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Abstract—In the WiFi protocol, channel state information
(CSI) is the modulated as the fine-grained data to assess the
channel efficiency. Meanwhile, it contains the information about
the environment change, including the movement of human in
a specific environment. Therefore, the CSI data can be used to
recognize the human activity. In this paper, we design a vision
and WiFi collaboration-based human activity recognition scheme
to classify the human activities. More specifically, we collect the
CSI data from the WiFi signals and the human skeleton points
from the video signals. Then, we construct a long-short-term
Transformer network to build up the collaboration of the CSI
data and the skeleton points. Based on this collaboration, we can
use the CSI data to well recognize the human activities.

Index Terms—WiFi, channel state information, human activity
recognition, long-short-term, Transformer

I. INTRODUCTION

WiFi is one of the significant communication protocols
in Internet of Things system. It can be used to link the
internet and detect the environment change with channel state
information (CSI). Therefore, WiFi signal can be utilized to
recognize the movement of human in a specific environment.
With the development of WiFi protocol and commercial off-
the-shelf (COTS) devices, it brings more and more potential
applications of the WiFi-based human activity recognition
(HAR) [1], [2]. HAR aims to identify the actions of human,
which can be adopted in the design of human computer
interaction and remote healthcare monitoring systems.

In the propagation of WiFi signal, the transmitted CSI data
is able to record the characteristics of physical space with
multi-path effect. When a person is in the physical space, the
additional sub-carrier paths will be introduced due to the signal
reflection and diffraction occurred to the human body. The CSI
data contains the information about the change of sub-carrier
paths. By establishing the information mapping of CSI and
human movement, the WiFi-based HAR can be implemented.

The WiFi-based HAR has a number of advantages. Firstly,
the propagation of WiFi signals is not limited by the line-of-
sight area. The radio frequency of WiFi, normally at 2.4GHz
and 5GHz, makes the signals can be easily penetrated through
the blocking object for transmission. Secondly, it is not af-
fected by the lighting condition, which allows it to monitor the
human activities independent to the light. Thirdly, this solution
protects the private information of users. For instance, the
user’s appearance is not visualized and cannot be recognized or
restored by the CSI data either. Finally, the adopted hardware

to implement it is simple and it does not need any other
equipments.

Recently, many researches focus on the human activity
recognition by using the WiFi signals, including the detection
of falling [3], gesture [4], [5], smoking [6], and so on.
However, the current WiFi-based solutions can only coarsely
classify the human movement. Besides of the WiFi-based solu-
tion, the vision-based methods were also proposed to recognize
the human activity [7], [8]. These methods were developed
based on the video signals and required lots of memory
spaces to save data as well as high-efficiency algorithms to
achieve the recognition task. Collaborating WiFi signal and
video signal offers a potential solution to construct a more
effective HAR scheme. The recently-developed AlphaPose [9]
and OpenPose [10] proposed to estimate the skeleton points
of human, which offer a potential solution to achieve this
goal. Typically, the OpenPose [10] has been used in the WiFi-
based human skeleton points detection [11], and it can also be
adopted in the design of WiFi-based HAR.

Inspired by [11], we propose a new method in this paper
to construct an HAR scheme which is developed based on
the collaboration of both vision and WiFi signals. More
specifically, we utilize the Transformer neural network [12] to
comppse the long-short-term Transformer (LSTT) network so
that we can obtain the skeleton points of human from the CSI
data. Then, with the generated skeleton points, we accomplish
the HAR task by using the support vector machines (SVM).

II. BACKGROUND

The CSI data is the channel response that contains the
information of channel condition. It is transmitted in the
physical layer and obtained from the decoded sub-carriers
of the orthogonal frequency division multiplexing system.
The CSI of single sub-carrier can be modeled with a given
frequency f at time t [13]

H(f, t) = e−j2π∆ft

(
Hs(f) +

Id∑
i=1

ai(f, t)e
−j2πdi(t)λ

)
(1)

where e−j2π∆ft is the phase offset caused by carrier frequency
offset, packet detection delay, sampling frequency offset [14],
Hs represents the CSI reflected from stationary objects and
stably transmitted in line-of-sight, Id is the dynamic path



Fig. 1. Our proposed scheme.

index, ai(f, t) stands for the complex attenuation factor and
initial phase on each path, e−j2πdi(t)λ and di(t) stand for the
phase change and its length of ith path, and λ is wavelength
of wireless signal. The CSI date is able to capture the change
of environment [13]. Therefore, it can be used to recognize
the movement and action of human.

