in the ordered pair nextMi

(ck), and, further, calling
Algorithm Breakmarriage on the current matching Mi and r∗ yields a stable matching
that dominates Mf by Proposition 4.7, since Mi dominates Mf . Thus the matching Mi+1

obtained by this process dominates Mf , and the claim follows.
Thus, at each iteration of the while loop of Algorithm HRCC, the current matching

dominates Mf . Hence, the algorithm eventually terminates having encountered Mf or a
different feasible stable matching that dominates Mf . Let M∗

f denote the feasible stable
matching that is returned by the algorithm. Since Mf is an arbitrary feasible stable
matching, we have argued that M∗

f dominates every feasible stable matching. Hence, M∗

f

is resident-optimal amongst the set of feasible stable matchings.
We summarise this section with the following theorem.

Theorem 4.11. Algorithm HRCC finds the resident-optimal feasible stable matching M∗

f

if it exists or reports “none exists” in O(L) time, where L is the sum of the lengths of the
preference lists of the input.

16

Compute MR and MH ;
M ←MR;
for each couple c ∈ C

if (one member of c is assigned in M and the other is unassigned in M)
report “no feasible stable matching exists”;
HALT;

while (some couple ck = (ri, rj) is not assigned a pair from Lck
)

if (some matched couple ck has nextM (ck) = ∅)
report “no feasible stable matching exists”;
HALT;

r∗ ← a resident in ck with a different partner in M and nextM (ck)
if (M(r∗) = MH(r∗))

report “no feasible stable matching exists”;
HALT;

else
M ← Breakmarriage(M, r∗);

return(M);

Figure 4: Algorithm HRCC

Proof. We have shown that the algorithm finds the resident-optimal feasible stable match-
ing if it exists, or reports “none exists” correctly. To establish the claimed runtime, we
observe that the algorithm constitutes essentially a “left to right” sweep of the residents’
preference lists. So, by using appropriate data structures (extending those described in [9,
Section 1.2.3] for the Extended Gale-Shapley algorithm for SMI to the HR case), we can
implement this algorithm to run in O(L) time.

We end this section with the remark that HRCC under classical stability is a variant
of HR that can be solved in polynomial time by a unified approach [3] since this problem
exhibits the so-called independence property (see [3] for the definition of this property and
further details). For completeness and for consistency with the notation and terminology
adopted in the remainder of this paper, we have chosen to present the main result of this
section as a standalone algorithm.

5 HRS with hospital preference lists of length ≤ 2

In light of the NP-completeness result for HRS presented in Section 3, it is natural to
ask if, by specialising the problem version, we can identify a “boundary” for which HRS
becomes polynomial-time solvable. One option for us to consider is to allow the sizes of
the residents to be at most 1, rather than 2. This restriction would, of course, yield an
instance of the classical Hospitals / Residents problem, which is polynomial-time solvable.
A different option is to further restrict the lengths of the preference lists for the residents
and/or the hospitals. We show that by restricting the lengths of the preference list of
each hospital to be at most 2, rather than 3, a stable matching always exists, and an
extension of the Gale-Shapley algorithm finds a stable matching in polynomial time, even
if no restriction is placed on the sizes of the residents, the lengths of the preference lists of
the residents, or the capacities of the hospitals. Since NP-completeness for HRS holds even
for hospital preference lists of length at most 3, the results of this section indicate such a
boundary for HRS. We refer to an instance of HRS in which the lengths of the hospitals’
preference lists are at most 2 and the residents’ lists are unbounded as (∞, 2)-HRS.

17

assign all residents to be free;
while (some resident ri is free and ri has a nonempty list)

hj ← first hospital on ri’s list;
provisionally assign ri to hj ; // in matching M
if (ri is hj ’s first choice and hj ’s list is of length 2)

rk ← hj ’s second choice;
if (OM

j + sk > cj)
delete (rk, hj); // from the preference lists and from M

Figure 5: Algorithm (∞, 2)-HRS

The procedure for solving (∞, 2)-HRS is as follows. The algorithm can be seen as a
process of “proposal” operations from the residents to the hospitals. A resident proposes
sequentially to each hospital on his list until he becomes assigned or his list becomes
empty. When a resident ri proposes to a hospital hj , ri becomes provisionally assigned to
hj . If ri is that hospital’s first choice, and hj ’s preference list has another entry, we let rk

denote hj ’s second choice. If si + sk > cj , the pair (rk, hj) is deleted, meaning that rk is
removed from hj ’s preference list, and hj is removed from rk’s preference list. This is the
only time a (resident,hospital) pair is deleted by the algorithm. The algorithm continues
this process until each resident is either assigned a hospital or has an empty list. The
details of the algorithm are shown in Figure 5.

