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ABSTRACT Today, most manufacturing control systems are complex and expensive, so they are limited to
employ a small number of function evaluations for optimal design. Yet, looking for optimization methods
with the less-computational cost is an open issue in engineering control systems. This paper aims to
propose an effective adaptive optimization approach by integrating Kriging surrogate and Particle Swarm
Optimization (PSO). In this method, a novel iterative adaptive approach is utilized using two sets of training
samples including initial training and adaptive sample points. The initial training points are designed by
space-filling design, while the adaptive points are generated using a new jackknife resampling approach. The
proposed approach can effectively convergence towards the global optimal point using a small number of
function evaluations. The efficiency and applicability of the proposed algorithm are evaluated using the
optimal design of the fractional-order PID (FOPID) controller for some benchmark transfer functions. Then,
the introduced approach is applied for tuning the parameters and the sensitivity analysis of the FOPID
controller for a dynamic production-inventory control system. The results are in good agreement with the
results reported in the literature, while the proposed approach is executed with a lower computational burden.

INDEX TERMS Fractional-order PID, kriging, particle swarm optimization, production-inventory control,
sensitivity analysis.

I. INTRODUCTION
A. STATEMENT OF PROBLEM AND MOTIVATIONS
Control engineering refers to the use of automatic control
to make systems or processes reach the desired behavior
while operating under certain constraints. This discipline has
been being intensively enlarged over the past decades due
to the advancement of modern technologies and the devel-
opment of new systems, in particular intelligent systems [1].
Proportional-Integral-Derivative (PID) controllers with feed-
back control structures are widely used for industrial process
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control. While more powerful control techniques are readily
available, the PID controller is still popular due to its relative
simplicity and applicability to a wide range of industrial
control problems, see [2]–[5]. PID controller employs pro-
portional, integral, and derivative gain parameters to reduce
an error signal (e) to be closer to zero. The output of a
PID controller equal to the control input of the plant in the
time-domain is:

u (t) = Kpe (t)+ Ki

∫ t

0
e (t) dt + Kd

de(t)
dt

(1)

where u (t) is the overall control function and Kp,Ki, and
Kd denote the proportional, integral, and derivative gain
parameters, respectively. e (t) calculates an error value as
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the difference between the desired setpoint and a measured
process output in the time moment t . The controller attempts
to minimize the error over time by adjusting a control
variable u (t). The appropriate function of PID strongly
depends on the allocated value for each gain of Kp,Ki,
and Kd .

Currently, fractional-order controllers are being exten-
sively used by many scientists to achieve the most robust
performance of the systems [6], [7]. The main reason
for choosing Fractional-Order PID (FOPID) controllers is
their additional degrees of freedom that result in a better
control performance [2], [8]. A generalized FOPID con-
troller was first introduced by [9] which proposed PIλDµ

controller-involving a λ order integer and a µ order differen-
tiator. The differential equation of a fractional order PIλDµ

controller is defined by:

u (t) = Kpe (t)+ KiD−λt e (t)+ KdD
µ
t e (t) (2)

The reliability of the FOPID controller depends on the
optimal design of three gain parameters

(
Ki,Kp, and Kd

)
and two order parameters (λ, µ). There are a few software
tools available for designing and tuning fractional-order con-
trollers. Tuning a fractional PID controller is a challenging
task because there are five parameters to tune. This means
that there are two more parameters as compared to a classical
PID controller [2], [7].

The main motivation of the current study is to develop
a new method for tuning FOPID controllers when the
proposed method is specified in two main specifications
including i) a black-box method that does need applying
dynamic mathematical expressions of a control system, and
ii) a less-expensivemethodwith the lower number of function
evaluations. Here, it should also be recalled the ‘‘No Free
Lunch’’ (NFL) theorem presented by [10]. This theorem has
logically proved that there is no best-suited optimization
method for solving all optimization problems. In other words,
a particular optimization method may show very promising
results on a set of problems, but the same algorithmmay show
poor performance on a different set of problems [11]. This
theorem also motivates the current study to develop a new
optimization method for tuning the FOPID controller.

B. RELATED WORKS
Different tuningmethods such as the Ziegler-Nicholsmethod,
auto-tuning, self-tuning method, and optimization-based
tuning for the fractional-order controller have been pro-
posed in the literature [1], [12], [13]. However, there is
still a challenging research problem since most of the
integer and fractional-order PID controllers are suffer-
ing from badly-tuned parameters, being the reason why
they operate improperly in non-optimal regions [14], [15].
The optimization-based tuning methods for the complex
control systems are classified into mathematical meth-
ods, simulation-based methods, and surrogates [16], [17].
Investigating less computationally expensive (i.e., a smaller
number of iterations or function evaluations) methods for

achieving optimal design controller has also become a
main challenging topic in the control engineering practice.
To overcome such computational difficulties, researchers
have applied surrogate-based learning methods (e.g. polyno-
mial regression, Kriging, and radial basis function) [18], [19].
The Kriging surrogate has been used as a widespread global
approximation technique that is applied widely in control
design problems [20], [21].

