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The utility of multilevel models for continuous-time feature

selection of spatio-temporal networks
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Abstract

Many models for the analysis of spatio-temporal networks specify time as a series of discrete steps.

This either requires evenly spaced measurement times or the aggregation of data into measurement

windows. This can lead to the introduction of bias. An alternative is to use continuous-time mod-

els, for example, multilevel models. Models capturing complex spatio-temporal variation are often

difficult to visualise and interpret. This can be addressed by simplifying the results, for example by

extracting ‘features’ of interest (such as maxima or minima) of temporal patterns associated with

different network connections.

This paper uses simulation to evaluate the accuracy and precision with which b-spline-based

multilevel models (a flexible form of continuous-time model that can easily capture complex variation

associated with a spatio-temporal network structure) capture the timing and extent of maximum

delays to journeys made between pairs of stations in a small railway network.

On average models captured the timing and extent of maximum delay with small bias, but

there was evidence of overestimation and underestimation of low and high values of these features,

respectively. This systematic bias may have partially caused the undercoverage of credible intervals

for the pattern features. Alternative model specifications – specifically to capture x-axis random

variation, for example – should be considered in future work.

1 Introduction

Geographers are often interested in investigating the movement of people between or around cities. This

typically involves public transport or other transport networks. Transport systems can be described

by a series of connections, made by travel, between a set of locations. These connections between

locations can be represented in the form of a network or graph (Newman 2018). For example, Yang et al.

(2019) used spatio-temporal networks to represent a public bicycle sharing system; Cheng et al. (2011)

represented a road system as a spatio-temporal network when predicting traffic counts; and Chen et al.

(2014) represented a metropolitan rail system as a spatio-temporal network when studying accessibility.

Networks involve objects or locations represented as vertices connected by edges. For example, a rail

network may include stations as vertices and edges where the stations are connected by railway lines.

Each vertex and edge might be assigned properties, for example, a station might have a set capacity

for people awaiting trains, or a railway line might have a speed limit (Newman 2003). Edges can be

bidirectional or unidirectional. In the latter case, an edge between two vertices only specifies a connection

in one direction; for example, trains may be able to travel from station A to station B, but not in reverse

(Newman 2003).

Networks are used across a range of disciplines, for example: in studies of the social connections between

2



people (X. Li and Griffin 2013); ecological networks, including animal interactions and river network

settings (Anderson and Dragićević 2018; Neeson et al. 2012); transport networks (Abdelghany et al.

2001); or economic trade networks (Liu et al. 2018). Some networks (e.g. transport, trade and ecological)

have a spatial aspect, where vertices are in specific locations. Many networks also have a temporal aspect,

where the network connections or the properties of edges and vertices change over time (Blonder et al.

2012). When such properties change over time it may be of interest to model them, for prediction

or causal inference purposes. The aim of this paper is to evaluate the accuracy and precision with

which continuous-time multilevel models capture these temporal patterns within spatio-temporal network

through simulation.

When analysing such spatio-temporal networks, it is important to account for the influence of temporal

and spatial correlations on the processes of interest (Dubin 1998). Many models that aim to do this

incorporate time as a series of discrete steps, rather than a continuous variable (Cheng et al. 2014). This

limits the models to evaluating temporal properties of network objects at discrete time points, making it

more challenging to use them for predictions or inferences at any time between these discrete points. As

such, the length of these discrete time steps is of great importance and must be chosen carefully. There is

a need for the time steps in the data to reflect existing knowledge of the underlying processes of interest

in order to best capture these features (Comber and Wulder 2019). Steps of an inappropriately large

length can mask intermediate temporal variations in the data (Freeman 1989; Weiss 1984). However,

the choice of the length of time steps is often predetermined by the frequency of measurements in the

data generating process; if measurements are taken every ten minutes, for example, time steps shorter

than this cannot be used (Freeman 1989).

If data are not measured simultaneously for different network objects, or at regular intervals, data must

be aggregated into common, regular time intervals for analysis (Freeman 1989; Hwang 2000). While this

allows for some degree of choice in the length of the time steps (though still limited by the frequency

of measurements), aggregation can also bias inference as it introduces error in the measurement times

of observations, which many statistical models assume to be error-free (Freeman 1989; Hwang 2000).

While discrete-time models have been used to great advantage in the context of spatio-temporal network

analysis, it may be possible to avoid some of the issues outlined here by using continuous-time models

(Niezink et al. 2019; Oud et al. 2012). Multilevel (or mixed effects) spline models are capable of modelling

complex temporal patterns of properties for multiple observational units (Goldstein 2011). These models

are able to account for spatial and temporal correlations among objects and could potentially be used

to model temporal patterns of properties for a set of objects in a network (Besag et al. 1991).

