

Xin, X., Karatzoglou, A., Arapakis, I. and Jose, J. M. (2022) Supervised Advantage
Actor-Critic for Recommender Systems. In: 15th ACM International Conference on
Web Search and Data Mining, Phoenix, Arizona, 21-25 Feb 2022, pp. 1186-1196. ISBN
9781450391320

(doi: 10.1145/3488560.3498494)

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

Copyright © 2022 Association for Computing Machinery. This is the author's version of
the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in 15th ACM International Conference on Web Search
and Data Mining, Phoenix, Arizona, 21-25 Feb 2022, pp. 1186-1196. ISBN
9781450391320

http://eprints.gla.ac.uk/257042/

Deposited on: 15 February 2022

Enlighten – Research publications by members of the University of
 Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1145/3488560.3498494
http://eprints.gla.ac.uk/257042/
http://eprints.gla.ac.uk/

Supervised Advantage Actor-Critic
for Recommender Systems

Xin Xin
Shandong University
xinxin@sdu.edu.cn

Alexandros Karatzoglou
Google Research, London

alexkz@google.com

Ioannis Arapakis
Telefonica Research, Barcelona
arapakis.ioannis@gmail.com

Joemon M. Jose
University of Glasgow

Joemon.Jose@glasgow.ac.uk

ABSTRACT
Casting session-based or sequential recommendation as reinforce-
ment learning (RL) through reward signals is a promising research
direction towards recommender systems (RS) that maximize cu-
mulative profits. However, the direct use of RL algorithms in the
RS setting is impractical due to challenges like off-policy training,
huge action spaces and lack of sufficient reward signals. Recent RL
approaches for RS attempt to tackle these challenges by combining
RL and (self-)supervised sequential learning, but still suffer from
certain limitations. For example, the estimation of Q-values tends to
be biased toward positive values due to the lack of negative reward
signals. Moreover, the Q-values also depend heavily on the specific
timestamp of a sequence.

To address the above problems, we propose negative sampling
strategy for training the RL component and combine it with super-
vised sequential learning. We call this method Supervised Negative
Q-learning (SNQN). Based on sampled (negative) actions (items), we
can calculate the “advantage” of a positive action over the average
case, which can be further utilized as a normalized weight for learn-
ing the supervised sequential part. This leads to another learning
framework: Supervised Advantage Actor-Critic (SA2C). We instan-
tiate SNQN and SA2C with four state-of-the-art sequential recom-
mendation models and conduct experiments on two real-world
datasets. Experimental results show that the proposed approaches
achieve significantly better performance than state-of-the-art su-
pervised methods and existing self-supervised RL methods.

CCS CONCEPTS
• Information systems → Recommender systems; Retrieval
models and ranking; Novelty in information retrieval.

KEYWORDS
Recommendation; Reinforcement Learning; Actor-Critic; Q-learning;
Advantage Actor-Critic; Negative Sampling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’22, February 21–25, 2022, Tempe, AZ, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9132-0/22/02. . . $15.00
https://doi.org/10.1145/3488560.3498494

ACM Reference Format:
Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, and Joemon M. Jose.
2022. Supervised Advantage Actor-Critic for Recommender Systems. In
Proceedings of the Fifteenth ACM International Conference on Web Search and
Data Mining (WSDM ’22), February 21–25, 2022, Tempe, AZ, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3488560.3498494

1 INTRODUCTION
The online world offers a wealth of choices in both entertainment,
purchasing and social networking. Over the last 20 years, users
have been navigating these choices with the help of recommender
systems (RS). Examples of applied RS include, but are not limited
to, e-commerce [13], video platforms such as Youtube, TikTok, and
music apps like Spotify [45]. Most of these use cases involve session-
based or next-item recommendation, whereby users use a service
to interact with items in a sequence and the recommendations are
generated to recommend the most interesting items for next times-
tamp given the current user state, by using historical interaction
sequences as the training input.

Session-based recommendation models can usually be trained
in a (self-)supervised learning fashion, in which a sequential model
(e.g., a transformer [17, 41] or a RNN [9]) is trained to predict the
next item in the sequence itself, rather than some “external” la-
bels [9, 17, 45]. This training approach is also widely adopted in
language modeling tasks, to predict the next word given the pre-
vious word sequence [23]. However, supervised learning can also
result into sub-optimal recommendations, since the loss function
used in supervised learning is purely defined on the discrepancy
between model predictions and the actual interactions in the se-
quence. Recommmendations from a model trained on such a loss
function may not match the desired properties of a RS from the
perspective of both users and service providers. For example, ser-
vice providers may want to promote recommendations that can
lead to real purchases not just clicks. The service provider may
also wish to have long-term user engagement instead of focusing
on immediate rewards and clicks. Other desirable properties of RS
could also be taken into consideration, like diversity and novelty of
the recommended item lists, which may lead to a multi-objective op-
timization problem [21, 31]. Recommendation models trained with
simple supervised learning may encounter difficulties in tackling
the above recommendation expectations and objectives.

Reinforcement learning (RL) has achieved success in game con-
trol [4, 24, 36, 37], robotics [19] and related fields [2, 22]. A RL
agent is trained to take actions given the observation (state) of the

https://doi.org/10.1145/3488560.3498494
https://doi.org/10.1145/3488560.3498494

environment with the objective of getting the maximum discounted
cumulative rewards. This long-term optimization perspective of
RL is a good match with the nature of RS (i.e. getting maximum
cumulative rewards in one interaction session). The flexibility that
accompanies reward-based learning allows us to create models that
can serve multiple recommendation objectives (e.g., promoting pur-
chases, increasing diversity and so on). As a result, the use of RL
for recommendation has become a promising research direction.

However, unlike game control and robotics, directly utilizing
RL for RS comes with sets of unique difficulties and challenges.
Model-free RL algorithms train the agent through an “error-and-
correction” manner, in which the RL agent needs to interact with
the environment and collect experience. The training procedure
forces the agent to imitate good actions and avoid bad ones. Doing
this under the setting of RS is often problematic, since interactions
with an under-trained policy would negatively affect the user expe-
rience. A user may quickly abandon the service if he is continuously
recommended irrelevant items. A typical solution is to perform off-
policy learning from the logged implicit feedback data [1, 43]. This
entails trying to infer a target policy from the data generated by a
different behavior policy, which is still an open research problem
due to its high variance [25]. Moreover, learning from implicit feed-
back also introduces the challenge of insufficient negative signal
[29, 43]. Another alternative is to use model-based RL algorithms,
in which a model is firstly constructed to simulate the environment
(users). Then the agent can learn from the interactions with the
simulated environment [2, 35]. However, these two-stage methods
depend heavily on the accuracy of the constructed simulator.

Recently, self-supervised reinforcement learning [43] has been
proposed for RS, achieving promising results on off-line evalua-
tion metrics. Two learning frameworks namely Self-Supervised
Q-learning (SQN) and Self-Supervised Actor-Critic (SAC) are pro-
posed. The key insight of self-supervised RL is to utilize the RL com-
ponent as a form of a regularizer to fine-tune the recommendation
model towards the defined rewards, for instance in the e-commerce
domain provide recommendations that lead to more purchases
rather than just clicks [43]. Although SQN and SAC achieve good
performance, they still suffer from some limitations. For example,
the RL head1 in SQN and SAC is only defined on positive (inter-
acted) actions (items), so the negative comparison signals only come
from the cross-entropy loss of the supervised part. As a result, the
RL head contributes to reward-based learning but cannot be used to
generate recommendations, as it lacks negative feedback to remove
the bias introduced by the existence of only positive reward signals.
Moreover, SAC uses the output Q-values2 as the critic to re-weight
the actor (supervised part). However, the Q-values depend heavily
on the specific timestamp of a sequence, which further introduces
bias to the learning procedure.