III. OUR PROPOSED METHOD

A. Processing of CSI data

As mentioned above, the CSI data can be used to recognize
the movement and activity of person. However, the phase
offset of network interface cards (NICs) cannot be exactly
obtained, which often produces phase noise in the received
data. These data cannot be used for the recognition of human
activity. To tackle this problem, we only employ the amplitude
of CSI to implement the HAR task.

In this work, we aim at obtaining the pose of human
by constructing the mapping between the CSI data and the
skeleton points which are generated from the video data.
Our proposed pose estimation highly depends on the data
of both CSI and skeleton points. However, the packet loss
happens frequently in the transmission of WiFi signal, which
accordingly induces the losing of CSI. To tackle this problem,
when the CSI data is missed, we will utilize the neighboring
data to linearly interpolate the lost one. Meanwhile, if the the
amplitude of the data is infinite, we will replace it by using
the amplitude of the previous datap.

Our proposed scheme is illustrated in Fig. 1. To construct
the vision and WiFi collaborated scheme for HAR, we use a
webcam to collect videos of person and produce the skeleton
points with OpenPose [10]. These skeleton points are related
to the corresponding CSI data. To build up the collaboration
between CSI and video frames, we get the timestamp of
standard time from the internet for both devices. An example
of the potential correlation between CSI and human pose is
illustrated in Fig. 2.

B. LSTT for Human Pose Estimation

In this work, we compose the LSTT neural network to build
up the mapping between the CSI data and the human pose.
The Transformer model [12] has demonstrated impressive
performance in the wireless signal-based HAR [15]. Our LSTT
network consists of four layers, including input layer, self-
attention layer, aggregation layer and prediction layer, and its
architecture is illustrated in Fig. 3.

In LSTT, the input layer receives the processed CSI data
and splits it into the long-term and short-term data streams,
respectively, which are fed into the self-attention layer to
extracts discriminative features. The short-term stream aims
to acquire the movement information of different body parts
in a short time period, while the long-term stream works to
obtain the static information in a long period to provide a
temporal constraint for the prediction of skeleton points. To
save the memory, the average pooling is adopted is this layer
to reduce the dimensions of the streams.

The self-attention layer receives the long-term stream and
short-term stream from the input layer, where each of stream
is divided into a temporal stream and a channel stream. The
size of the divided streams are Tl×C and Ts×C, respectively.
Then, these streams are fed into the multi-scale convolu-
tion augmented transformer (MCAT) to extract discriminative
features, which can directly integrate the information within
the whole sequence. The structure of MCAT is illustrated
in Fig. 4 and it is composed by two sub-layers, including
a multi-head self-attention and a multi-scale CNN with self
attention. Moreover, these sub-layers are connected by residual
connection [16] and normalization layer [17].

The aggregation layer receives the temporal streams and
channel streams, and then aggregates them into vectors via
four separate convolutional blocks. After that, the resulting
temporal and channel vectors are concatenated to be fed as
the input of the prediction layer.

The prediction layer uses a fully-connected layer to generate
the coordinate vectors for the human pose which is composed
by 17 skeleton points in a frame, where the first vector is
composed by the horizonal coordinates of the points and



Fig. 2. Correlation between CSI and human pose.

Fig. 3. Architecture of LSTT model.

the second one is composed by the vertical coordinates. The
total loss of pose estimation is defined based on the sum of
Euclidean distances between labels and predicted points

Loss =

17∑
i=1

√
(xi − x̄i)2 + (yi − ȳi)2. (2)

where (xi, yi) is the predicted location of ith joint and (x̄i, ȳi)
is the label of location.