Interpreting information regarding spatio-temporal networks is also difficult – the inclusion of multiple

dimensions (i.e. two-dimensional space and time) makes visualisation challenging. T. Li and Liao (2016)
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developed an interesting solution to the visualisation of temporal patterns of edge properties – each

edge was divided into a number of time segments which were coloured to indicate the value of some

property during each time window. For multiple properties on one edge, each time segment was further

subdivided into smaller coloured sections. This method has some shortcomings – first, time is still treated

as a discrete variable made of a series of time steps; second, the length of each edge in the network can be

expected to differ, so time is not represented on a consistent scale across the network. This may confuse

interpretations from the visualisation when comparing temporal patterns of properties between edges

of different lengths. Subdivision of time segments to represent multiple properties occurs in the same

dimension as the division into time segments. This may make it appear as if each property is measured

at a different time. Furthermore, if edges overlap, as they may for dense networks, some time periods of

interest will be obscured for certain edges.

Colak et al. (2013) represented changes in temporal properties of network edges in a different manner,

in the context of a road traffic network. This involved focusing on a feature of the temporal pattern

that constituted an event of interest. In this case, this was the time at which each edge (road segment)

in the network reached 80% of capacity, thought to be the threshold at which ‘congestion’ exists. The

authors represented this feature of the temporal pattern of edge properties in a map of the network with

each edge coloured to indicate the time at which it reached 80% capacity. Including only one feature

of the patterns of interest helps simplify the visualisation and reduces issues associated with temporal

scales and overlapping edges. While less information is included than in the proposal by T. Li and Liao

(2016), the visualisation answers a specific research question – i.e. when congestion occurs for each edge

in the network. Having a specific question of interest is important in developing an appropriate analysis

based on prior knowledge of the processes concerned and for avoiding some problematic practices such

as ‘p-hacking’ (Head et al. 2015).

The specification of time in Colak et al. (2013) was discrete, yet pattern features for properties of

individual edges or vertices can still be recovered from continuous-time multilevel models. This process

often involves the use of calculus to extract features – such as minima, maxima, and slopes of a model

– once fitted to the data (Gadd et al. 2021). However, the accuracy and precision with which multilevel

models can capture these features is unknown.

Assessing the performance of statistical methods can be carried out using algebraic results or repeated

simulation and analysis of data (Morris et al. 2019). Unlike finding algebraic results regarding model

performance, simulations only represent model performance in a specific situation, but they are often

easier to conduct where algebraic solutions are difficult (or impossible) to produce and can be used

to explore how changes in data structure, for example, can affect models (Morris et al. 2019). In

addition, framing a simulation in a tangible example can aid understanding of the results describing
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model performance.

This paper aims to use simulations to evaluate the accuracy and precision with which continuous-time

multilevel models recover features of temporal patterns of edge properties in a spatio-temporal network

context. In particular, this paper focuses on the extraction of maxima (a relatively simple pattern feature

that can be combined with other information to capture more complex features) from temporal patterns

of journey durations (the time taken to travel between a pair of stations) in a rail network as this measure

has potential practical uses in identifying times and locations with very large delays in a rail network.

2 Methods

This section first outlines the process of generating simulated data associated with a spatio-temporal rail

network, based on a real rail network and common commuting patterns. This is followed by specification

of the continuous-time multilevel model and process used to extract pattern features (maximum journey

duration, time of maximum and maximum delay). Finally, the methods used to compare the estimated

temporal pattern features to the simulated values in order to assess accuracy and precision are outlined.

The ability of models to recover maxima was tested on simulated data representing journey durations

between pairs of rail stations over the course of a day (Gadd et al. 2021). A series of simulated datasets

with known underlying values were generated and analysed. The accuracy with which models recover

these underlying values can then be assessed by investigating the difference between simulated and mod-

elled values (Bland and Altman 1999). The relationship between estimated uncertainty and simulated

values was examined to assess precision. Simulations are a simple way of assessing model performance

in specific circumstances, for example, with specific data structures and were chosen here as a way of

assessing one such circumstance (Morris et al. 2019).

2.1 Data

Simulated data were based on a small section of the London Underground network comprising 12 stations,

shown in Figure 1 (Transport for London 2009a; Transport for London 2009b). This area was chosen as

it included stations with a range of numbers of connections – some being very well connected, like King’s

Cross and Euston, and some with few connections, like Mornington Crescent and Goodge Street.