To address the above issues, we first propose to introduce a
negative sampling strategy for training RL in a RS setting and
then combine it with supervised sequential learning. We call this
Supervised Negative Q-learning (SNQN). Another interpretation of
negative sampling in RL is imitation learning under sparse reward
settings [27]. Different from SQN, which only performs RL on
1For simplicity, we make “head” and “output layer” interchangeable in this paper.
2The Q-value for a state and action is an estimate of the expected cumulative reward
under this state-action pair.

positive actions (clicks, views, etc.), the RL output head of SNQN
is learned on both positive actions and a set of sampled negative
actions. This design allows the RL part of the SNQN to not only
act as a regularizer but also as a good ranking model, which can
also be used to generate recommendations. Based on the sampled
negative actions and the estimate of the Q-values, we can moreover
calculate the “advantage” of a positive action over the other actions.
We then propose the Supervised Advantage Actor-Critic (SA2C),
that uses this advantage instead of the raw Q-values to re-weight
the supervised output layer. The advantage values can be seen as
normalized Q-values that help us alleviate the bias from sequence
timestamp on the estimation of Q-values.

To summarize, this work makes the following contributions:

• We propose SNQN to introduce negative sampling into the
RL training of the RS model and then combine it with super-
vised sequential learning. As a result, both the supervised
head and the RL head can be used to generate recommenda-
tions. We show that joint training of the two heads with a
shared base model helps to achieve better performance than
separate learning.

• We propose SA2C to calculate the advantage of a positive ac-
tion. This advantage can be seen as a normalized Q-value and
is further utilized to re-weight the supervised component.

• We integrate the proposed SNQN and SA2C with four state-
of-the-art recommendation models and conduct experiments
on two real-world e-commerce datasets. Experimental results
demonstrate the proposed methods are effective in improv-
ing the performance of RS compared to existing methods.

2 RELATEDWORK
Early next-item recommendation models were based on the utiliza-
tion of Markov Chains [3, 8, 30] and factorization methods [10, 28],
which are limited in model expressiveness for complex sequential
signals [39, 45]. Recently, plenty of deep learning-based approaches
have been proposed. Both recurrent neural networks (RNN) and
convolutional neural networks (CNN) have shown promising re-
sults to model the sequence [9, 39, 45]. Transformer architectures
have been proven to be highly successful [41] for language model-
ing tasks, and the use of self-attention for recommendations has
also received a lot of attention [17].

RL has been previously applied in RS. Chen et al. [1] proposed
to calculate a propensity score to perform off-policy correction for
off-policy learning. However, the estimation of propensity scores
has high variance and there are tricks like smoothing or clipping
to train the model (we discuss this in section 4). Model-based RL
approaches [2, 33, 47] attempt to eliminate the off-policy issue by
building a model to simulate the environment. The policy can then
be trained through interactions with the simulator. However, two-
stage approaches depend heavily on the accuracy of the simulator.
Although related methods, such as generative adversarial networks
(GANs) [6], achieve good performance when generating content
like images and speeches, simulating users’ responses is a much
more complex and difficult task [2].

Recently, Xin et al. [43] proposed self-supervised reinforcement
learning for RS. Two learning frameworks SQN and SAC are sug-
gested. SQN augments the recommendation model with two heads.

One is defined on the supervised mode and the other RL head is
based on the Q-learning for positive reward actions. SQN co-trains
the supervised loss and RL loss to conduct transfer learning be-
tween each other [43]. In this way long term rewards e.g. a purchase
at the end of a session can be incorporated into the learning process,
while the model is still trained efficiently on logged data. As the
computed Q-values are an estimation of the goodness of the actions,
SAC further utilizes these Q-values to re-weight the supervised part.
SQN and SAC can be seen as attempts to utilize a Q-learning based
RL estimator to “reinforce” existing sequential (or session-based)
supervised recommendation models [43] and achieve promising
results on off-line evaluation metrics.

Moreover, research on slate-based recommendation has also been
conducted in [1, 2, 5, 15], where actions are considered to be sets
(slates) of items. This setting leads to an exponentially increased
action space. Finally, bandit algorithms are also reward-driven and
have long-term optimization perspective. However, bandit algo-
rithms assume that taking actions does not affect the state [20],
while actually recommendations do have an effect on user behavior
[32]; hence RL is a more suitable choice for the RS task. Another
related field is imitation learning, where the policy is learned from
expert demonstrations [11, 12, 27, 40].

3 METHOD
3.1 Next-Item Recommendation Formulation
Let I denote the item set, then a user-item interaction sequence3
can be represented as 𝑥1:𝑡 = {𝑥1, 𝑥2, ..., 𝑥𝑡−1, 𝑥𝑡 }, where 𝑥𝑖 ∈ I(0 <

𝑖 ≤ 𝑡) denotes the interacted item at timestamp 𝑖 . The task of next-
item recommendation is to recommend the most relevant item 𝑥𝑡+1
to the user, given the sequence of 𝑥1:𝑡 .

From the conventional supervised learning perspective, this task
can be regarded as a multi-class classification problem. A common
solution is to build a recommendation model whose output is the
classification logits y𝑡+1 = [𝑦1, 𝑦2, ...𝑦𝑛] ∈ R𝑛 , where 𝑛 is the num-
ber of candidate items. Each candidate item corresponds to a class.
Then the recommendation list for timestamp 𝑡 + 1 can be generated
by choosing top-𝑘 items according to y𝑡+1. Typically one can use
a generative sequential model 𝐺 (·) to encode the input sequence
into a hidden state s𝑡 as s𝑡 = 𝐺 (𝑥1:𝑡). Generally speaking, plenty
of deep-learning based models [9, 17, 39, 45] can serve as the gen-
erative model𝐺 (·). After that, a decoder can be utilized to map the
hidden state to the classification logits as y𝑡+1 = 𝑓 (s𝑡). It is usually
defined as a simple fully connected layer or the inner product with
candidate item embeddings [9, 17, 39, 45]. Finally, the whole model
(agents) can be trained by optimizing the supervised cross-entropy
loss based on the classification logits.

3.2 Reinforcement Learning Setup
From the perspective of RL, the next item recommendation task
can be formulated as a Markov Decision Process (MDP) [34], in
which the recommendation agent interacts with the environments
E (users) by sequentially recommending items to maximize the

3In the real-world scenario, there may be different kinds of interactions. For instance,
in e-commerce, the interactions can be clicks, purchases, add to basket and so on. In
video platforms, the interactions can be characterized by the watching time of a video.

discounted cumulative rewards. The MDP can be defined by tuples
of (S,A, P, 𝑅, 𝜌0, 𝛾) [1, 2, 43] where

• S: a continuous state space to describe the user state. If we
reuse the hidden state of the supervised sequential model
discussed in section 3.1, the state of a user at timestamp 𝑡

can be represented as s𝑡 = 𝐺 (𝑥1:𝑡) ∈ S (𝑡 > 0).
• A: a discrete action space which contains candidate items.
The action 𝑎 of the agent is to recommend the selected item.
In off-line training data, we can get the positive action at
timestamp 𝑡 from the input sequence (i.e., 𝑎+𝑡 = 𝑥𝑡+1 (𝑡 ≥ 0)).

• P: S × A × S → R is the state transition probability. When
learning from off-line data, we can make an assumption that
only positive actions can affect the user state. In other words,
taking a negative (unobserved) action doesn’t update the
user state [15, 46].

• 𝑅: S ×A → R is the reward function, where 𝑟 (s, 𝑎) denotes
the immediate reward by taking action 𝑎 at state s. The
flexible reward scheme allows the agent to optimize the
recommendation models towards expectations that are not
captured by simple supervised loss functions.

• 𝜌0 is the initial state distribution with s0 ∼ 𝜌0.
• 𝛾 is the discount factor for future rewards.