Let us now establish the correctness and time complexity of the algorithm presented.

Theorem 5.1. Algorithm (∞, 2)-HRS finds a resident-optimal stable matching for an
instance of (∞, 2)-HRS in O(L) time, where L is the sum of the lengths of the preference
lists.

Proof. It is clear that the provisional assignments at the termination of Algorithm (∞, 2)-
HRS is a matching M . We claim that M is stable. To see this, consider an arbitrary
resident ri who is unassigned or prefers a hospital hj to his assignment in M . Then, since
ri is not assigned to hj in M and prefers hj to his current assignment, hj must have been
deleted from ri’s preference list. But this can only happen if ri is hj’s second choice and
hj was assigned to its first choice at some point in the algorithm and does not have enough
spare capacity to add ri. But hj ’s first choice can never become unassigned from hj at
any subsequent step of the algorithm – so in fact ri cannot block with hj in M . Since ri

was chosen arbitrarily it follows that no resident is part of a blocking pair in M .
Secondly, we claim that Algorithm (∞, 2)-HRS never deletes a stable pair (i.e., a

(resident,hospital) pair that belongs to some stable matching). For, suppose that (rk, hj)
is the first such pair deleted during an arbitrary execution of the algorithm, and let M ′

be a stable matching containing (rk, hj). Then rk was deleted because some resident ri

preceding rk on hj ’s preference list became assigned to hj and si + sk > cj . Now, since no
stable pair has been deleted prior to this point, in M ′, ri is either assigned to hj or to a
hospital lower than hj , or is unassigned. Since ri and rk cannot both be assigned to hj in
M ′, it follows that (ri, hj) blocks M ′, a contradiction.

Thus we have shown that M is stable and that each resident is assigned to their optimal
partner in M . Lastly, with the aid of data structures similar to those used to achieve an
O(L) implementation of the Gale-Shapley algorithm for HR [9], we can achieve a similar
complexity for Algorithm (∞, 2)-HRS.

18

6 Concluding remarks

Our stability definition for HRS allows a resident ri to displace a group of inferior residents
of a given total size, so long as this frees up enough space for ri. This could, of course,
include a situation whereby a resident of size 10 is displaced in order to make way for a
resident of size 1, for example. Our definition assumes that the quality of the assignees
takes precedence over the size. However it may be the case that a hospital’s primary con-
cern is to ensure that its occupancy is as high as possible. Thus it would not participate in
a blocking pair if its occupancy were to reduce as a result of rejecting the inferior residents
and taking on the new resident. This gives rise to an alternative stability definition which
is obtained from the one given for HRS in Section 2 by modifying Condition 2 as follows:

2. OM
j + si ≤ cj , or hj prefers ri to residents rk1

, . . . rkt ∈M(hj) such that

si ≥
t∑

p=1

skp and OM
j + si −

t∑

p=1

skp ≤ cj .

It remains open to investigate the algorithmic complexity of the problem of finding a
matching that satisfies this new version of stability, for a given HRS instance.

Acknowledgement

We would like to thank Rob Irving, Ildikó Schlotter, and two anonymous referees for
helpful comments on earlier versions of this paper.

References

[1] P. Berman, M. Karpinski, and Alexander D. Scott. Approximation hardness of short
symmetric instances of MAX-3SAT. Electronic Colloquium on Computational Com-
plexity Report, number 49, 2003.

[2] D. Cantala. Matching markets: the particular case of couples. Economics Bulletin,
3(45):1–11, 2004.

[3] C. Cheng, E. McDermid, and I. Suzuki. A unified approach to finding good stable
matchings in the hospitals/residents setting. Theoretical Computer Science, 400(1-
3):84–99, 2008.

[4] B.C. Dean, M.X. Goemans, and N. Immorlica. The unsplittable stable marriage
problem. In Proceedings of IFIP TCS 2006: the Fourth IFIP International Conference
on Theoretical Computer Science, volume 209 of IFIP International Federation for
Information Processing, pages 65–75. Springer, 2006.

[5] B. Dutta and J. Massó. Stability of matchings when individuals have preferences over
colleagues. Journal of Economic Theory, 75:464–475, 1997.

[6] D. Gale and L.S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69:9–15, 1962.

[7] D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Discrete
Applied Mathematics, 11:223–232, 1985.

19

[8] D. Gusfield. Three fast algorithms for four problems in stable marriage. SIAM Journal
on Computing, 16(1):111–128, 1987.

[9] D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, 1989.