For each of the 132 origin-destination pairs in the network, data representing the length of time taken

to complete 50 journeys at random times in one 24-hour period were generated. Each origin-destination

pair had a ‘true’ underlying function of journey durations over the 24-hour period, all based on the

function shown in Figure 2. This function is intended to represent increased congestion, resulting in

longer journey durations due to waiting for trains and making slower changes, during a morning and
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Figure 1: Map of the area of the London Underground network used to simulate data
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afternoon rush hour. Note that the simulated durations include not only travel time on trains, but also

travelling through the origin and destination stations between the barriers and platform and waiting

for the next available space on a train – changes to this process during peak travel times can cause

considerable delay. The simulated values, however, are not intended to reflect real travel times between

this group of nearby stations, but just to reflect more general patterns of congestion, therefore some may

be longer or shorter than expected for these particular stations.

Figure 2: Basic function used to simulate temporal patterns of journey durations

There was random variation in the intercept and amplitude of this function between each origin-

destination pair. Two pairs sharing an origin or destination were more similar than pairs with no

shared stations.

The observed journey durations were allowed to vary randomly around the ‘true’ function for each origin-

destination pair. This random variation was allowed to covary based on temporal and spatial proximity

(of origin and destination stations) of the observations.

Some variation in the amplitude of temporal patterns of journey durations was introduced in relation

to the properties of origin stations for each origin-destination pair. Journeys from stations with more

connections (a higher degree) had greater changes between the shortest and longest journey durations (a

larger amplitude), resulting in larger maximum delays for these stations. This is intended to reflect that
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these stations may become busier during rush hours than smaller stations, leading to more congestion

and delay. This ‘fixed’ variation was included in the simulation process, but information was not retained

for analysis – this is intended to represent latent or underlying subgroups in data that we do not have

information about and to test the model’s ability to cope with this situation.

An example set of simulated data is shown in Figure 3. Data were simulated using R (R Core Team

2020), code for simulation and analysis is available in the Supplementary Material.

Figure 3: Example of simulated dataset representing temporal patterns of journey durations between
different origin and destination stations

2.2 Model

The journey durations for each origin-destination pair were modelled over time using a multilevel model

with a b-spline basis. Multilevel models were chosen because of their ability to model continuous tempo-

ral functions of properties for multiple observational units (origin-destination pairs), and their ability to

incorporate complex random structures to account for spatial, temporal and network covariance of ob-

servations (Besag et al. 1991; Goldstein et al. 1994). A b-spline basis comprises a series of functions that

take a positive value in part of the range of the data and are equal to zero elsewhere. When estimating a

model with a b-spline basis, the linear combination of these functions that best fits the data is estimated

(Perperoglou et al. 2019). B-splines were chosen over alternatives, such as penalised splines, because
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they are mathematically convenient; the value of each b-spline basis function can be pre-calculated for

each observed measurement time and included in the model as a covariate, which is not the case for

splines where a smoothing parameter must be estimated (Perperoglou et al. 2019).

The model (shown in Equation 1) for journey duration (yi,from,to) included an intercept (β0,from,to),

coefficients (βn,from,to) for each of k basis functions (fn(ti)) that make up the b-spline basis and an error

term (ei,from,to).

yi,from,to = β0,from,to +

k∑
n=1

βn,from,tofn(ti) + ei,from,to

β0,from,to = β0 + u0,from + u0,to + v0,from + v0,to

βn,from,to = βn + un,from + un,to + vn,from + vn,to

ei,from,to =
aei−1,from,to

(ti − ti−1 + 1)

(1)

The values of the intercept and all coefficients for each edge were allowed to vary randomly between

origin-destination pairs. This random variation was split into parts (lines two and three of Equation

1): aspatial random variation associated with the origin vertex (u0,from); aspatial random variation

associated with the destination vertex (u0,to); spatial random variation associated with the origin vertex

(v0,from); and spatial random variation associated with the destination vertex (v0,to). The aspatial

random variation was constrained to follow a normal distribution with mean zero. The spatial random

variation was set to follow an intrinsic Gaussian conditional autoregressive (CAR) distribution such that

random effects associated with spatially close vertices would be more highly correlated than spatially

distant ones (Besag et al. 1991). This constrains the random effects to sum to zero. Having random

effects associated with both the origin and destination stations meant that edges sharing an origin or

destination vertex are likely to be more alike than those without a shared vertex.