The goal of RL is to seek a target policy 𝜋\ (𝑎 |s) so that sampling tra-
jectories according to 𝜋\ (𝑎 |s), would lead to themaximum expected
cumulative reward:

max
𝜋\
E𝜏∼𝜋\ [𝑅(𝜏)], where 𝑅(𝜏) =

|𝜏 |∑
𝑡=0

𝛾𝑡𝑟 (s𝑡 , 𝑎𝑡), (1)

where \ ∈ R𝑑 denotes policy parameters. Note that the expectation
is taken over trajectories 𝜏 = (s0, 𝑎0, s1, ...), which are obtained by
performing actions according to the target policy.

In on-line RL environments like game control, it’s easy to sam-
ple the trajectories 𝜏 ∼ 𝜋\ and the agent is trained through an
“error-and-correction” approach. However, under the RS setting,
we cannot afford to make “errors” (i.e. letting the user interact with
under-trained policies) due to the negative impact on the user expe-
rience. Even if we can split a small portion of traffic to make the RL
agent interact with live users, the final recommended items may
still be controlled by other recommenders with different policies,
since many recommendation models are deployed in a real-live
RS. As a result, the sampled trajectories will come from another
behavior policy 𝜏 ∼ 𝛽 . Off-policy learning is still a difficult research
problem due to high variance and distribution mismatch [1, 25].
Although some value-based RL algorithms like Q-learning [36] use
a replay buffer to reuse past experience, they need the data dis-
tribution of the replay buffer to be similar with the target policy
𝜋\ [4]. Moreover, value-based algorithms are actually regression-
based methods, which don’t perform well in ranking-oriented RS
problems, as shown in [43]. In what follows, we will illustrate the
detail of our proposition to use RL for RS by introducing negative
sampling into RL, and then combine RL with supervised learning
for more efficient off-line learning.

3.3 Supervised Negative Q-learning
Given an input user-item interaction sequence 𝑥1:𝑡 and an existing
recommendation model 𝐺 (·), the supervised training loss can be

x0 x1 x2 x3 x4 xt−1 xt

hidden state st

....

y0 y1 yn

Cross-Entropy Loss

....

f(st) Q(st, a
+

t)

TD error updates+

Q(st, a
−

t)

....

(a) SNQN architecture.
x0 x1 x2 x3 x4 xt−1 xt

hidden state st

....

y0 y1 yn

CE × A(st, a
+

t)

....

f(st) Q(st, a
+

t)

TD error updates+

actor

stop gradient

critic

Q(st, at)−

A(st, a
+

t)

....

(b) SA2C architecture. CE is short for cross-entropy.

Figure 1: The learning framework architectures of SNQN and SA2C.

defined as the cross-entropy over the classification distribution:

𝐿𝑠 = −
𝑛∑
𝑖=1

𝑌𝑖𝑙𝑜𝑔(𝑝𝑖),where 𝑝𝑖 =
𝑒𝑦𝑖∑𝑛

𝑖′=1 𝑒
𝑦𝑖′

. (2)

𝑌𝑖 is an indicator function which is defined as 𝑌𝑖 = 1 if the user in-
teracted with the 𝑖-th item in the next timestamp. Otherwise, 𝑌𝑖 = 0.
It’s obvious that the cross-entropy loss will push the positive logits
to high values. Meanwhile, the cross-entropy loss can also provide
negative learning signals by pushing down the output values of
items that the user has not interacted with. This is particularly
helpful in a RS setting where ranking items which are likely to be
interacted by the user in the top-𝑘 positions is the main goal.

Since𝐺 (·) already encodes the input sequence into a latent state
s𝑡 , we can directly reuse this s𝑡 as the state for the RL training.
This sharing schema of the base model enables the transfer of
knowledge between supervised learning and RL. Upon the shared
base model 𝐺 (·), we formulate another output layer to map the
state into Q-values:

𝑄 (s𝑡 , 𝑎𝑡) = 𝛿 (s𝑡h𝑇𝑡 + 𝑏) = 𝛿 (𝐺 (𝑥1:𝑡)h𝑇𝑡 + 𝑏), (3)

where 𝛿 denotes the activation function, h𝑡 and 𝑏 are trainable
parameters of the Q-learning output layer.

When learning from logged implicit feedback data, it’s often the
case that there are no negative reward signals [14, 29]. Performing
Q-learning solely based on positive reward signals (clicks, views,
etc.), where the negative interaction signals are not provided, would
lead to a model with a positive bias. As a result, such output Q-
values based on only observed (positive) actions cannot be used for
generating recommendation. To address this issue, we propose to
introduce a negative reward sampling strategy for the RL training
procedure. More precisely, the Q-learning loss function of SNQN is
defined not only on positive action rewards but also on the sampled
negative ones. To this end, we define the one-step time difference

(TD) Q-loss of SNQN as:

𝐿𝑞 = (𝑟 (s𝑡 , 𝑎+𝑡) + 𝛾 max
𝑎′

𝑄 (s𝑡+1, 𝑎′) −𝑄 (s𝑡 , 𝑎+𝑡))2︸ ︷︷ ︸
𝐿𝑝 : positive TD error

+
∑

𝑎−𝑡 ∈𝑁𝑡

(𝑟 (s𝑡 , 𝑎−𝑡) + 𝛾 max
𝑎′

𝑄 (s𝑡 , 𝑎′) −𝑄 (s𝑡 , 𝑎−𝑡))2︸ ︷︷ ︸
𝐿𝑛 : negative TD error

,
(4)

where 𝑎+𝑡 and 𝑎−𝑡 are the positive action and negative action at
timestamp 𝑡 , respectively.𝑁𝑡 denotes the set of sampled unobserved
(negative) actions. Note that in the negative TD error, the maximum
operation is performed in 𝑄 (s𝑡 , 𝑎′) other than 𝑄 (s𝑡+1, 𝑎′) because
we assume that taking negative actions will not affect the user
state as discussed in section 3.2. In our implementation, we assign
a constant reward value 𝑟𝑛 for negative actions (i.e.,𝑟 (s𝑡 , 𝑎−𝑡) = 𝑟𝑛),
while the positive reward 𝑟 (s𝑡 , 𝑎+𝑡) we can define it according to
the specific demands of the recommendation domain. For example,
in e-commerce we can assign a higher reward to actions which
lead to purchases rather than just clicks. We then jointly train the
supervised loss and the RL loss on the replay buffer generated from
the logged implicit feedback data:

𝐿𝑠𝑛𝑞𝑛 = 𝐿𝑠 + 𝐿𝑞 . (5)

Figure 1a shows the architecture of SNQN.We use double Q-learning
for better learning stability [7] and alternately train two copies of
model parameters. The detail training procedure of SNQN can be
found in Algorithm 1 in the appendix.

3.4 Supervised Advantage Actor-Critic
Actor-Critic (AC) methods have been successfully used in the RL
research area. The key idea of AC methods is the introduction of a
critic that evaluates the goodness of an action taken and assigns
higher weights to actions with high cumulative rewards. In the
proposed SNQN method, the supervised component can be seen
as the actor which aims at imitating the logged user behavior. A
simple solution for the critic is to use the output Q-values from the

RL head, as these Q-values measure the cumulative rewards the
system gains given the state-action pair. However, these Q-values
are sensitive to the specific timestamp of the sequence. For example,
a bad action in an early timestamp of a long sequence could also
have a high Q-value since Q-values are based on the cumulative
gains of all the following actions in this sequence.

Instead of the absolute Q-value, what we actually would like to
measure is how much “advantage” we obtain by applying an action,
compared to the average case (i.e. average Q-values). This advan-
tage can help us alleviate the bias introduced from the sequence
timestamp. However, calculating the average Q-values along the
whole action space would introduce additional computation cost,
especially when the candidate item set is large. For this reason, we
have introduced negative samples in the proposed SNQN methods.
As a result, a concise solution is to calculate the average among the
sampled actions (including both positive and negative examples) as
an approximation. Based on this motivation, the average Q-values
can be defined as:

𝑄 (s𝑡 , 𝑎) =
∑
𝑎′∈𝑎+𝑡 ∩𝑁𝑡

𝑄 (s𝑡 , 𝑎′)
|𝑁𝑡 | + 1

. (6)

The advantage of an observed (positive) action is formulated as:

𝐴(s𝑡 , 𝑎+𝑡) = 𝑄 (s𝑡 , 𝑎+𝑡) −𝑄 (s𝑡 , 𝑎) . (7)

We can then use this advantage to re-weight the actor (i.e. the
supervised head). If a positive action has higher advantage over the
average, we increase its weight in the supervised training procedure,
and vice versa.