The best technique to adopt depends on the complexity
level of the control system. Some other well-known meta-
heuristic methods applied in intelligent control are Grey
Wolf Optimizer (GWO) [22], GA [23], [24], Particle Swarm
Optimization (PSO) [24], [25], Ant-Colony Optimization
(ACO) [26], [27], and Evolutionary Programming (EP) [24],
Ant Lion Optimizer (ALO) [28]. The simplicity and global
characteristics of such metaheuristics have been the main
reasons for their extensive applications in off-line optimum
control system design [29]. There are also some main modi-
fications in the performance of mentioned optimizers applied
in the engineering design, see [30]–[33].

Optimal control theory is a branch of mathematics devel-
oped to find optimal ways to control a dynamic system.
One of the common control problems in engineering design
applications is a production/inventory control system [34].
A block diagram representation of classical inventory and
order-based production control system is schematically
shown in Figure 1 [35], [36]. In the production-inventory
control system, the controller aims to generate sophisticated
decisions that control the order rate and the inventory level
based on trade-offs between production-inventory cost and
customer satisfaction [37], [38]. Order policy can be defined
as PID controller systems. This kind of control for the
production-inventory system is frequently used in a variety
of applications [37], [39]. The application of the control
theory in inventory-production systems has been illustrated
in different studies, see [40]–[43].

FIGURE 1. Traditional block diagram representation of a
production–inventory system.

C. MAIN CONTRIBUTIONS
The main contributions of our study can be summarized as
follows:
• In this paper, we introduce a new easy-to-
implement algorithm for the optimal design of the
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FOPID controller. This optimization approach can adap-
tively and effectively converge to a global optimum
point. In this approach, we employ the advantages of
both the Kriging surrogate and PSOmetaheuristic, com-
bined with a new framework of the jackknife leave-
one-out approach.

• The proposed method is inexpensive in terms of the
required number of function evaluations for the opti-
mization procedure. This method is proper for such
expensive FOPID control systems when the model
is limited to a small number of function evaluations
(also called simulation experiments).

• A new dynamic model for a production-inventory con-
trol system is introduced.We also define a new objective
function applied in FOPID optimization. The proposed
optimization algorithm is used to tune the FOPID con-
troller for such a production-inventory control system.
Computational results indicate that the proposed algo-
rithm outperforms alternative approaches from accu-
racy, robustness, and performance perspectives.

Notably, as aforementioned, there are a variety of optimizers
and modifications in the literature which have been devel-
oped to employ efficiently in different engineering design
applications. However, the current paper limits its scope to
compare the proposed algorithm with the five most com-
mon optimizers which frequently used in the tuning of inte-
ger and fractions PID controllers namely GA, ACO, PSO,
GWO, and ALO. The rest of this paper is organized as
follows. Section 2 provides the preliminaries required for
our proposed algorithm. The algorithmic framework of the
proposed approach is given in Section 3. The design pro-
cedure of the fractional PID controller for three typical
benchmark transfer functions and a new framework for a
dynamic production-inventory control system are presented
in Section 4. Finally, this paper ends by presenting the lim-
itations and advantages of the current study. Finally, some
concluding remarks are mentioned in Section 5.

II. PRELIMINARIES
In what follows, first the basic definition of Kriging surro-
gate is given. Subsequently, the PSO method as a common
optimizer in the control engineering practice is presented.

A. KRIGING
Since a Kriging was first introduced by Krige [44] in 1951,
it has been used as a widespread global approximation tech-
nique that is applied widely in engineering problems [45].
Kriging is an interpolation method that can cover determin-
istic data and is highly flexible due to its ability to employ
a various range of correlation functions. The higher accu-
racy of Kriging models comparing to the other alternatives
such as response surface modeling is confirmed in the lit-
erature [46], [47]. In a Kriging model, a combination of a
polynomial model and realization of a stationary point is
assumed by the form of:

y =
∑k

j=0
β̂j fj (X )+ Z (X )+ ε (3)

The polynomial terms of fj(X ) are typically first or second
order of response surface approach and coefficients β̂j are
regression parameters (j = 0, 1, . . . , k). The term ε describes
approximation error and the term Z (X ) represents the real-
ization of a stochastic process which is the most time nor-
mally distributed Gaussian random process with zero mean,
and variance σ 2, and non-zero covariance. The correlation
function of Z (X ) is defined by:

Cov
[
Z (xi) ,Z (xp)

]
= σ 2R(xi, xp) (4)

where σ 2 is the process variance and R(xi, xp) is the corre-
lation function that can be chosen from different functions
proposed in the literature. Due to the tuning of the correlation
function with sample data, the Kriging is extremely flexible
to capture the nonlinear treatment of the model. Among
the studies in the literature, some studies have been found
which sufficiently describe Krigingmetamodel methodology,
see [45], [48].