In addition to the random effects, the error term in the model (ei,from,to) was set to follow a first order

continuous-time autoregressive structure to account for temporal autocorrelation of observations. This is

detailed on the fourth line of Equation 1: the ith error term for a given origin-destination pair (ei,from,to)

is a function of the previous error term for this origin-destination pair (ei−1,from,to), multiplied by an

autoregressive coefficient (a), divided by the time difference between the two observations plus one

(ti − ti−1 + 1 (the addition of one is to account for potential simultaneous observations)), plus a random

error term, wi,from,to, that is constrained to follow a normal distribution with mean zero. This means

that the random variation for each pair of subsequent observations is correlated, with the extent of this

correlation decreasing if the time difference between them increases (Goldstein et al. 1994).
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The number of basis functions and the range in which each one is positive is specified using a series

of knot points. The specification of these knot points was chosen separately for each known simulated

pattern. Automatic knot point selection procedures are available for single level spline models (Yeh

et al. 2020; Yuan et al. 2013). However, as no such procedure has been identified for a multilevel context,

a selection of 40 possible knot placements were tested and the knot placement resulting in the lowest

Deviance Information Criterion (a model fit criterion for Bayesian estimation) was chosen. The number

of knots in the possible specifications ranged from one to 20, with knots either evenly spaced over time

or placed at evenly spaced quantiles of the distribution of observations over time. Placing knots at

equal spaces along the time-axis and at quantiles of the data distribution are common knot placement

strategies (Ramsay and Silverman 1997). An alternative method is to place more knots at times where

curvature in temporal patterns is high (Holmes and Mallick 2003; Ramsay and Silverman 1997). In

this case, equally spaced knot placement strategies were chosen as the areas of high curvature will vary

between origin-destination pairs. Using quantiles guarantees that all splines cover an equal number of

observations, meaning estimates for all spline coefficients are supported by the same amount of data even

if data are not evenly distributed (Howe et al. 2013; Ramsay and Silverman 1997). In this simulation,

we expect data to be distributed evenly along the time-axis. The knot specification chosen was 19 knots

spaced evenly along the time-axis.

Models were fitted using a Bayesian Markov chain Monte Carlo estimation procedure in R and Open-

BUGS (Lunn et al. 2009; R Core Team 2020; Sturtz et al. 2005; A. Thomas et al. 2014). OpenBUGS

is a modelling program that uses Markov chain Monte Carlo estimation (with a Gibbs sampling algo-

rithm) to fit complex model structures (S. Geman and D. Geman 1984). This was chosen as Bayesian

estimation methods are generally more effective at estimating complex model structures than maximum

likelihood methods. OpenBUGS was chosen as alternative Bayesian engines did not have the capability

to fit spatially correlated random effects (L. Muthén and B. Muthén 2010; Plummer 2003; Stan Develop-

ment Team 2019). Bayesian estimation aims to estimate a probability distribution for model parameters,

rather than a set of point values, and produces a series of posterior parameter samples. This is based

on the model specification, data and prior distributions provided. Prior distributions represent current

beliefs about which values are most likely for each parameter (Heck and S. Thomas 2015). In this case,

loose priors that do strongly indicate any prior beliefs were specified as this is not an analysis intended to

fully reflect Bayesian thinking, but rather one in which Bayesian estimation tools are the most suitable.

Initially, models with loose priors proved difficult to estimate, even with the aid of this tool. To aid

estimation, models were initially run without the first order temporal autoregressive error structure

included. This produced a set of posterior distributions that could be included as prior distributions

for some parameters in the full model. As recommended when using intrinsic CAR random effects, the
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fixed effects parameters (β0 and βn in Equation 1) were set to follow a flat prior in this model (Besag

et al. 1991; A. Thomas et al. 2014). The precision parameter for random effects distributions was set to

follow a gamma prior distribution with shape and rate equal to two. The starting value for the precision

parameter was set to one and starting values for fixed effects were sampled from a standard normal

distribution. The initial model was run with four chains of 4000 iterations each, 3000 of which were

discarded as model burn-in. This produced parameter distributions (to be used as priors in the final

model) that allowed the final model (with temporally autocorrelated errors) to be consistently estimated

with a low percentage of convergence failures (defined here as when the model estimation process failed

to complete) in the simulations.

The posterior distributions for fixed effects from this initial model were used as priors and to choose

starting values in the final model. The autocorrelation parameter was set to follow a gamma distribution

with shape and rate equal to one, truncated at zero and one as positive autocorrelation was expected.

The starting parameter was set to 0.5. The initial values and distributions for random effects precision

parameters remained the same as the initial model. The final model was run with four chains of 20000

iterations each, 19000 of which were discarded as model burn-in. The remaining 4000 samples of param-

eter estimates provided empirical posterior distributions for each parameter and pattern feature from

which means and 95% credible intervals were derived to compare with the known simulated values.

2.3 Comparison with simulated values

1000 simulations were generated, and the temporal patterns of edge properties analysed using the mul-

tilevel model specified above. The first derivative of the model for each individual edge was calculated

to extract the maximum journey duration, the time of this maximum, and the range of the function

(the difference between the maximum and minimum) during the 24-hour period (Gadd et al. 2021). The

range of the function corresponds to the maximum delay that passengers experience travelling between a

particular pair of stations. Extracting the pattern features was completed using mean model coefficients

for each origin-destination pair to extract a point estimate. It was then repeated with coefficients from

each of 4000 posterior samples. This generated posterior distributions of the maximum journey dura-

tion, delay and time (with one value for each posterior sample) from which quantiles could be taken to

represent 95% credible intervals.