[10] R.W. Irving. Matching medical students to pairs of hospitals: a new variation on
a well-known theme. In Proceedings of ESA ’98: the Sixth European Symposium
on Algorithms, volume 1461 of Lecture Notes in Computer Science, pages 381–392.
Springer, 1998.

[11] R.W. Irving, D.F. Manlove, and G. O’Malley. Stable marriage with ties and bounded
length preference lists. Journal of Discrete Algorithms, 7(2):213–219, 2009.

[12] B. Klaus and F. Klijn. Stable matchings and preferences of couples. Journal of
Economic Theory, 121:75–106, 2005.

[13] B. Klaus and F. Klijn. Paths to stability for matching markets with couples. Games
and Economic Behavior, 58:154–171, 2007.

[14] B. Klaus, F. Klijn, and T. Nakamura. Corrigendum: Stable matchings and preferences
of couples. Journal of Economic Theory, 144(5):2227–2233, 2009.

[15] D.E. Knuth. Mariages Stables. Les Presses de L’Université de Montréal, 1976.

[16] D. McVitie and L.B. Wilson. The stable marriage problem. Communications of the
ACM, 14:486–490, 1971.

[17] E. Ronn. NP-complete stable matching problems. Journal of Algorithms, 11:285–304,
1990.

[18] A.E. Roth. The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.

[19] A.E. Roth. On the allocation of residents to rural hospitals: a general property of
two-sided matching markets. Econometrica, 54:425–427, 1986.

[20] A.E. Roth and M.A.O. Sotomayor. Two-sided matching: a study in game-theoretic
modeling and analysis, volume 18 of Econometric Society Monographs. Cambridge
University Press, 1990.

[21] http://www.nrmp.org (National Resident Matching Program website).

[22] http://www.carms.ca (Canadian Resident Matching Service website).

[23] http://www.nes.scot.nhs.uk/sfas (Scottish Foundation Allocation Scheme web-
site).

Appendix: NP-completeness of (3,3)-COM-SMTI

Proof of Theorem 3.1. We reduce from a a restricted version of SAT. Let (2,2)-E3-
SAT denote the problem of deciding, given a Boolean formula B in CNF in which each
clause contains exactly 3 literals and, for each variable vi, each of literals vi and v̄i appears
exactly twice in B, whether B is satisfiable. Berman et al. [1] showed that (2,2)-E3-SAT
is NP-complete.

20

x4i : y4i c(x4i) y4i+1 (0 ≤ i ≤ n− 1)
x4i+1 : y4i+1 c(x4i+1) y4i+2 (0 ≤ i ≤ n− 1)
x4i+2 : y4i+3 c(x4i+2) y4i+2 (0 ≤ i ≤ n− 1)
x4i+3 : y4i c(x4i+3) y4i+3 (0 ≤ i ≤ n− 1)

ps
j : zs

j cs
j (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

us
j : zs

j wj (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

qj : c1
j c2

j c3
j (1 ≤ j ≤ m)

y4i : (x4i x4i+3) (0 ≤ i ≤ n− 1)
y4i+1 : (x4i x4i+1) (0 ≤ i ≤ n− 1)
y4i+2 : (x4i+1 x4i+2) (0 ≤ i ≤ n− 1)
y4i+3 : (x4i+2 x4i+3) (0 ≤ i ≤ n− 1)

cs
j : ps

j x(cs
j) qj (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

wj : u1
j u2

j u3
j (1 ≤ j ≤ m)

zs
j : (ps

j us
j) (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

Figure 6: Preference lists in the constructed instance of (3,3)-COM-SMTI

Hence let B be an instance of (2,2)-E3-SAT. Let V = {v0, v1, . . . , vn−1} and C =
{c1, c2, . . . , cm} be the set of variables and clauses respectively in B. Then for each
vi ∈ V , each of literals vi and v̄i appears exactly twice in B. (Hence m = 4n

3 .) Also
|cj | = 3 for each cj ∈ C. We form an instance I of (3,3)-COM-SMTI as follows. The
set of men in I is X ∪ P ∪ U ∪ Q, where X = ∪n−1

i=0 Xi, Xi = {x4i+r : 0 ≤ r ≤ 3}
(0 ≤ i ≤ n−1), P = ∪m

j=1Pj , Pj = {p1
j , p

2
j , p

3
j} (1 ≤ j ≤ m), U = ∪m

j=1Uj , Uj = {u1
j , u

2
j , u

3
j}

(1 ≤ j ≤ m), and Q = {qj : 1 ≤ j ≤ m}. The set of women in I is Y ∪C ′ ∪W ∪Z, where
Y = ∪n−1

i=0 Yi, Yi = {y4i+r : 0 ≤ r ≤ 3} (0 ≤ i ≤ n − 1), C ′ = {cs
j : cj ∈ C ∧ 1 ≤ s ≤ 3},