B. PARTICLE SWARM OPTIMIZER
The canonical PSO algorithm was proposed by [49] and
is inspired by the social behavior of swarms such as bird
flocking or fish schooling. The parameters of PSO consist of
the number of particles, position of the agent in the solution
space, velocity, and neighborhood of particles (communica-
tion of topology). The PSO algorithm begins with initializing
the population. The second step is to calculate the fitness
values of each particle, followed by updating individual
and global bests as the third step. Then, velocity and the
position of the particles become updated (step four). The
second to fourth steps are repeated until the termination con-
dition is satisfied [50], [51]. The velocity and position of the
PSO algorithm are formulated as follows [49], [50]:

vt+1id = w.vtid + c1.rand (0, 1) .
(
ptid − x

t
id
)

+ c2.rand (0, 1) .
(
ptgd − x

t
id

)
(5)

x t+1id = x tid + v
t+1
id (6)

wherew is the inertia weight factor and vtid and x
t
id are particle

velocity and particle position respectively. The expression d
is the dimension in the search space, i is the particle index,
and t is the iteration number. Expressions c1 and c2 represent
the speeds of regulating the length when flying towards the
most optimal particles of the whole swarm and the most
optimal individual particle. The term pi is the best position
achieved by particle i so far and pg is the best position found
by the neighbors of particle i. The expression rand (0, 1)
shows the random values between 0 and 1. The exploration
happens if one or two of the differences are large, i) differ-
ences between the particle’s best

(
ptid
)
and previous parti-

cle’s position
(
x tid
)
, ii) differences between the population’s

all-time best
(
ptgd
)
and previous particle’s position

(
x tid
)
.

Besides, exploitation occurs when these two values are both
small. PSO has attracted wide attention in control engineering
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design problems due to its algorithmic simplicity and power-
ful search performance [52]. However, a PSO algorithm that
requires a large number of fitness evaluations before locating
the global optimum is often prevented from being applied to
computationally expensive real-world problems [53]. There-
fore, surrogate-assisted PSOmetaheuristic optimization algo-
rithms have been focused on in the literature, see [21], [54].

C. CONVENTIONAL JACKKNIFE RESAMPLING
Jackknife was first introduced by Quenouille [55] and was
named by Tukey [56]. The application of the jackknife
method involves a leave-one-out strategy for the estimation
of a parameter (e.g., the variance) in a dataset. In general,
the jackknife resampling approach has been used to esti-
mate surrogate prediction error and investigates new sample
points to improve the accuracy of a surrogate [57]. This
method is based on the leave-one-out approach, and it uses
an existing set of data and is not required to re-run the
expensive simulationmodel. Assume the initial set of training
points is designed with n training points (i = 1, 2, . . . , n).
To select a new sample point between c candidate points
(j = 1, 2, . . . , c), and add it into the set of training points,
drop one point from the current set of training points, −i,
and construct a surrogate based on n − 1 remaining points.
Note that to avoid extrapolating by a surrogate (e.g., Kriging,
radial basis function, or neural networks), the sample points
on the vertices are not dropped. The jackknife’s pseudo-value
for candidate j is calculated as below:

ỹ−ij = n× ŷ−0j − (n− 1)× ŷ−ij
for i = 1, 2, . . . , n and j = 1, 2, . . . , c (7)

where ŷ−0j is the original prediction for candidate j with
surrogate over the whole training sample points and
ŷ−ij is the prediction for candidate j with surrogate over n− i
sample points (remove ith sample point from n set of points).
The jackknife’s variance s̃2j is computed for candidate j by
employing relevant pseudo-values:

s̃2j =
1

(n− 1)

n∑
i=1

(̃
y−ij − ¯̃yj

)2
, ¯̃yj =

1
n

n∑
i=1

ỹ−ij (8)

So, the candidate with maximum s̃2j is selected as a winner
and is entered in the set of current training sample points
after computing its relevant true response with an original
simulation. All the steps are repeated till stopping creation
is satisfied. Among the previous studies, no specific stopping
criterion was found to be appealed for in almost all cases [58].
However, it can be defined based on a limitation of computa-
tional time or cost.

III. PROPOSED ALGORITHM
In this section, the proposed promising optimization algo-
rithm using hybrid Kriging surrogate and PSO metaheuristic
based on adaptive improvement using the jackknife leave-
one-out technique is explained. For this purpose, we first

explain the objective function used in the proposed optimiza-
tion model. Then, we sketch the algorithmic steps in the
proposed approach. This approach is specified for the optimal
design of the FOPID controller in complex and expensive
systems.

A. OBJECTIVE FUNCTION DEFINITION
For an optimal design of a FOPID controller, a suitable objec-
tive function that represents system requirements should be
defined based on some desired specifications. Some conven-
tional output specifications in the time-domain are the over-
shoot (Mp), rise time (Tr ), settling time (Tss), and steady-state
error (Ess). It is worth noticing that using different per-
formance indices makes different solutions for the optimal
FOPID controllers [7], [52]. Time-domain performance cri-
teria including IAE, ISE, and ITSE formulas are defined as
follows:

ISE =
∫
∞

0
e (t)2dt (9)

IAE =
∫
∞

0
|e(t)| dt (10)

ITSE =
∫
∞

0
t.e (t)2dt (11)

These performance criteria have advantages and disadvan-
tages. For example, one disadvantage of IAE and ISE criteria
is that their minimization can result in a response with a rela-
tively small overshoot but a long settling time [52]. Although,
the ITSE performance criterion can overcome the disadvan-
tage of the ISE and IAE criteria [59]. Here, we propose and
use a new cost function using all time-domain specifications
including overshoot, rise time, settling time, and steady-state
error besides the ITSE performance index as below:

Cα(K ) = α(Mp + Ess)+ (1− α) (Tr + Tss)+ ITSE (12)

where K =
[
Kp,Ki,Kd , λ, µ

]
is the parameter vector and

α∈ [0, 1] is the weighting factor. The optimum selection of
α depends on the designer’s requirements and the character-
istics of the plant under control. To reduce the rise time and
settling time, α can be set to be small (close to 0). Alterna-
tively, if α is to be set larger (close to 1), then the overshoot
and steady-state error are reduced more. In contrast, if α is set
to 0.5, then all the performance criteria (i.e., the overshoot,
rise time, settling time, and steady-state error) will have the
same importance for optimization in the objective function of
the FOPID model.