For each origin-destination pair, the maximum journey duration, maximum time and maximum delay

were recorded, along with the width of the 95% credible interval. The simulated and modelled maximum

journey duration, maximum time and maximum delay were compared. Whether the credible intervals for

these pattern features included the pattern features from the simulated temporal patterns was recorded.

The simulated maximum journey duration, time and delay was also converted into a z-score based on
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the mean modelled value and 95% credible interval for each feature. If the posterior distributions from

which the 95% credible intervals are calculated are normally distributed, and the 95% credible intervals

are of an appropriate width then we would expect the distribution of these z-scores to follow a standard

normal distribution.

This work was undertaken on ARC3, part of the High-Performance Computing facilities at the University

of Leeds, UK. Code for simulation and analysis of data is included as Supplementary Material.

3 Results

Across 1000 simulations, 98.5% of models ran successfully with only 15 failing to complete estimation.

Running one simulation with each chain of the multilevel model estimated in parallel took approximately

two days of computing time. The full simulation was run with other processes running in parallel and

took approximately 14 days.

Table 1 compares simulated and modelled values for each of the three pattern features: maximum journey

duration, maximum time and maximum delay. Maximum journey duration is the maximum time taken

to complete a journey between a pair of stations during the day examined. Maximum time is the time

of day at which this maximum journey duration occurred. Maximum delay is the difference between

maximum journey duration and the minimum journey duration between a pair of stations during the

day examined.

Feature Maximum
time
(hh:mm:ss,
hours)

Maximum
journey du-
ration (min-
utes)

Maximum de-
lay (minutes)

Simulated mean 15:50:49 37.109 18.335
Modelled mean 15:50:02 35.788 17.617
Simulated SD 67.020 8.454 11.253
Modelled SD 0.844 6.362 9.530
Mean 95%CI width 2.095 3.978 5.321
SD 95% CI width 1.398 0.422 0.463
Median 95%CI width 1.900 3.950 5.288
IQR 95% CI width (1.120,2.570) (3.678,4.246) (4.996,5.607)
Mean Bias -0.013 -1.320 -0.719
95% Limits of Agreement (-2.471,2.445) (-9.58,6.939) (-5.832,4.395)
Mean simulated value as z-score (no units) 0.023 1.333 0.532
SD simulated value as Z-score (no units) 3.598 4.137 1.868
Percentage of real values within CI (%) 59.533 36.174 68.613

Table 1: Table summarising and comparing simulated and estimated pattern feature values. SD =
standard deviation, CI = credible interval, hh:mm:ss = hours, minutes, seconds time format. Mean bias
is the mean difference between estimated and simulated values. 95% Limits of agreement represent limits
of the bias we would expect to find in 95% of estimates of each feature.

Figure 4 shows a Bland-Altman plot (Bland and Altman 1999) for the agreement between simulated and

modelled maximum time, including the mean bias and 95% limits of agreement. Figure 5 shows a density
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plot of the 95% credible interval widths for estimates of maximum time. Figure 6 shows a density plot,

with mean and standard deviation indicated, of simulated maximum time features as a z-score of the

normal distribution described by the estimated maximum time and 95% credible interval estimates. Note

that this assumes that the posterior distribution of the pattern feature estimates is normally distributed.

Figure 4: Bland-Altman plot showing the relationship between simulated maximum time and modelled
minus simulated maximum time. The density of points is indicated by the colour of squares in the plot
(darker grey equals greater density). The solid line indicates the mean bias and dashed lines indicated
95% limits of agreement.

In Figure 4, the simulated maximum times are mostly in the afternoon, with the majority of values

falling between approximately 12:00 and 20:00. This reflects the simulated data we saw in Figure 3 and

the average pattern in Figure 2, where the maxima take place around the afternoon commuting period.

The mean bias is close to zero, suggesting that estimates of maximum time are, on average, unbiased.

However, there is a negative correlation between simulated maximum time and modelled minus simulated

maximum time. This suggests that maxima taking place early in the time period are being estimated

as later than they are and vice versa. This may indicate that the model is failing to capture the full

amount of variation in maximum times between edges in the network.

The 95% limits of agreement indicate the limits of the bias we would expect in 95% of estimates of

maximum time from these models. These are wide, with a range of just less than 2.3 hours either side
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Figure 5: Density plot showing the distribution of 95% credible interval (CI) widths for maximum time
estimates.

of zero. This indicates that, while the mean bias is small, there is the potential for individual estimates

of maximum time to have considerable inaccuracy.