To enhance stability, we stop the gradient flow and fix the Q-
values when they are used to calculate the average and advantage.
We then train the actor and critic jointly. The training loss of SA2C
is formulated as:

𝐿𝑠𝑎2𝑐 = 𝐿𝑎 + 𝐿𝑞, where 𝐿𝑎 = 𝐿𝑠 · 𝐴(s𝑡 , 𝑎+𝑡) . (8)

Figure 1b illustrates the architecture of SA2C. During the training
procedure, the learning of Q-values can be unstable [26], particu-
larly in the early stage. To mitigate these issues, we pre-train the
model using SNQN in the first𝑇 training steps (batches). When the
Q-values become more stable, we start to use the advantage to re-
weight the actor and perform updates according to the architecture
of Figure 1b. We use double Q-learning and the training procedure
of SA2C is similar to Algorithm 1 except for the computation of
advantage and the re-weighting of 𝐿𝑠 .

3.5 Discussion
We provide a brief discussion about the connections between our
algorithms and some related methods.

By assigning a negative reward 𝑟𝑛 to unobserved actions, SNQN
explicitly introduces negative action signals in the RL head. As a
result, both the supervised head and the RL head of SNQN can be
used to generate recommendations4. Compared to SQN, which can
only use the supervised head to generate recommendation, SNQN
provides amore flexible choice to switch between the two heads. For
example, if we want the agent to imitate more the logged user data,
we can use the supervised head. On the contrary, if we want the
RS to be more reward-driven, we can use the RL head. Moreover,
4Recommendation can be generated from the RL head by selecting highest Q-values.

Reddy et al. [27] has shown that imitation learning through ex-
pert demonstrations can be achieved with promising performance,
by assigning a constant positive reward for matching the demon-
strated actions and a constant negative reward for other behaviors.
From that perspective, the introduced negative sampling strategy
of SNQN makes the RL component a good imitation learning agent.

A related work to SA2C is [1], in which the authors propose
the use of an off-policy corrected policy-gradient method. Policy-
gradient uses the cumulative reward to re-weight the cross-entropy
loss. However, it’s a Monte Carlo (MC)-based method which needs
the interaction session to end first and then calculate the cumula-
tive rewards at each timestamp. In contrast, SA2C calculates the
advantage of an action through the RL output layer, which is a
more fine-grained estimate of the value of a potential action during
the session. Furthermore, the cumulative reward can also introduce
bias from the sequence timestamp, while the advantage estimates
in SA2C can be seen as normalized Q-values which help to alleviate
this influence. The effect of off-policy correction will be discussed
in the experimental section.

4 EXPERIMENTS
In this section, we report experiments 5 on two real-world datasets
to evaluate the proposed SNQN and SA2C in the e-commerce sce-
nario. Both datasets contain click and purchase interactions. We use
the supervised head to generate recommendations without special
mention. We address the following research questions:

RQ1: How do the proposed methods perform when integrated
with different base models?

RQ2What is the performance if we use the Q-leaning head to
generate recommendation?

RQ3: What is the performance if we introduce an additional
off-policy correction term in the actor of SA2C?

RQ4: How does the negative sampling strategy affect the per-
formance?

4.1 Experimental Settings
4.1.1 Datasets. We conduct experiments with two publicly acces-
sible session-based recommendation datasets: RC156 and Retail-
Rocket7. The description of datasets can be found in the appendix.

4.1.2 Evaluation protocols. We adopt cross-validation to evaluate
the performance of the proposed methods. The ratio of training,
validation, and test set is 8:1:1. We randomly sample 80% of se-
quences as the training set. For validation and test, the evaluation
is done by providing the events (i.e., interacted items) of a sequence
one-by-one and then checking the rank of the ground-truth item
for the next timestamp. The ranking is performed among the whole
item set. Each experiment is repeated five times, and the average
performance is reported.

The recommendation quality is measured with two metrics: Hit
Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG).
HR@𝑘 is a recall-based metric, measuring whether the ground-
truth item is in the top-𝑘 positions of the recommendation list. We

5The implementation code and data can be found at https://drive.google.com/file/d/
185KB520pBLgwmiuEe7JO78kUwUL_F45t/view?usp=sharing
6https://recsys.acm.org/recsys15/challenge/
7https://www.kaggle.com/retailrocket/ecommerce-dataset

https://drive.google.com/file/d/185KB520pBLgwmiuEe7JO78kUwUL_F45t/view?usp=sharing
https://drive.google.com/file/d/185KB520pBLgwmiuEe7JO78kUwUL_F45t/view?usp=sharing
https://recsys.acm.org/recsys15/challenge/
https://www.kaggle.com/retailrocket/ecommerce-dataset

can define HR for clicks as:

HR(click) =
#hits among clicks

#clicks in test
. (9)

HR(purchase) is defined similarly with HR(click) by replacing the
clicks with purchases. NDCG is a rank sensitive metric which assign
higher scores to top positions in the recommendation list [16].

Since our experiments focus on the e-commerce scenario, which
aims to promote purchases, for evaluation purposes we assign a
higher reward to actions leading to purchases (i.e. conversions)
compared to actions leading to only clicks. If a recommended item
is not interacted by the user, we give this action a zero reward. As
a result, the cumulative reward for evaluation is proportional to
HR. For example, a higher HR(purchase) means a larger portion
of recommended items would lead to purchase reward, and thus
a higher cumulative reward on purchases. For simplicity, we only
report the results with HR. The results for cumulative reward show
almost same trend as HR.

4.1.3 Baselines. We integrated the proposed SNQN and SA2C with
four state-of-the-art sequential recommendation models: GRU [9],
Caser [39], NItNet [45], and SASRec [17]. The detail description of
baselines and parameter settings can be found in the appendix.

4.2 Performance Comparison (RQ1)
Table 1 shows the performance of top-𝑘 recommendations on RC15.
The results on RetailRocket are illustrated in the appendix. We can
have the following observations:

(1) On both datasets, the proposed SNQN achieves better per-
formance than the supervised base model and SQN, on both click
and purchase recommendations. This demonstrates that the intro-
duced negative sampling strategy on the RL head does improve
the learning performance also on the supervised component. This
can be attributed to the shared recommendation model 𝐺 (·) be-
tween the supervised part and the RL part. We also observe that
SNQN achieves faster convergence than SQN. Figure 2 shows the
comparison between model convergence under the same learning
rate on the validation set of RC15, using GRU as the base model
𝐺 (·). Results on RetailRocket and other base models lead to the
same conclusion. This further demonstrates that the introduced
negative sampling helps the model to learn faster and improves its
performance.

(2) SA2C achieves better performance than SAC in most cases.
This indicates that the advantage estimate used in SA2C is a more
effective critic compared with the raw Q-values used in SAC. This
can be attributed to the fact that the advantage estimation helps to
alleviate the sequence timestamp bias. (3) SA2C always achieves the
highest NDCG, which suggests that SA2C is more effective in push-
ing good actions (recommended items) to top ranking positions.
This is due to the fact that positive actions are weighted (advan-
taged) in a more effective manner during the training procedure of
SA2C.

To conclude, the proposed SNQN and SA2C introduce signifi-
cant improvements compared to existing methods, especially SA2C
which provides the best performance in most cases.