B. A NEW JACKKNIFE RESAMPLING CRITERION
The conventional jackknife approach in Eq.(7) considers the
prediction error to select the best points among some candi-
date points and adding them adaptively into the set of training
sample points to increase the accuracy of approximation
by the surrogate. However, the conventional formulation in
Eq.(7) investigates the candidate points with a higher jack-
knife variance (Eq.(8)), when it doesn’t consider the possibil-
ity that the selected point between candidate points is located
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surrounding the global optimal point in a design space.
In other words, the winner point (with higher jackknife’s
variance) between all the candidate points, may or may not
have a lower fitness function in an optimization model under
study. In this study, we aim to adaptively estimate the possible
location and investigate the global optimal point in the design
space inspired by the conventional formulation in Eq.(7).
Accordingly, we propose a new formulation of the jackknife
leave-one-out approach. Assume that the initial set of training
points is designed with n training points (i = 1, 2, . . . , n);
to select a new sample point between c candidate points
(j = 1, 2, . . . , c), we apply a new jackknife leave-one-out
formula as below:

Lj = n×
[
y−0min − ŷ

−0
j

]
+ (n− 1)×

[
y−0min −

(
1
n

n∑
i=1

ỹ−ij

)]
for i = 1, 2, . . . , n and j = 1, 2, . . . , c (13)

where y−0min is the smaller value of fitness function among all
the points in the set of the current training points. This value
is obtained using the output of the true simulation model for
each sample point in the set of training points. The expression
ŷ−0j denotes the prediction of the jth candidate point using
the surrogate that is constructed overall training points. The
expression ỹ−ij shows the prediction of the jth candidate point
using the surrogate that is constructed over the set of training
points except for ith sample point. Between all j = 1, 2, . . . , c
candidate points, the point with higher value Lj is selected as
a winner and is added to the current set of training points.
Typically, Eq.(13) investigates the point in design space with
a higher possibility of improvement compared to the other
candidate points. Notably, since Eq.(13) employs a surrogate
to predict output for each candidate point instead of running
the true simulation model, it doesn’t increase the computa-
tional cost and the required number of function evaluations
for the optimization procedure. Accordingly, we can evaluate
a larger set of candidate points in each iteration without con-
cerning the computational cost. In this study, we employ the
PSO optimizer to produce candidate points and investigate a
point with maximum Lj in Eq.(13).

C. ALGORITHMIC FRAMEWORK
In this study, we propose a new adaptive optimization algo-
rithm by integrating the Kriging surrogate, PSO optimizer,
and a new jackknife leave-one-out approach. The flowchart
of the design procedure of the proposed algorithm is shown
in Figure 2. Notably, this algorithm is low-cost to implement
for such expensive systems when the system is limited to a
small number of function evaluations required for the opti-
mization model. Here, we specify the proposed algorithm
to apply in a less expensive optimal design of the FOPID
controller. In the FOPID optimization model, five decision
variables including three gains Ki,Kp,Kd and two order λ,
µ parameters are considered. In this model, Eq.(12) is con-
sidered as the objective function. Algorithm 1 sketches the

FIGURE 2. The flow diagram of the proposed algorithm.

algorithmic framework and the main steps of the proposed
approach.

In this algorithm, the set of training sample points for
fitting Kriging and interpolating the whole design space
includes i) initial training points and ii) update points. Here,
we use a common space-filling design method namely Latin
hypercube sampling (LHS) to design the initial training sam-
ple points. LHS was first introduced by McKay and col-
leagues [60]. It is a strategy to generate random sample points
while guaranteeing that all the portions of the design space
are depicted. In general, for n input variables,m sample points
are produced randomly inm intervals or scenarios (with equal
probability). We apply a PSO metaheuristic to investigate the
whole design space to select the best sample point and update
the training set which is applied to reconstruct the Kriging
surrogate accordingly. In the proposed algorithm, to select
the update point in each sequential run, the PSO optimizer
looks for a point with a larger jackknife value in Eq.(13).
These new update points can adaptively improve the accuracy
of Kriging interpolation. This surrogate can interpolate the
whole design space particularly locations with the higher
possibility to surround the optimum points. For a typical
transfer function as an instance, the initial train sample points,
and adaptive sample points for the FOPID tuning problem are
shown in Figure 3 using the proposed algorithm.