The 95% credible interval widths of maximum time are also wide: the most common width is slightly less

than 2.5 hours with a large proportion of intervals wider than this. This indicates that the estimates of

maximum time from the model are also imprecise. The density plot for maximum time credible interval

widths does not have a smooth shape but rather a series of peaks of common credible interval widths.

The distance between these peaks appears to approximately correspond to the distance between knots

in the b-spline basis (1.2 hours, see Supplementary Figure 13).

If the 95% credible intervals had appropriate coverage, we would expect the distribution of simulated

maximum times as z-scores of their estimated credible intervals to follow a standard normal distribution

with mean zero and standard deviation one. The mean of the distribution is close to zero, as shown in

Table 1, but the standard deviation, indicated by the dashed lines in Figure 6, is over 3.5. This suggests

that the 95% credible intervals are too narrow and do not cover the appropriate amount of simulated

maximum times. Table 1 shows that the percentage of simulated maximum times contained within the

estimated credible intervals is just below 60%.
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Figure 6: Density plot showing simulated maximum time values as a z-score of the relevant posterior
distributions of estimates for maximum time. The solid line indicates the mean z-score and the dashed
lines one standard deviation either side of the mean.

Figure 7 shows the Bland-Altman plot with limits of agreement for simulated and modelled maximum

journey duration. Figure 8 shows the distribution of credible interval widths for this feature and Figure

9 shows the distribution of simulated maximum journey durations as a z-score of the credible interval

distributions.

The distribution of simulated maximum journey duration is multimodal as it contains lower maximum

journey durations for journeys originating at stations with few connections and higher values for journeys

originating at stations with many connections. This matches the simulated data. In Figure 7 we see a

negative correlation between the simulated maximum journey duration and the degree of over- or under-

estimation by the models, like in Figure 4. In this case, however, there is a small negative bias in the

estimation of maximum journey duration. On average, estimates from the models are 1.32 minutes below

the simulated maximum journey duration. The 95% limits of agreement are relatively narrow indicating

that 95% of estimated maximum journey durations are biased by less than 10 minutes in either direction

from the true maximum journey duration.

95% credible interval widths, shown in Figure 8, are also narrower for the maximum journey duration

compared to maximum time with almost all widths being under six minutes. However, the results
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Figure 7: Bland-Altman plot showing the relationship between simulated maximum journey duration
and modelled minus simulated maximum journey duration. The density of points is indicated by the
colour of squares in the plot (darker grey equals greater density). The solid line indicates the mean bias
and dashed lines indicated 95% limits of agreement.

in Figure 9 indicate that these may be somewhat too narrow. The standard deviation of simulated

maximum journey durations as a z-score of the distributions defined by their estimated credible interval

widths is over four and the percentage of simulated values covered by the credible interval is only 36%.

This indicates severe undercoverage of these credible intervals.

Figure 10 shows the Bland-Altman plot for simulated and modelled maximum delay with the distribution

of credible interval widths shown in Figure 11. Figure 12 shows a density plot of the simulated maximum

delay values as z-scores of the distributions described by their corresponding modelled maximum delay

and 95% credible interval estimates.

There are four distinct groups of simulated maximum delays corresponding to the four different numbers

of connections for stations in Figure 1. Over all these groups, a negative correlation between simulated

maximum delay and modelled minus simulated maximum delay is present, similar to the other pattern

features observed. However, within some individual groups this correlation does not appear so strong.

The mean bias is small and negative (-0.719 minutes, less than 45 seconds) and the 95% limits of

agreement are within six minutes either side of zero.
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Figure 8: Density plot showing the distribution of 95% credible interval (CI) widths for maximum journey
duration estimates.

The majority of estimated 95% credible interval width for maximum delay were less than 7.5 minutes

wide, however there is still an undercoverage problem with these intervals: 68% of simulated maximum

delays were covered by the estimated credible intervals and the standard deviation of simulated maximum

delay as a z-score of the 95% credible interval widths is 1.868. The extent of this problem is less,

however, than for the other two pattern features which had wider z-score distributions and lower coverage

percentages.