C. Human Activity Classification

With the LSTT network, we can estimate the human pose
from a sequence of CSI data. As human activity changes, the
moving tracks of points, including along both the horizonal
and vertical directions, are apparent differences, which can
be used to distinguish and classify the human activities. To
obtain efficient features from the 17 skeleton points, we adopt

the variance of these points as descriptors for our HAR task.
The variance descriptor is calculated as

σ2 =
1

K

K∑
i=1

(ni −
1

K

K∑
j=1

nj)
2 (3)

where σ2 is the variance of the same point along the horizonal
or vertical direction in K frames. Then, we can acquire
a feature vector which contains 34 variance descriptors in
horizonal and vertical directions. These descriptors are used
for the detection of various activities. After that, we employ
a non-linear SVM model [18], [19] to process the resulting
descriptors for activity classification, where the descriptors are
normalized by the unit L2 norm. Finally, the HAR task can
be implemented.



Fig. 4. Structure of MCAT.

TABLE I
PREDICTION ERRORS OF POSE ESTIMATION FOR DIFFERENT NETWORK

SCHEMES

Model Short-term Long-term Short-long-term
Error 3.67 2.24 1.96

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Our WiFi devices are equipped with Linux 802.11n CSI
Tool with 5300 NICs [20], on Ubuntu 14.04 operating system
of portable computer. We apply one COTS WiFi transmitter
and three WiFi receivers to get the human activity profile from
different directions. The employment of multiple devices in
our work can well collect the spatial information of human
activity. Figure 5 illustrates the construction of the scheme,
where the transmitter is placed the same location with camera
and three receivers are placed around the sensing area. A
person is invited to do different types of activities in the center
of sensing area.

In the data collection, we set the sample frequency to
100Hz for CSI and the frame rate to 25Hz for camera.
The length of the long-term and short-term CSI inputs are
8 and 42, respectively. In this experiment, the data of 3
persons are collected to compose the dataset for both training
and testing. More specifically, each person does 6 actions,
including walking, waving hands, picking up, jumping, raising
hands and squatting, where each action lasts for three seconds,
recorded by 300 CSI packets as well as 75 corresponding video
frames. Moreover, each action is repeated 100 times. As a
result, we obtain over all 1,800 actions and use them as 1,800
groups of data. Then, we separate the whole dataset into two
parts, where 900 groups of data are selected to train our LSTT
network and the other 900 groups are employed to train the
SVM model and also used as the test dataset.

B. Results and Analysis

1) Human Pose Estimation: To verify the effectiveness of
our proposed LSTT network, an ablation experiment is firstly
conducted on human pose estimation. The performances of

Fig. 5. Data collection for our proposed HAR scheme.

TABLE II
ACTION RECOGNITION ACCURACY (%)

Accuracy Average
User 1 User 2 User 3

Walking 100 100 98 99
Waving Hands 100 76 88 88

Picking Up 100 96 100 98
Jumping 96 98 96 97

Raising Hands 100 100 100 100
Squatting 100 98 100 99
Average 99 94 96 96

three models with the short-term, long-term and short-long-
term structures are verified, respectively. The corresponding
results, including the average mean square error between the
prediction and the label are all given in Table I. It can be
seen from Table I that coupling the short-term and long-term
streams together is able to achieve better prediction for human
pose estimation.

2) Human Activity Classification: We apply 3-fold cross
validation to quantitatively evaluate the performance of our
activity classification method. In this experiment, the test
dataset which contains 900 groups of data is divided into three
sub-sets according to the three persons, where 600 groups of
data collected from two persons are used for training and the
other 300 groups of data obtained from the third person are
utilized for testing. We offer the recognition accuracy for six
activities in Table II and it is found that our method achieves
96% accuracy (on average).

V. CONCLUSION

In this paper, we propose a WiFi and vision-based HAR
scheme to classify the human activities. More specifically, we
compose a long-short-term Transformer network to construct
the collaboration between the CSI data obtained from the WiFi
signal and the human skeleton points extracted from the video
signal. With this collaboration, we can use the WiFi signal to
effectively recognize the human actions. Our proposed scheme
is constructed based on the COTS WiFi NICs, which can be
easily transferred to any indoor environment, such as care-
home, hospital and office.
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