Notably, the optimization procedure for this typical trans-
fer function including other instances will be discussed more
in Section 4. As can be seen in this example, two sets of
sample points are produced through the optimization proce-
dure including initial sample points (e.g., here the initial sam-
ple size is designed with 15 points) and the adaptive sample
points that sequentially are designed and added into the set of
train points to update Kriging (here also 15 adaptive points
are obtained through 15 sequential iterations). The optimum
point obtained for this example is shown for each combi-
nation of decision variables

[
Ki,Kp,Kd , λ, µ

]
. It should be

noted that in this figure, the size of bubbles depicts the value
of the objective function. It can be seen that the adaptive
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Algorithm 1 The Proposed Algorithm in Pseudocode
Input: The upper and lower bound of decision

variables (i.e. five decision variables for FOPID
tuning is K =

[
Kp,Ki,Kd, λ, µ

]
), the parameter

α ∈ [0, 1] in Eq.(12), and a total number of sequential
iterations to update the model (h).

Output: The optimal point found by the proposed approach.
begin

Step 1. Design initial training sample points using
space-filling design methods (e.g., Latin hyper-
cube sampling) with size n, i = 1, 2, . . . , n.

Step 2. Run the original model (i.e. here we use simu-
lation model) for each sample point and obtain
the relevant true output yi regarding the objective
function (here Cα(K ) as formulated in Eq.(12)
is used as the objective function for the FOPID
tuning problem).

Step 3. Set h = 1 I Sequential iteration’s number.
Step 4. Fit a Kriging surrogate over sets of input/output

data pairs.
Step 5. Run the PSO optimizer and select the opti-

mizer’s result as a winner point:
• Set the maximization of a jackknife leave-
one-out criterion in Eq.(13) as the fitness func-
tion for PSO.

• Employ the constructed Kriging to obtain the
predicted output (an approximation for the
objective function of the optimization model)
ŷj, (j = 1, 2, . . . , c) applied in Eq.(13).

Step 6. Run the original simulationmodel and obtain the
true simulation output for the selected winner
sample point.

Step 7. Update the set of input/output data pairs (set of
training sample points).

Step 8. Update Kriging surrogate over the new set of
input/output data pairs.

Step 9. Update h = h+ 1.
Step 9. Repeat Step 5 till Step 9 until reach the total

number of sequential iterations, h (stopping
criterion).

Step 10 Select the point with minimum objective func-
tion (Cα) between all training sample points
(including initial samples and h adaptive sample
points) as the model’s optimal point.

end

sample points with proper accuracy (lower objective
function) can converge in the place that the final optimal
result is located. In other words, the proposed algorithm
can estimate the location of the optimum point with a small
number of sample points (e.g., 30 sample points in this exam-
ple) including initial sample points and adaptive (sequential)
sample points. In the following section, we evaluate the
applicability and effectiveness of the proposed algorithm

FIGURE 3. Design of train points including initial sample points and
adaptive sample points using the proposed algorithm for some
combinations of decision variables in FOPID tuning problem.

for the optimal design of the FOPID controller for three
typical transfer functions and one practical case in a dynamic
production-inventory control system.

IV. NUMERICAL EXAMPLES
A. OPTIMIZATION PROCEDURE SETUP
In this section, to verify the performance of the proposed
algorithm, comparative experiments are carried out in the
less-expensive (with the small number of function evalu-
ations) optimal design of the FOPID controller for three
typical transfer functions and a new dynamic structure of
production-inventory control system. The proposed algo-
rithm in this study is developed for such complex sys-
tems when the optimization model is restricted to employ
a small number of function evaluations. To evaluate the
performance and accuracy of the proposed algorithm in
comparison with common intelligent control methods,
we select five common optimizers that are widely used in the
optimization of control systems including PSO [49],
GWO [11], ALO [28], ACO [26], and GA [61]. For design-
ing an optimal FOPID controller, determining the decision
variables K =

[
Ki,Kp,Kd , λ, µ

]
associated to the mini-

mization of the objective function Cα(K ) (see Eq.(12)) is
the main issue. Here, the proposed optimization algorithm
is performed to minimize the objective function Cα(K ). For
this purpose, step response of the plant is used for computing
all performance components in Eq.(12) including overshoot
(Mp), rise time (Tr ), settling time (Tss) and steady state
error (Ess), and ITSE. Here, we assume that the optimization
model is limited to only 30 function evaluations (simulation
experiments). Moreover, we only let the proposed algorithm
and other five optimizers PSO, GWO, ALO, ACO, and GA
to employ only 30 function evaluations to obtain the optimal
result for optimal design of FOPID controller. We simulate
all control plants in Matlab R©/Simulink environment. The
size of the time-step is fixed at 0.01 and the time-domain
(simulation time) is considered T = 20. The setpoint for
all the problems is fixed to 1. Simulink does not have
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a library for the FOPID. Therefore, the controller from the
library of FOMCON: aMatlab R© toolbox for fractional-order
system identification and control [62] which allows for the
computation of the fractional-order derivative and integration
is used. It is assumed that the suitable ranges of the control
parameters for all control problems are as follows:

Kp ∈ [0, 25] , Ki ∈ [0, 10] , Kd ∈ [0, 10] , µ ∈ [0, 1]

and λ ∈ [0, 1] .

It should be noted that the parameter α in Eq.(12) is set to
α = 0.5 for all control plants (in this case, all the performance
criteria have the same merit in the objective function).