4 Discussion

The mean bias for all pattern features was relatively low, with maximum time, maximum journey duration

and maximum delay all being slightly underestimated by less than two minutes on average. However, for

all features, a negative correlation of the simulated pattern feature and the modelled minus simulated

pattern feature was observed. This suggests that lower values are being overestimated and higher values

underestimated. This may be an indication that the models are not capturing the full extent of variation

in pattern features between observational units. This may partially be due to a lack of flexibility in the

model which prevents it from capturing more of the range of variability. Another cause may be shrinkage:
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Figure 9: Density plot showing simulated maximum journey duration values as a z-score of the relevant
posterior distributions of estimates for maximum journey duration. The solid line indicates the mean
z-score and the dashed lines one standard deviation either side of the mean.

this is an effect in which any model will, on average, predict less variation than is present in the observed

data (Copas 1983; Greenland 2000). This prevents the model from capturing the full range of variation

in pattern features in the data, but it is possible that some changes to the model specification may help

to capture more of the variation.

The model included no x-axis random variation and relied upon the flexibility of the underlying b-spline

basis to capture variation between observational units in the x-axis. There are forms of multilevel models

that include an x-axis random effect. For example, the Super Imposition by Translation And Rotation

(SITAR) model is a form of multilevel model explicitly designed to investigate childhood growth curves

(Cole et al. 2010). It includes three random effects: a y-axis random intercept changing the mean size of

a child across the time measured, an x-axis random intercept representing changes in the timing of when

a growth spurt occurs, and a random effect for the velocity of growth. Incorporating an x-axis effect to

this model may help it to capture more of the variation in maximum time values by allowing horizontal

translations of the modelled patterns between observations units – this reflects the simulation process

underlying the data.

Including random effects in the x-axis may present some difficulties in fitting the model due to increased
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Figure 10: Bland-Altman plot showing the relationship between simulated maximum delay and modelled
minus simulated maximum delay. The density of points is indicated by the colour of squares in the plot
(darker grey equals greater density). The solid line indicates the mean bias and dashed lines indicated
95% limits of agreement.

complexity. Currently, the model code treats the b-spline basis as a series of fixed variables, the value

of which at each observation time is calculated before estimating the model. This is convenient and

represents an advantage of using b-splines over penalised alternatives. However, if an x-axis random

intercept were included, the b-spline basis would be shifted horizontally for each edge in the network

by an amount estimated by the model. This means that the value of each b-spline basis function at

each observation time would depend on a quantity estimated in the model (the x-axis random effect)

and could not be calculated before fitting. Incorporating such a random effect would likely be possible

in OpenBUGS but would be complicated – this would probably increase computational intensity of the

models and make them more difficult to construct.

However, it may be useful to consider alternative model specifications, particularly for the specification

of random effects, that may allow an x-axis random effect to be included without increased complexity.

In this simulation, spatial and aspatial random variation between observational units was incorporated

into the coefficients for each b-spline function in the model. This aimed to allow variation in the form of

the temporal patterns of journey durations for each observational unit while allowing observations closer
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Figure 11: Density plot showing the distribution of 95% credible interval (CI) widths for maximum delay
estimates.

together to be more similar. This requires estimation of a large number of random effects coefficients.

The coefficients for the b-splines, however, do not have a clear real-world interpretation (Stimson et al.

1978) so perhaps the incorporation of random effects in these coefficients does not correspond completely

to random variation in the temporal patterns, particularly spatial random variation, in the way we would

expect. It may be more useful and interpretable to fix the b-spline coefficients and include a series of

random effects to allow transformations of the average temporal pattern for each observational unit, for

example including a random y-axis intercept and y-axis scaling factor, similar to the SITAR model (Cole

et al. 2010). This would reduce the number of random effects that needed to be estimated by the model,

allowing for additional x-axis random effects to be included without increasing model complexity, and

also mean that the interpretation of these random effects was clearer – for example, similar coefficients

for two observational units would clearly correspond to similarity in the temporal patterns of journey

delays.

This approach, however, may have some shortcomings. The multilevel model in this paper assumes that

the random coefficients for each b-spline are normally distributed (Besag et al. 1991; Goldstein 2011).

As the simulation has incorporated some latent or underlying groups in the data with different journey

delays, the distributions of simulated maximum delay and maximum journey duration are not normally
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Figure 12: Density plot showing simulated maximum delay values as a z-score of the relevant posterior
distributions of estimates for maximum delay. The solid line indicates the mean z-score and the dashed
lines one standard deviation either side of the mean.

distributed. As the model used in this example does not directly estimate the random variation in these

parameters, but rather random variation in the ‘abstract’ b-spline coefficients, this does not necessarily

violate this assumption (though it may). However, if random effects more directly related to these pattern

features were included this may more clearly violate these assumptions and cause the model to perform

poorly (Besag et al. 1991; Goldstein 2011). It may be possible to account for this, for example by using

models with latent (unmeasured) variables included (Kaplan et al. 2009). It is important for researchers

to examine data carefully to see if there are any structures like this. This allows the researcher to attempt

to account for this where necessary.