2,000 5,000 10,000 15,000 20,000 25,000

0.24

0.26

0.28

0.3

0.32

training steps

N
D
C
G
@
5

SQN SNQN

(a) Purchase predictions

2,000 5,000 10,000 15,000 20,000 25,000

0.16

0.18

0.2

0.22

training steps

N
D
C
G
@
5

SQN SNQN

(b) Click predictions

Figure 2: Model convergence comparison on RC15

4.3 Recommendation from Q-learning (RQ2)
Table 2 shows the performance comparison when we use the Q-
learning head to generate recommendations. We compare the per-
formance of SNQN with a simple double Q-learning (DQN) algo-
rithm with the same negative sampling strategy but without a
supervised head upon the base model. The performance of SA2C
is not significantly different with SNQN as the two methods are
essentially identical with regards to the Q-learning head. We use
the same base model GRU and the same hyper-parameters for DQN
and SNQN. Results on the other base models show identical trends.
We observe that SNQN achieves better performance than DQN in
all evaluation metrics on both purchase and click predictions. Com-
bined with the results of Table 1 and Table 6, we observe that joint
training of supervised learning and RL with shared base models
helps to improve the performance of each component. Based on
this finding, we believe that transfer learning between supervised
learning and RL would be a promising research direction. RL makes
supervised models to be more reward-driven, while supervised
learning improves the data efficiency of RL.

4.4 Effect of Off-Policy Correction (RQ3)
Chen et al. [1] introduced an off-policy correction term (propensity
score) for the policy-gradient method. The propensity score is de-
fined as 𝜌 =

𝜋\ (𝑎 |s)
𝛽 (𝑎 |s) . In this subsection, we investigate the effect of

this propensity score when introduced into the actor component of
SA2C. In that case, the training loss of the actor becomes:

𝐿𝑎−𝑜 𝑓 𝑓 = 𝐿𝑠 · 𝐴(s𝑡 , 𝑎+𝑡) · 𝜌. (10)

We also introduce another NDCG-based off-policy corrected evalu-
ation metric [42] which is formulated as

𝑁𝐺𝑜 𝑓 𝑓 =

∑ 𝑁𝐷𝐶𝐺
𝛽∑ 1
𝛽

. (11)

In this implementation, we use the item frequency to approximate
the behavior policy 𝛽 , which is also adopted in [38]. Table 3 shows
the result when generating top-10 recommendations with GRU as
the base model. Results on the other base models lead to the same
conclusion. We note the following observations:

(1) On the standard evaluation metric NDCG, off-policy cor-
rection doesn’t improve the score. The reason for this is that the
normal NDCG is actually defined on non-corrected data, so the
non-corrected actor performs better at this evaluation metric.

Table 1: Top-𝑘 recommendation performance comparison of different models (𝑘 = 5, 10, 20) on RC15 dataset. Recom-
mendations are generated from the supervised head. NG is short for NDCG. Boldface denotes the highest score.

Models purchase click

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20 HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

GRU 0.3994 0.2824 0.5183 0.3204 0.6067 0.3429 0.2876 0.1982 0.3793 0.2279 0.4581 0.2478
GRU-SQN 0.4228 0.3016 0.5333 0.3376 0.6233 0.3605 0.3020 0.2093 0.3946 0.2394 0.4741 0.2587
GRU-SNQN 0.4368 0.3115 0.5428 0.3460 0.6316 0.3686 0.3124 0.2164 0.4067 0.2469 0.4856 0.2669
GRU-SAC 0.4394 0.3154 0.5525 0.3521 0.6378 0.3739 0.2863 0.1985 0.3764 0.2277 0.4541 0.2474
GRU-SA2C 0.4514 0.3297 0.5606 0.3652 0.6420 0.3859 0.3287 0.2307 0.4214 0.2606 0.5000 0.2806
Caser 0.4475 0.3211 0.5559 0.3565 0.6393 0.3775 0.2728 0.1896 0.3593 0.2177 0.4371 0.2372
Caser-SQN 0.4553 0.3302 0.5637 0.3653 0.6417 0.3862 0.2742 0.1909 0.3613 0.2192 0.4381 0.2386
Caser-SNQN 0.4781 0.3460 0.5876 0.3816 0.6657 0.4015 0.2800 0.1951 0.3682 0.2237 0.4465 0.2436
Caser-SAC 0.4866 0.3527 0.5914 0.3868 0.6689 0.4065 0.2726 0.1894 0.3580 0.2171 0.4340 0.2362
Caser-SA2C 0.4917 0.3635 0.6000 0.3989 0.6796 0.4192 0.2948 0.2068 0.3835 0.2356 0.4596 0.2549
NItNet 0.3632 0.2547 0.4716 0.2900 0.5558 0.3114 0.2950 0.2030 0.3885 0.2332 0.4684 0.2535
NItNet-SQN 0.3845 0.2736 0.4945 0.3094 0.5766 0.3302 0.3091 0.2137 0.4037 0.2442 0.4835 0.2645
NItNet-SNQN 0.3969 0.2803 0.5039 0.3152 0.5876 0.3363 0.3153 0.2176 0.4098 0.2482 0.4896 0.2686
NItNet-SAC 0.3914 0.2813 0.4964 0.3155 0.5763 0.3357 0.2977 0.2055 0.3906 0.2357 0.4693 0.2557
NItNet-SA2C 0.4382 0.3171 0.5403 0.3505 0.6259 0.3722 0.3410 0.2395 0.4348 0.2699 0.5113 0.2897
SASRec 0.4228 0.2938 0.5418 0.3326 0.6329 0.3558 0.3187 0.2200 0.4164 0.2515 0.4974 0.2720
SASRec-SQN 0.4336 0.3067 0.5505 0.3435 0.6442 0.3674 0.3272 0.2263 0.4255 0.2580 0.5066 0.2786
SASRec-SNQN 0.4435 0.3163 0.5581 0.3535 0.6450 0.3742 0.3284 0.2267 0.4271 0.2588 0.5083 0.2794
SASRec-SAC 0.4540 0.3246 0.5701 0.3623 0.6576 0.3846 0.3130 0.2161 0.4114 0.2480 0.4945 0.2691
SASRec-SA2C 0.4705 0.3385 0.5756 0.3728 0.6648 0.3956 0.3444 0.2407 0.4402 0.2719 0.5194 0.2920

1 5 10 15 20
0.420

0.425

0.430

0.435

0.440

negative examples

H
R
@
5

0.300

0.305

0.310

0.315

0.320

N
D
C
G
@
5

(a) SNQN for purchase

1 5 10 15 20
0.300

0.305

0.310

0.315

negative examples

H
R
@
5

0.210

0.212

0.214

0.216

0.218

N
D
C
G
@
5

(b) SNQN for click

1 5 10 15 20
0.450

0.455

0.460

0.465

0.470

negative examples

H
R
@
5

0.325

0.330

0.335

0.340

0.345

N
D
C
G
@
5

(c) SA2C for purchase

1 5 10 15 20
0.328

0.329

0.330

0.331

0.332

negative examples

H
R
@
5

0.228

0.230

0.232

0.234

N
D
C
G
@
5

(d) SA2C for click

Figure 3: Effect of number of negative samples on RC15

1 5 10 15 20
0.510

0.515

0.520

0.525

negative examples

H
R
@
5

0.425

0.430

0.435

0.440

N
D
C
G
@
5

(a) SNQN for purchase

1 5 10 15 20

0.255

0.260

0.265

0.270

negative examples

H
R
@
5

0.198

0.200

0.202

0.204

0.206

0.208

N
D
C
G
@
5

(b) SNQN for click

1 5 10 15 20
0.530

0.540

0.550

0.560

negative examples

H
R
@
5

0.460

0.470

0.480

0.490

N
D
C
G
@
5

(c) SA2C for purchase

1 5 10 15 20
0.270

0.272

0.274

0.276

negative examples

H
R
@
5

0.212

0.214

0.216

0.218

N
D
C
G
@
5

(d) SA2C for click

Figure 4: Effect of number of negative samples on RetailRocket

(2) On 𝑁𝐺𝑜 𝑓 𝑓 , the off-policy correction helps the model to
achieve better performance for click predictions but not for pur-
chases. The reason for this is that clicks account for the biggest
part of the dataset. Hence the off-policy correction term is actually

better defined to correct the click data, leading to a better perfor-
mance of 𝑁𝐺𝑜 𝑓 𝑓 for clicks, while the high variance of the off-policy
correction for the small portion of purchase data leads to less of an
improvement. This observation indicates that perhaps we should
design different corrections for different kinds of interactions.