To study and compare the effect of randomness in the
proposed algorithm with five common optimizers including
PSO, GWO, ALO, ACO, and GA, we repeat each stochastic
optimization method 10 times for each problem and compute
the statistical measures including mean, Standard Deviation
(Std), and the Signal to Noise Ratio (SNR) as the robustness
criterion as below:

SNR = 10log
[
µ2
+ ωσ 2

]
(14)

where µ and σ show the mean and Std of optimizer obtained
by repeating the optimization model (here 10 separate repe-
titions). Since we performed a minimization of the model’s
output (see the objective function in Eq.(12)) to find the
optimal parameters of the FOPID controller, the formulation
of SNR in Eq.(14) has the opposite sign by Taguchi formu-
lation. Additionally, a weighting parameter ω is introduced
to allow for individual emphasis on the minimization of
variations. The smallest value of SNR in Eq.(14) depicts
the better stochastic optimization method with higher accu-
racy (smaller mean of simulation output) and higher robust-
ness (smaller standard deviation) against randomness in the
model.

B. THREE TYPICAL TRANSFER FUNCTIONS
Three different control plants are extracted from [52] with
transfer functions as below:

G1(s) =
1

s3 + 6s2 + 7s
(15)

G2(s) =
s2 + 2s

s4 + 2s3 + 5s2 + s+ 0.1
(16)

G3(s) =
e−0.1s

s2 + 2s
(17)

The following process is performed to determine the
optimal design of the FOPID parameters (Ki,Kp,Kd , λ,
and µ) using the proposed algorithm for the mentioned con-
trol plants. First, we design a small set of sample points
(here 15 sample points) using the Latin Hypercube Sam-
pling (LHS) method (here we use the Maltlab R© function
‘‘lhsdesign’’ to construct LHS design). Then, we run the orig-
inal simulationmodel to obtain relevant outputs (see Eq.(12)).
Next, we fit a Kriging surrogate over a set of input/output
data pairs (train sample points). After that, we run the

PSO optimizer to select another sample point to add to the
set of train sample points. The maximization of Lj criterion
in Eq.(13) is set as the fitness function for the PSO optimizer.
The constructed Kriging is used to estimate the model’s
output used in Eq.(13). The result gained by PSO is selected
as a winner point. We run the original simulation model again
to obtain the true output in the winner point. The input-output
data pair for the winner point is added to the existing set of
training sample points. We also update the Kriging surrogate
accordingly. This adaptive iteration is repeated until the stop-
ping criterion is satisfied. In this study, we stop adaptive sam-
pling when the model reaches 15 iterations (and accordingly
15 adaptive sample points are designed). Therefore, a total
of 30 function evaluations regarding the designed sample
points (initial and adaptive points) are performed through the
implementation of the proposed algorithm for the optimal
design of the FOPID controller. To make a fair compari-
son between the proposed algorithm and the other common
FOPID solvers, we only let each optimizer e.g., PSO, GWO,
ALO, ACO, and GA evaluate the main objective function
30 times. For this purpose, we set 3 initial populations and
10 maximum iterations for PSO, GWO, and ALO optimizers,
3 ants with 10 iterations for ACO, and a population size
of 5 with 6 generations for GA. Other parameters are adjusted
as follows. Min and max inertia weights, velocity clamping
factor, cognitive constant (c1), and social constant (c2) for
PSO is fixed to 0.7, 0.9, 1.5, 2, and 2 respectively. For the
ACO optimizer, the evaporation rate and the number of nodes
for each parameter are adjusted to 0.7 and 10,000 respec-
tively. The obtained results for the plants G1(s), G2(s) and
G3(s) are summarized in Tables 1, 2 and 3, respectively.
The pairwise comparison with statistical measures includ-

ing mean, Std, and SNR, and the unit step responses of the
control plants for the control plants G1(s), G2(s) and G3(s)
are shown in Figures 4-9, respectively. It is seen that the
proposed algorithm to tune the FOPID controllers outperform
those of the PSO, GWO, ALO, ACO, and GA obtained
controllers. In all the obtained results in figures, it can be
observed that the proposed algorithm gives higher accuracy
(lower cost function Cα(K ), see Eq.(12)) comparing to the
other five methods. Besides, the proposed algorithm shows
more robustness comparing to the other stochastic optimizers
with a smaller standard deviation for results obtained over
10 repetitions of the method. From the simulation results,
it can be found that the proposed algorithm applied in the
tuning of FOPID controllers produces the smooth curve for
the output in conjunction with little fluctuation and small
overshoot.

C. PRODUCTION-INVENTORY CONTROL SYSTEM
1) DYNAMIC OF PRODUCTION-INVENTORY CONTROL
SYSTEM
A good implementation of the control theory applied to
production–inventory control has been presented by [36],
[63]–[65]. Here, we consider a factory producing single
homogeneous goods and having a finished goods warehouse.
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TABLE 1. FOPID optimal results in G1(s) using different methods for
10 repetitions (α = 0.5).

TABLE 2. FOPID optimal results in G2(s) using different methods for
10 repetitions (α = 0.5).