The mean width of the credible intervals estimated for maximum time were particularly large in relation

to the 24-hour period covered by the data. The majority of credible intervals in Figure 5 are also fairly

wide, which means that the estimates from these models often do not give a particularly precise indication

of maximum time. This may not be adequate if the models were to be used in a real situation, for example,

to choose a time to implement measures to reduce congestion in stations, or times to include more trains

in a timetable. The distribution of credible interval widths in Figure 5, unlike those for maximum journey

duration and maximum delay, has a series of local maxima at fairly regular intervals indicating that there

21



are some credible interval widths that are more common than others. The distance between these local

maxima appears to be similar to the distance between knot points in the b-spline basis specified for this

model (1.2 hours, see Supplementary Figure 13). This may indicate that the structure of the temporal

patterns estimated by the models strongly reflects the b-spline knot placements and that the shape of

these patterns is influencing the width of posterior distributions that generate credible interval estimates.

It would be useful for future work to investigate if this is the case and if alternative model specifications

might change this pattern.

In this particular simulation, the simulated pattern has a clear maximum in the 24-hour period of interest

that is far greater than the other local maxima included. However, it is possible that some temporal

patterns may include multiple maxima with a smaller difference in their values, for example, patterns

that include multiple days and have a periodic nature. It may be that, for patterns with multiple local

maxima, the posterior distribution of maximum time estimates would contain more than one of these

maxima, rather than the maximum with the largest value during the 24-hour period. This may produce a

multimodal posterior distribution of maximum times which will result in a much wider credible interval

than if the distribution is concentrated around a single maximum in the 24-hour period. While the

usual interpretation of a credible interval based on a multimodal posterior distribution of maximum time

would remain accurate, a 95% credible interval does not give such a precise description of the posterior

distribution in this case and it may be assumed by readers that it is unimodal. It may be useful for future

work to investigate if a multimodal posterior distribution for the maximum time pattern feature might

be produced in certain situations and whether there is a more detailed way to represent uncertainty

when this is the case.

For all the pattern features, even maximum time which had wide credible intervals, the coverage of

credible intervals is far lower than the expected 95%. Coverage is lowest for maximum journey duration

and highest for maximum delay. This indicates that the estimates of uncertainty for the pattern features

are not reliable. This could suggest that the estimated credible intervals are too narrow, or the estimates

of maximum journey duration are biased (or a combination of these). There is no clear indication here

that the estimated credible intervals are too narrow – in fact, relative to the amount of variation in the

real maximum journey duration, the credible intervals are relatively wide – but we cannot rule this out

as a cause of the undercoverage of these estimates. Despite the mean bias estimates being low, there

is clearly some bias in the estimation of low and high values of each pattern feature. This may have

contributed to the size of the 95% limits of agreement for these features which are larger than half the

mean credible interval width for all three pattern features. The size of the 95% limits of agreement

in relation to the credible interval widths means that we would expect more than 5% of the credible

intervals not to cover the simulated maximum journey duration, which is indeed the case. Where the
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credible interval widths are smaller compared to the 95% limits of agreement, we also see a decreased

coverage. This may indicate that bias does contribute to the undercoverage of credible intervals. Further

work could be carried out to investigate the contributions of different factors to the undercoverage seen

in this simulation study. This would indicate how best to approach fixing the problem.

5 Conclusion

This simulation tested the ability of continuous-time multilevel models to capture maxima in temporal

patterns of edge properties for a spatio-temporal network. Only one scenario with one data structure

was investigated – this particular scenario was chosen to reflect a real data example to which this model

has previously been applied (Gadd et al. 2021). Future work testing these models in the presence of

different data structures (for example, the timing of measurements (evenly spaced, balanced/unbalanced,

measured in waves), different degrees of temporal and spatial autocorrelation) should be carried out as

the impact of different scenarios on the model performance should be assessed.

The models were able to capture the maximum time and maximum journey duration with a small mean

bias; they tended to overestimate low simulated values and underestimate high simulated values for both

features, leading to biased estimates for individual edges in the network with low or high maximum

times/journey durations. The extent to which variation is not fully captured may have contributed to

the relatively small proportion of credible intervals for these pattern features that contain the simulated

pattern feature values. In practice, this means the credible intervals from this model in its current form

cannot be interpreted as the range of most likely values for the pattern features. Future work concerning

continuous-time multilevel models for temporal patterns of edge properties in spatio-temporal networks

should further evaluate the application of continuous time models, especially considering incorporation of

an x-axis random intercept and alternative prior and initial value specifications, which could potentially

improve accuracy and precision.
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6 Supplementary material

Figure 13: Density plot showing 95% credible interval widths for estimates of maximum time, with the
distances between knot points marked as vertical dashed lines.
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