Table 2: Recommendation from the RL head. Bold-
face denotes the highest score. DQN denotes only a Q-
learning head is used without the supervised head.

Methods purchase click

HR@5 NG@5 HR@5 NG@5

RC15 DQN 0.3642 0.2476 0.2096 0.1353
SNQN 0.3698 0.2497 0.2286 0.1495

Retail
Rocket

DQN 0.2952 0.2204 0.1368 0.0961
SNQN 0.3124 0.2422 0.1546 0.1103

Table 3: Effect of off-policy correction. w/omeanswith-
out off-policy correction in the actor while w means
the opposite. Boldface denotes the highest score.

Methods purchase click

NDCG 𝑁𝐺𝑜 𝑓 𝑓 NDCG 𝑁𝐺𝑜 𝑓 𝑓

RC15 w/o 0.3652 0.1077 0.2606 0.0767
w 0.3551 0.1064 0.2595 0.0781

Retail
Rocket

w/o 0.4897 0.2171 0.2308 0.0861
w 0.4771 0.2147 0.2238 0.0872

In our experiment, we found that computing the off-policy correc-
tion term involves a lot of normalization techniques (e.g., clipping
and smoothing) [1]. The behavior policy 𝛽 can also be a long-tail dis-
tribution [38]. This introduces substantial noise and high variance
into the training procedure. Designing more effective and stable
off-policy correction terms remains an open research problem.

4.5 Hyperparameter Study (RQ4)
In this section, we conduct a series of experiments to demonstrate
the effect of negative sampling of the RL component. Figure 3 and
Figure 4 show the recommendation accuracy with different sizes of
negative examples (i.e. |𝑁𝑡 |) on RC15 and RetailRocket, respectively
(the base model is GRU). Here, it is made evident that, on both
click and purchase predictions, the recommendation performance
initially increases and then decreases (except in Figure 3c). When
more negative actions are introduced, the model has more data
to learn from. By introducing negative actions, the model does
not only learn that actions leading to purchases are better than
actions leading to clicks, but also learns to draw a contrast between
negative (uninteracted) and positive actions. Increasing the sample
size means that the model can have access to more diverse negative
signals and, thus, leads to better performance. However, a very
large negative sample size may bias the model to negative values
and degrade performance. Regarding Figure 3c, we observe that
the model also achieves a good performance with small sample
sizes. The reason could be attributed to that a small sample size
would introduce more noise into estimation of the advantage. This
noise may help the model to find a better local optimal with higher
performance but also requires more update steps to converge. We
have observed in our experiments that SA2C needs more iterations
to converge when the sample size is small.

Table 4: Effect of negative rewards settings on RC15.

𝑟𝑛
purchase click

HR@5 NG@5 HR@5 NG@5

SNQN

0 0.4368 0.3115 0.3124 0.2164
-0.5 0.4324 0.3043 0.3118 0.2158
-1.0 0.4345 0.3091 0.3108 0.2160
-2.0 0.4269 0.3072 0.3128 0.2173

SA2C

0 0.4514 0.3297 0.3287 0.2307
-0.5 0.4479 0.3263 0.3326 0.2332
-1.0 0.4486 0.327 0.332 0.2333
-2.0 0.4511 0.3274 0.3321 0.2335

Table 4 shows the effect of different negative reward settings (i.e.,
𝑟𝑛) on RC15 dataset when using GRU as the base model. Results
on RetailRocket lead to same conclusion. Generally speaking, 𝑟𝑛
can be seen as the strength of negative signals. We can see from
Table 4 that different 𝑟𝑛 settings make no significant difference
regarding the recommendation performance. However, through
the performance comparison between SNQN and SQN, we can find
that whether there are negative samples or not in the RL training
procedure will dramatically affect the recommendation accuracy.
This conforms with the finding in [27, 44].

5 CONCLUSION AND FUTUREWORK
In this paper, we propose two learning frameworks (SNQN and
SA2C) to explore the usage of RL under recommendation settings.
SNQN combines supervised learning and RL with the shared base
model and introduces negative sampling into the RL training pro-
cedure. The explicitly introduced negative comparison signals help
the RL output layer to perform good ranking. Based on the sampled
actions, SA2C first computes the advantage of actions which can
be seen as normalized Q-values and then use this advantage esti-
mate as a critic to re-weight the actor. To verify the effectiveness
of our methods, we integrate them into four state-of-the-art recom-
mendation models and conduct experiments on two real-world e-
commerce datasets. Our experimental findings demonstrate that the
proposed SNQN and SA2C are effective in further improving the rec-
ommendation performance, compared to existing self-supervised
RL methods.

Future work will involve online tests and multiple Q-heads with
more kinds of rewards, such as diversity and novelty of recommen-
dation, leading to amulti-objective optimization problem.Moreover,
we are interested in utilizing the supervised component to sam-
ple negative actions for the training phase of the RL head. Finally,
exploring shared base model and the supervised head to select can-
didate actions to address the “extrapolation error” problem [4] of
off-policy RL may also be a promising direction.

Acknowledgements. The funding for Xin Xin was supported
by the Natural Science Foundation of China (62106105, 62102234,
62072279, 61902219, 61972234), the National Key R&D Program
of China (2020YFB1406704), the Key Scientific and Technological
Innovation Program of Shandong Province (2019JZZY010129), the
Natural Science Foundation of Shandong Province (ZR2021QF129),
and the Fundamental Research Funds of Shandong University.

REFERENCES
[1] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and

Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender
system. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining. ACM, 456–464.

[2] Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, and Le Song. 2019.
Generative Adversarial User Model for Reinforcement Learning Based Recom-
mendation System. In International Conference on Machine Learning. 1052–1061.

[3] Chen Cheng, Haiqin Yang, Michael R Lyu, and Irwin King. 2013. Where you
like to go next: Successive point-of-interest recommendation. In Twenty-Third
international joint conference on Artificial Intelligence.

[4] Scott Fujimoto, David Meger, and Doina Precup. 2019. Off-policy deep rein-
forcement learning without exploration. In International Conference on Machine
Learning. 2052–2062.

[5] Yu Gong, Yu Zhu, Lu Duan, Qingwen Liu, Ziyu Guan, Fei Sun, Wenwu Ou, and
Kenny Q Zhu. 2019. Exact-K Recommendation via Maximal Clique Optimization.
arXiv preprint arXiv:1905.07089 (2019).

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[7] Hado V Hasselt. 2010. Double Q-learning. In Advances in Neural Information
Processing Systems. 2613–2621.

[8] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov
chains for sparse sequential recommendation. In 2016 IEEE 16th International
Conference on Data Mining (ICDM). IEEE, 191–200.

[9] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[10] Balázs Hidasi and Domonkos Tikk. 2016. General factorization framework for
context-aware recommendations. Data Mining and Knowledge Discovery 30, 2
(2016), 342–371.

[11] Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning.
In Advances in neural information processing systems. 4565–4573.

[12] Jonathan Ho, Jayesh Gupta, and Stefano Ermon. 2016. Model-free imitation learn-
ing with policy optimization. In International Conference on Machine Learning.
2760–2769.

[13] Yujing Hu, Qing Da, Anxiang Zeng, Yang Yu, and Yinghui Xu. 2018. Reinforce-
ment learning to rank in e-commerce search engine: Formalization, analysis, and
application. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 368–377.

[14] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In 2008 Eighth IEEE International Conference on Data
Mining. Ieee, 263–272.

[15] Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu,
Heng-Tze Cheng, Tushar Chandra, and Craig Boutilier. 2019. SlateQ: A tractable
decomposition for reinforcement learning with recommendation sets. (2019).