In this study inspired by [35], we design the dynamic of the
production-inventory control model as below:

I (t) = (1− δ (t)) .I (t − 1)+ exp(−θ.t).O(t)− D(t) (18)

where I (t) indicates the inventory level at time t , and δ(t),
(0 ≤ δ ≤ 1) shows a portion of the inventory that cannot be
used in the next time step due to some reasons like damage
or frustration. The optimal order policy O (t) is designed by
the FOPID controller, see Figure 10. The expression D(t)
shows the demand on time step t . In this model, we con-
sider the failure rate of the product that is increased by the
passing of time. So, we assume that the production rate
follows a nonlinear exponential distribution, β = exp(−θ.t),
(0 ≤ θ ≤ 1). It means that in each time step, the production
process only produces the portion of β, (0 ≤ β ≤ 1) from the
order policy.

TABLE 3. FOPID optimal results in G3(s) using different methods for
10 repetitions (α = 0.5).

FIGURE 4. The boxplot with statistical results (a), and SNR measure by
varying ω in Eq.(13) (b), for optimal design of FOPID controller in plant
G1(s) using different methods. The statistical results for each optimizer
obtained over 10 separate repetitions.

FIGURE 5. The step responses of G1(s) with FOPID controller designed by
the proposed algorithm and five other common optimizers. The optimal
results are obtained using 10 repetitions separately for each method.

Thus, the production rate P (t) at time step t is computed
by P (t) = β.O(t). The block diagram representation of
the proposed dynamic production-inventory control system
is shown in Figure 11.
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FIGURE 6. The boxplot with statistical results (a), and SNR measure by
varying ω in Eq.(13) (b), for optimal design of FOPID controller in plant
G2(s) using different methods. The statistical results for each optimizer
obtained over 10 separate repetitions.

FIGURE 7. The step responses of G2(s) with FOPID controller designed by
the proposed algorithm and five other common optimizers. The optimal
results are obtained using 10 repetitions separately for each method.

FIGURE 8. The boxplot with statistical results (a), and SNR measure by
varying ω in Eq.(13) (b), for optimal design of FOPID controller in plant
G3(s) using different methods. The statistical results for each optimizer
obtained over 10 separate repetitions.

2) RESULTS AND DISCUSSION
To design an optimal FOPID controller based on the pro-
posed algorithm, we implement the simulation model using
Eq.(18) in the Matlab R©, Simulink environment. In the cur-
rent instance, we assume that the demand rate follows a
nonlinear exponential distribution as D (t) = 2exp(0.05t).
Besides, the failure rate is assumed θ = 0.02, so production
rate equals to β = exp(−0.02.t). We also assume that in
the whole simulation period, the constant rate of 10 percent
(δ (t) = 0.1) from remaining inventory in time step t cannot

FIGURE 9. The step responses of G3(s) with FOPID controller designed by
the proposed algorithm and five other common optimizers. The optimal
results are obtained using 10 repetitions separately for each method.

FIGURE 10. Schematic representation of the dynamic production–
inventory control system. Order policy is defined based on
fractional-order PID controller.

be used in the next time step t + 1 due to damage or frustra-
tion. The optimization process for the production-inventory
control plant is done the same as what was done for three
typical plants in the previous section. To determine the
optimal values of the FOPID gain and order parameters
(K =

[
Ki,Kp,Kd , λ, µ

]
) by the proposed algorithm, we first

design 15 sample points using the LHS method. Each sample
including the vector of K =

[
Ki,Kp,Kd , λ, µ

]
is sent to the

Simulink block and the values of five performance criteria in
the time-domain (Mp, Tr , Tss, Ess, and ITSE) are calculated.
Accordingly, the objective functionC0.5(K ) (see Eq.(12) with
α = 0.5) is computed for each sample regarding the obtained
performance criteria.

Afterward, a Kriging surrogate is fitted over the set of
input/out data pairs (15 samples). We employ the PSO opti-
mizer to design a new sample point and update the set of
input/output data pairs accordingly. For this purpose, we set
the maximization of the proposed leave-one-out jackknife
criteria regarding Eq.(13) as the fitness function in the PSO
optimizer. The constructed Kriging interpolation is applied
to estimate the value of the objective function required to
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FIGURE 11. Block diagram representation of the FOPID controller in the
dynamic production-inventory control system.

compute Lj (Eq.(13)) as the fitness function in PSO. As we
employ Kriging instead of the original simulation model to
compute the objective function, we are not worried about the
computational cost with PSO optimizer in our algorithm (thus
a large number of the initial population and the maximum
number of iterations can be considered for the swarm opti-
mizer). The PSO used in the proposed algorithm has the same
parameter adjustment as the PSO that individually is used
for direct FOPID tuning. Finally, the point with maximum
Lj is selected as a winner and this new adaptive sample
point is added to the set of input/output data pairs which is
employed to update the Kriging accordingly. This adaptive
sampling process is continued until the algorithm reaches the
stopping criterion. Regarding the proposed algorithm (please
see the pseudocode in ‘‘Algorithm 1’’), we stop the algorithm
(terminate repeating Step 5 till Step 9) when the total number
of sequential iterations (h) is reached the predefined num-
ber (stopping criterion). Here for the current test functions,
we stop the algorithm when 15 adaptive points are designed
(thus 15 sequential iterations are derived). Finally, among
all the 30 sample points (15 initial samples and 15 adaptive
sample points), the best point with a lower objective func-
tion C0.5(K ) is returned as the global best solution for K .
For comparison, we also solve the FOPID tuning problem
in production-inventory control system with five common
optimizers of PSO, GWO, ALO, ACO, and GA. Note that to
provide a fair comparison, we also let each optimizer employ
30 function evaluations to search for the optimal result. The
parameter adjustment for each optimizer is the same as what
was mentioned in the previous subsection for tuning three
typical transfer functions. The comparative results for 10 indi-
vidual repetitions of each method are summarized in Table 4.