W = {wj : 1 ≤ j ≤ m}, Z = ∪m
j=1Zj and Zj = {z1

j , z2
j , z3

j } (1 ≤ j ≤ m).
The preference lists of the men and women in I are shown in Figure 6. In a given

preference list, entries within round brackets are tied. In the preference list of an agent
x4i+r ∈ X (0 ≤ i ≤ n− 1 and r ∈ {0, 1}), the symbol c(x4i+r) denotes the woman cs

j ∈ C ′

such that the (r + 1)th occurrence of literal vi appears at position s of cj . Similarly if
r ∈ {2, 3} then the symbol c(x4i+r) denotes the woman cs

j ∈ C ′ such that the (r − 1)th
occurrence of literal v̄i appears at position s of cj . Also in the preference list of an agent
cs
j ∈ C ′, if literal vi appears at position s of clause cj ∈ C, the symbol x(cs

j) denotes the
man x4i+r−1 r = 1, 2 according as this is the first or second occurrence of literal vi in B.
Otherwise if literal v̄i appears at position s of clause cj ∈ C, the symbol x(cs

j) denotes the
man x4i+r+1 where r = 1, 2 according as this is the first or second occurrence of literal
v̄i in B. Clearly each preference list is of length at most 3, the men’s lists are strictly
ordered, and each woman’s list is either strictly ordered or is a tie of length 2.

For each i (0 ≤ i ≤ n − 1), let Ti = {(x4i+r, y4i+r) : 0 ≤ r ≤ 3} and Fi =
{(x4i+r, y4i+r+1)} : 0 ≤ r ≤ 3}, where addition is taken modulo 4.

We claim that B is satisfiable if and only if I admits a complete stable matching.
For, let f be a satisfying truth assignment of B. Define a complete matching M in

I as follows. For each variable vi ∈ V , if vi is true under f , add the pairs in Ti to M ,
otherwise add the pairs in Fi to M . Now let cj ∈ C. As cj contains a literal that is true
under f , let s ∈ {1, 2, 3} denote the position of cj in which this literal occurs. Add the
pairs (pk

j , c
k
j) and (uk

j , zk
j) (1 ≤ k 6= s ≤ 3), (ps

j , z
s
j), (qj , c

s
j) and (us

j , wj) to M .
As M is a complete matching in I, clearly no woman in Y ∪ Z can be involved in a

blocking pair of M in I. Nor can a man in P ∪ U (since he can only potentially prefer a

21

woman in Z), nor a man in Q (since he can only potentially prefer a woman in C, who
ranks him last), nor a woman in W (since she can only potentially prefer a man in U ,
who ranks him last). Now suppose that (x4i+r, c(x4i+r)) blocks M , where 0 ≤ i ≤ n − 1
and 0 ≤ r ≤ 3. Let cs

j = c(x4i+r), where 1 ≤ j ≤ m and 1 ≤ s ≤ 3. Then (qj , c
s
j) ∈M . If

r ∈ {0, 1} then (x4i+r, y4i+r+1) ∈ M , so that vi is false under f . But literal vi occurs in
cj , a contradiction, since literal vi was supposed to be true under f by construction of M .
Hence r ∈ {2, 3} and (x4i+r, y4i+r) ∈ M , so that vi is true under f . But literal v̄i occurs
in cj , a contradiction, since literal v̄i was supposed to be true under f by construction of
M . Hence M is stable in I.

Conversely suppose that M is a complete stable matching in I. We form a truth
assignment f in B as follows. For each i (0 ≤ i ≤ n− 1), if M ∩ (Xi × Yi) = Ti, set vi to
be true under f . Otherwise M ∩ (Xi × Yi) = Fi, in which case we set vi to be false under
f .

Now let cj be a clause in C (1 ≤ j ≤ m). There exists some s (1 ≤ s ≤ 3) such
that (qj, c

s
j) ∈ M . Let x4i+r = x(cs

j) for some i (0 ≤ i ≤ n − 1) and r (0 ≤ r ≤ 3). If
r ∈ {0, 1} then (x4i+r, y4i+r) ∈ M by the stability of M . Thus variable vi is true under
f , and hence clause cj is true under f , since literal vi occurs in this clause. If r ∈ {2, 3}
then (x4i+r, y4i+r+1) ∈M (where addition is taken modulo 4) by the stability of M . Thus
variable vi is false under f , and hence clause cj is true under f , since literal v̄i occurs in
this clause. Hence f is a satisfying truth assignment of B.

22

	citation_temp (2).pdf
	http://eprints.gla.ac.uk/25729/