[16] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[17] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197–206.

[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[19] Jens Kober, J Andrew Bagnell, and Jan Peters. 2013. Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research 32, 11 (2013),
1238–1274.

[20] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-
bandit approach to personalized news article recommendation. In Proceedings of
the 19th international conference on World wide web. ACM, 661–670.

[21] Xiao Lin, Hongjie Chen, Changhua Pei, Fei Sun, Xuanji Xiao, Hanxiao Sun,
Yongfeng Zhang, Wenwu Ou, and Peng Jiang. 2019. A pareto-efficient algo-
rithm for multiple objective optimization in e-commerce recommendation. In
Proceedings of the 13th ACM Conference on Recommender Systems. 20–28.

[22] Yougang Lyu, ZihanWang, Zhaochun Ren, Pengjie Ren, ZhuminChen, Xiaozhong
Liu, Yujun Li, Hongsong Li, and Hongye Song. 2022. Improving legal judgment
prediction through reinforced criminal element extraction. Information Processing
& Management 59, 1 (2022), 102780.

[23] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[25] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. 2016. Safe
and efficient off-policy reinforcement learning. In Advances in Neural Information

Processing Systems. 1054–1062.
[26] Emilio Parisotto, H Francis Song, Jack W Rae, Razvan Pascanu, Caglar Gulcehre,

Siddhant M Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark,
Seb Noury, et al. 2019. Stabilizing Transformers for Reinforcement Learning.
arXiv preprint arXiv:1910.06764 (2019).

[27] Siddharth Reddy, Anca D Dragan, and Sergey Levine. 2019. SQIL: Imita-
tion learning via reinforcement learning with sparse rewards. arXiv preprint
arXiv:1905.11108 (2019).

[28] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International Confer-
ence on Data Mining. IEEE, 995–1000.

[29] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press,
452–461.

[30] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalizedmarkov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. ACM, 811–820.

[31] Marco Tulio Ribeiro, Nivio Ziviani, Edleno Silva De Moura, Itamar Hata, Anisio
Lacerda, and Adriano Veloso. 2014. Multiobjective pareto-efficient approaches for
recommender systems. ACM Transactions on Intelligent Systems and Technology
(TIST) 5, 4 (2014), 1–20.

[32] David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile, and Alexandros
Karatzoglou. 2018. RecoGym: A Reinforcement Learning Environment for the
problem of Product Recommendation in Online Advertising. arXiv preprint
arXiv:1808.00720 (2018).

[33] Wenjie Shang, Yang Yu, Qingyang Li, Zhiwei Qin, Yiping Meng, and Jieping
Ye. 2019. Environment Reconstruction with Hidden Confounders for Reinforce-
ment Learning based Recommendation. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM, 566–576.

[34] Guy Shani, David Heckerman, and Ronen I Brafman. 2005. An MDP-based
recommender system. Journal of Machine Learning Research 6, Sep (2005), 1265–
1295.

[35] Jing-Cheng Shi, Yang Yu, Qing Da, Shi-Yong Chen, and An-Xiang Zeng. 2019.
Virtual-taobao: Virtualizing real-world online retail environment for reinforce-
ment learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 4902–4909.

[36] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484.

[37] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. 2020. Curl: Contrastive
unsupervised representations for reinforcement learning. arXiv preprint
arXiv:2004.04136 (2020).

[38] Alex Strehl, John Langford, Lihong Li, and Sham M. Kakade. 2010. Learning from
Logged Implicit Exploration Data. In NIPS.

[39] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-
tion via convolutional sequence embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining. ACM, 565–573.

[40] Faraz Torabi, Garrett Warnell, and Peter Stone. 2018. Behavioral cloning from
observation. arXiv preprint arXiv:1805.01954 (2018).

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[42] Nikos Vlassis, Aurélien Bibaut, Maria Dimakopoulou, and Tony Jebara. 2019. On
the Design of Estimators for Bandit Off-Policy Evaluation. In ICML.

[43] Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, and JoemonM Jose. 2020. Self-
Supervised Reinforcement Learning for Recommender Systems. SIGIR (2020).

[44] Xin Xin, Fajie Yuan, Xiangnan He, and Joemon M. Jose. 2018. Batch IS NOT
Heavy: Learning Word Representations From All Samples. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Linguistics, Melbourne, Australia,
1853–1862. https://doi.org/10.18653/v1/P18-1172

[45] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xi-
angnan He. 2019. A Simple Convolutional Generative Network for Next Item
Recommendation. In Proceedings of the Twelfth ACM International Conference on
Web Search and Data Mining. ACM, 582–590.

[46] Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin.
2018. Recommendations with negative feedback via pairwise deep reinforcement
learning. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 1040–1048.

[47] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin.
2019. Reinforcement Learning to Optimize Long-term User Engagement in
Recommender Systems. arXiv preprint arXiv:1902.05570 (2019).

https://doi.org/10.18653/v1/P18-1172

A APPENDIX
A.1 Training Procedure of SNQN
Algorithm 1 describes the training detail of SNQN.

Algorithm 1 Training procedure of SNQN
Input: user-item interaction sequence set X, recommendation

model 𝐺 (·), reinforcement head 𝑄 (·), supervised head 𝑓 (·),
pre-defined reward function 𝑟 (s, 𝑎)

Output: all parameters in the learning space Θ
1: Initialize all trainable parameters
2: Create 𝐺 ′(·) and 𝑄 ′(·) as copies of 𝐺 (·) and 𝑄 (·), respectively
3: repeat
4: Draw a mini-batch of (𝑥1:𝑡 , 𝑎+𝑡) from X
5: Draw negative actions set 𝑁𝑡 for 𝑥1:𝑡
6: s𝑡 = 𝐺 (𝑥1:𝑡), s′𝑡 = 𝐺 ′(𝑥1:𝑡)
7: s𝑡+1 = 𝐺 (𝑥1:𝑡+1), s′𝑡+1 = 𝐺 ′(𝑥1:𝑡+1)
8: Generate random variable 𝑧 ∈ (0, 1) uniformly
9: if 𝑧 ≤ 0.5 then
10: 𝑎+∗ = argmax𝑎 𝑄 (s𝑡+1, 𝑎), 𝑎−∗ = argmax𝑎 𝑄 (s𝑡 , 𝑎)
11: 𝐿𝑝 = (𝑟 (s𝑡 , 𝑎+𝑡) + 𝛾𝑄 ′(s′

𝑡+1, 𝑎
+
∗) −𝑄 (s𝑡 , 𝑎+𝑡))2

12: 𝐿𝑛 =
∑
𝑎−𝑡 ∈𝑁𝑡

(𝑟 (s𝑡 , 𝑎−𝑡) + 𝛾𝑄 ′(s′𝑡 , 𝑎−∗) −𝑄 (s𝑡 , 𝑎−𝑡))2
13: Calculate 𝐿𝑠 and 𝐿𝑠𝑛𝑞𝑛 = 𝐿𝑠 + 𝐿𝑝 + 𝐿𝑛
14: Perform updates by ∇Θ𝐿𝑠𝑛𝑞𝑛
15: else
16: 𝑎+∗ = argmax𝑎 𝑄 ′(s𝑡+1, 𝑎), 𝑎−∗ = argmax𝑎 𝑄 ′(s𝑡 , 𝑎)
17: 𝐿𝑝 = (𝑟 (s𝑡 , 𝑎+𝑡) + 𝛾𝑄 (s𝑡+1, 𝑎+∗) −𝑄 ′(s′𝑡 , 𝑎+𝑡))2
18: 𝐿𝑛 =

∑
𝑎−𝑡 ∈𝑁𝑡

(𝑟 (s𝑡 , 𝑎−𝑡) + 𝛾𝑄 (s𝑡 , 𝑎−∗) −𝑄 ′(s′𝑡 , 𝑎−𝑡))2
19: Calculate 𝐿𝑠 and 𝐿𝑠𝑛𝑞𝑛 = 𝐿𝑠 + 𝐿𝑝 + 𝐿𝑛
20: Perform updates by ∇Θ𝐿𝑠𝑛𝑞𝑛
21: end if
22: until converge
23: return all parameters in Θ

A.2 Datasets Description
RC15. This is based on the dataset of RecSys Challange 2015. The
dataset is session-based and each session contains a sequence of
clicks and purchases. We remove sessions whose length is smaller
than 3 and then sample a subset of 200k sessions.