Besides, Figure 12 shows statistical results including the
boxplot, mean, standard deviation, and SNR values over the
obtained results using each method.

It is seen that the FOPID tuning based on the proposed
algorithm outperforms those of the FOPID tuning based on
other optimizers from the accuracy (lower objective func-
tion C0.5(K )) point of view. Besides, the proposed algo-
rithm outperforms other optimizers in terms of robustness

FIGURE 12. The boxplot with statistical results (a), and SNR measure by
varying ω in Eq.(13) (b), for optimal design of FOPID controller in
production-inventory control plant using different methods. The statistical
results for each optimizer obtained over 10 separate repetitions.

FIGURE 13. The step responses of production-inventory control plant
with FOPID controller designed by the proposed algorithm and five other
common optimizers. The optimal results are obtained using 10 repetitions
separately for each method.

TABLE 4. FOPID optimal results in production/inventory control system
using different methods for 10 repetitions (α = 0.5).

(smaller standard deviation) against randomness regard-
ing different repetitions of stochastic optimization methods.
On the other hand, as can be seen from Figure 12, the
proposed algorithm has a smaller SNR measure for dif-
ferent values of parameter ω in Eq.(14) comparing to the
other optimizers. Figure 13 reveals the step response of the
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TABLE 5. The statistical results of sensitivity analysis for the parameter α in Eq.(12) in production-inventory control system. The results obtained over
10 repetitions using the proposed algorithm.

FIGURE 14. The boxplots for the results of sensitivity analysis over the
parameter α in Eq.(12). Results for each value of α are obtained over
10 separate repetitions of the proposed algorithm.

motor rotation for different FOPID controllers. Obviously,
the FOPID controller tuned by the proposed algorithm pro-
duces a smooth and fast output comparing to the controllers
tuned by the PSO, GWO, ALO, ACO, and GA methods.

3) SENSITIVITY ANALYSIS
Finally, the sensitivity analysis is performed with different
values for the parameter α in Eq.(12) to investigate the effects
of the parameter α on the optimal results obtained by the pro-
posed algorithm in the dynamic production-inventory system.
To do this, the parameter α is changed from 0 to 1 with a step
size of 0.25. The obtained results are given in Table 5. The
statistical results for 10 repetitions of the proposed algorithm
regarding each value of α are revealed in Figure 14.
As can be seen from the results, the cost function Cα(K ) is

reduced by increasing α from zero to one. It also can be seen
that by increasing α from zero to one, the overshoot (Mp)
and steady-state error (Ess) are reduced and rise time (Tr )
and settling time (Tss) are increased. In general, the controller
tuned by α = 0.75 has a smaller overshoot and steady-state
error, in contrast with the case α = 0 which has a lower
rise time and settling time. In addition, the best and worst
ITSEs are obtained in the cases of α = 0.75 and α = 0.25
respectively.

V. CONCLUSION
In this paper, a new simple modified hybrid approach
is proposed that integrates Kriging surrogate and particle
swarm optimization to overcome the computational cost
(high number of function evaluations) required in the com-
mon optimization methods in optimal design of FOPID con-
troller. We propose a new criterion for adaptive sampling
strategy inspired by a leave-one-out jackknife point of view.
In the proposed algorithm, we consider increasing the accu-
racy of the surrogate in regions of design space that the global
optimal point is located. The competitive results between the
proposed algorithm and with the five most common optimiz-
ers in the tuning of control systems namely PSO,GWO,ALO,
ACO, and GA show that the proposed method can provide
a good balance between exploration and exploitation to the
avoidance of local optima. The advantages of this methodol-
ogy are its less computation burden as well as high-quality
solution and speedy convergence. The results also revealed
that the proposed algorithm is more robust in the stochastic
environment of the optimization model. This paper has some
limitations including:
• The proposed method employs a Kriging surrogate to
train the model using space-filling sampling strategies.
Therefore, the approximate errors cannot be ignored
when solving simulation-based optimization problems
particularly with complex functions and nonlinear struc-
tures. A challenge for optimization under restricted bud-
gets will be to find

• the right degree of approximation (smoothing factor)
from a relatively limited number of samples [66].

• In this study, the application of the proposed algorithm
is evaluated and compared with other optimizers for
the optimal design of the FOPID controller in three
benchmarks and the dynamic production-inventory con-
trol plants. However, the performance of the proposed
algorithm can be examined for more challenging cases
with a higher level of complexity and nonlinearity.

• Other new optimizers in the literature with modified
formulation and structure compared to the five classic
optimizers applied in this study for comparison of results
can be employed to evaluate more the efficiency of the
proposed hybrid surrogate-metaheuristic method in the
tuning of the controller with a small number of function
evaluations.

Therefore, future research will be devoted to overcoming the
aforementioned limitations of the current study.
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