RetailRocket. This dataset is collected from a real-world e-
commerce website. It contains session events of viewing and adding
to cart. To keep in line with the RC15 dataset, we treat views as
clicks and adding to cart as purchases. We remove the items which
are interacted less than 3 times and the sequences whose length is
smaller than 3. Table 5 summarizes the statistics of the two datasets.

A.3 Baselines Description
We integrated the proposed SNQN and SA2C with four state-of-
the-art sequential recommendation models:

• GRU [9]: This method utilizes a GRU to model the input
sequences. The final hidden state of the GRU is treated as
the latent representation for the input sequence.

• Caser [39]: This is a recently proposed CNN-based method,
which captures sequential signals by applying convolution
operations on the embedding matrix of previous items.

Table 5: Dataset statistics.

Dataset RC15 RetailRocket

#sequences 200,000 195,523
#items 26,702 70,852
#clicks 1,110,965 1,176,680
#purchase 43,946 57,269

• NItNet [45]: NItNet uses dilated CNN for larger receptive
field and residual connection to increase network depth.

• SASRec [17]: This baseline is based on self-attention and
uses the Transformer [41] architecture. The output of the
Transformer encoder is treated as the latent sequence state.

To further demonstrate the effectiveness of the proposed methods,
we also compare SNQN, SA2C with SQN, SAC[43], respectively.

A.4 Parameter settings
For both datasets, the input sequences are composed of 10 interacted
items. If the sequence length is less than 10, we complement the
sequence with a padding item. We train all models with the Adam
optimizer [18]. The mini-batch size is set as 256. For SNQN, the
learning rate is set as 0.01 on RC15 and 0.005 on RetailRocket,
which is the same setting with SQN [43]. For SA2C, we use the
same learning rate with SNQN at the early pre-training stage. After
that, the learning rate is set as 0.001 on both datasets. For a fair
comparison, we use the basic uniform distribution for the negative
sampling strategy of RL to eliminate influence from the sampler.
The item embedding size is set as 64 for all models. For GRU, the
size of the hidden state is set as 64. For Caser, we use 1 vertical
convolution filter and 16 horizontal filters whose heights are set
from {2,3,4}. The drop-out ratio is set as 0.1. For NextItNet, we use
the published implementation [45] with the predefined settings. For
SASRec, the number of heads in self-attention is set as 1, according
to the original paper [17]. Note that, when SNQN and SA2C are
integrated with a base model, the hyper-parameter setting of the
base model remains exactly unchanged, for a fair comparison.

For the training of SNQN and SA2C, the discount factor 𝛾 is set
as 0.5. The ratio between the click reward (𝑟𝑐) and the purchase
reward (𝑟𝑝) is set as 𝑟𝑝/𝑟𝑐 = 5. These settings are the same as in [43]
for a fair comparison. If without special mention, for one positive
action we sample 10 negative actions in the training procedure. The
reward for negative actions is set as 𝑟𝑛 = 0.

A.5 Performance Comparison on RetailRocket
Table 6 shows the performance of top-𝑘 recommendations on the
RetailRocket dataset.

Table 6: Top-𝑘 recommendation performance comparison of different models (𝑘 = 5, 10, 20) on RetailRocket. Recom-
mendations are generated from the supervised head. NG is short for NDCG. Boldface denotes the highest score.

Models purchase click

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20 HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

GRU 0.4608 0.3834 0.5107 0.3995 0.5564 0.4111 0.2233 0.1735 0.2673 0.1878 0.3082 0.1981
GRU-SQN 0.5069 0.4130 0.5589 0.4289 0.5946 0.4392 0.2487 0.1939 0.2967 0.2094 0.3406 0.2205
GRU-SNQN 0.5232 0.4376 0.5713 0.4544 0.6175 0.4650 0.2662 0.2065 0.3181 0.2233 0.3656 0.2353
GRU-SAC 0.4942 0.4179 0.5464 0.4341 0.5870 0.4428 0.2451 0.1924 0.2930 0.2074 0.3371 0.2186
GRU-SA2C 0.5526 0.4754 0.5963 0.4897 0.6313 0.4985 0.2720 0.2150 0.3208 0.2308 0.3656 0.2422
Caser 0.3491 0.2935 0.3857 0.3053 0.4198 0.3141 0.1966 0.1566 0.2302 0.1675 0.2628 0.1758
Caser-SQN 0.3674 0.3089 0.4050 0.3210 0.4409 0.3301 0.2089 0.1661 0.2454 0.1778 0.2803 0.1867
Caser-SNQN 0.3757 0.3179 0.4181 0.3317 0.4595 0.3422 0.2160 0.1721 0.2530 0.1841 0.2895 0.1934
Caser-SAC 0.3871 0.3234 0.4336 0.3386 0.4763 0.3494 0.2206 0.1732 0.2617 0.1865 0.2999 0.1961
Caser-SA2C 0.3971 0.3446 0.4381 0.3578 0.4733 0.3667 0.2170 0.1759 0.2528 0.1875 0.2873 0.1963
NItNet 0.5630 0.4630 0.6127 0.4792 0.6477 0.4881 0.2495 0.1906 0.2990 0.2067 0.3419 0.2175
NItNet-SQN 0.5895 0.4860 0.6403 0.5026 0.6766 0.5118 0.2610 0.1982 0.3129 0.2150 0.3586 0.2266
NItNet-SNQN 0.6016 0.5062 0.6543 0.5234 0.6921 0.5330 0.2699 0.2065 0.3236 0.2240 0.3703 0.2358
NItNet-SAC 0.5895 0.4985 0.6358 0.5162 0.6657 0.5243 0.2529 0.1964 0.3010 0.2119 0.3458 0.2233
NItNet-SA2C 0.6226 0.5422 0.6573 0.5534 0.6842 0.5603 0.2787 0.2197 0.3271 0.2354 0.3719 0.2468
SASRec 0.5267 0.4298 0.5916 0.4510 0.6341 0.4618 0.2541 0.1931 0.3085 0.2107 0.3570 0.2230
SASRec-SQN 0.5681 0.4617 0.6203 0.4806 0.6619 0.4914 0.2761 0.2104 0.3302 0.2279 0.3803 0.2406
SASRec-SNQN 0.5776 0.4846 0.6310 0.5020 0.6719 0.5123 0.2815 0.2171 0.3381 0.2355 0.3888 0.2483
SASRec-SAC 0.5623 0.4679 0.6127 0.4844 0.6505 0.4940 0.2670 0.2056 0.3208 0.2230 0.3701 0.2355
SASRec-SA2C 0.5929 0.5080 0.6437 0.5246 0.6798 0.5337 0.2873 0.2242 0.3409 0.2416 0.3893 0.2538

	ACM Cover Sheet (AFV).pdf
	257042
	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Next-Item Recommendation Formulation
	3.2 Reinforcement Learning Setup
	3.3 Supervised Negative Q-learning
	3.4 Supervised Advantage Actor-Critic
	3.5 Discussion

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance Comparison (RQ1)
	4.3 Recommendation from Q-learning (RQ2)
	4.4 Effect of Off-Policy Correction (RQ3)
	4.5 Hyperparameter Study (RQ4)

	5 Conclusion and Future Work
	References
	A Appendix
	A.1 Training Procedure of SNQN
	A.2 Datasets Description
	A.3 Baselines Description
	A.4 Parameter settings
	A.5 Performance Comparison on RetailRocket

