
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20

Geo-spatial Information Science

ISSN: 1009-5020 (Print) 1993-5153 (Online) Journal homepage: https://www.tandfonline.com/loi/tgsi20

Road distance and travel time for an improved
house price Kriging predictor

Henry Crosby, Theo Damoulas, Alex Caton, Paul Davis, João Porto de
Albuquerque & Stephen A. Jarvis

To cite this article: Henry Crosby, Theo Damoulas, Alex Caton, Paul Davis, João Porto
de Albuquerque & Stephen A. Jarvis (2018) Road distance and travel time for an improved
house price Kriging predictor, Geo-spatial Information Science, 21:3, 185-194, DOI:
10.1080/10095020.2018.1503775

To link to this article:  https://doi.org/10.1080/10095020.2018.1503775

© 2018 Wuhan University. Published by
Informa UK Limited, trading as Taylor &
Francis Group.

Published online: 21 Sep 2018.

Submit your article to this journal 

Article views: 1861

View related articles 

View Crossmark data

Citing articles: 3 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20
https://www.tandfonline.com/loi/tgsi20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10095020.2018.1503775
https://doi.org/10.1080/10095020.2018.1503775
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2018.1503775
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2018.1503775
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2018.1503775&domain=pdf&date_stamp=2018-09-21
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2018.1503775&domain=pdf&date_stamp=2018-09-21
https://www.tandfonline.com/doi/citedby/10.1080/10095020.2018.1503775#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/10095020.2018.1503775#tabModule


Road distance and travel time for an improved house price Kriging predictor
Henry Crosbya,b, Theo Damoulasb,c, Alex Catona,b, Paul Davisd, João Porto de Albuquerquea,e

and Stephen A. Jarvisa,b

aWarwick Institute for the Science of Cities, University of Warwick, Coventry, UK; bDepartment of Computer Science, University of
Warwick, Coventry, UK; cDepartment of Statistics, University of Warwick, Coventry, UK; dAssured Property Group, Warwick, UK; eCenter
of Interdisciplinary Methodologies, University of Warwick, Coventry, UK

ABSTRACT
The paper designs an automated valuation model to predict the price of residential property
in Coventry, United Kingdom, and achieves this by means of geostatistical Kriging, a popularly
employed distance-based learning method. Unlike traditional applications of distance-based
learning, this papers implements non-Euclidean distance metrics by approximating road
distance, travel time and a linear combination of both, which this paper hypothesizes to be
more related to house prices than straight-line (Euclidean) distance. Given that – to undertake
Kriging – a valid variogram must be produced, this paper exploits the conforming properties
of the Minkowski distance function to approximate a road distance and travel time metric. A
least squares approach is put forth for variogram parameter selection and an ordinary Kriging
predictor is implemented for interpolation. The predictor is then validated with 10-fold cross-
validation and a spatially aware checkerboard hold out method against the almost exclusively
employed, Euclidean metric. Given a comparison of results for each distance metric, this
paper witnesses a goodness of fit (r2) result of 0.6901 ± 0.18 SD for real estate price prediction
compared to the traditional (Euclidean) approach obtaining a suboptimal r2 value of
0.66 ± 0.21 SD.
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1. Introduction

By 2030, investable real estate is expected to have
grown by more than 55%, amounting to a UK resi-
dential market value of £9.145 trillion (IPF 2017).
Consequently, leaders of real estate, policy makers
and everyday home buyers are looking for informa-
tion-driven technological solutions to drive sustain-
able, low-risk decisions in a newly global market
(PwC 2017). In addition, the complex network struc-
tures, unprecedented urban growth and wealth of
available real estate data make (inter)national and
urban residential markets more interesting and acces-
sible than ever before. As such, machine-learning
algorithms, under the name of automated valuation
models (AVMs), exploit these data to reliably under-
stand the value of real estate over large areas where
market behavior may differ significantly. One such
way to model these market behaviors is to utilize the
vast data sources available to a single influential vari-
able which in this case is space.

In view of the above, spatial relationships must be
inferred differently to conventional (nonspatial) sta-
tistical models, most notable by the removal of the
assumption of independent and identically distribu-
ted (IID) random variables. This is due to dependen-
cies between spatial points, known as spatial
autocorrelation (SAC). An occurrence of dependency

structures in spatial data introduces redundancy that
must be taken into account to avoid overestimation
of statistical effects. As such, an experimental vario-
gram is a means of computing spatial dependencies
and continuity (Matheron 1963). Given the experi-
mental variogram and the fact that spatial data have a
stationary covariance, the variance for each omnidir-
ectional pairwise distance h is calculated. Thereafter,
it is usual to fit a parametric model, known as the
fitted variogram, to infer the topic in question using a
regression, most commonly Kriging (Cressie 1988).

Inappropriately, the typical experimental vario-
gram computes each pairwise distance h with a
Euclidean function (also called “as-the-crow-flies”).
The Euclidean function is unrealistic for some (nota-
bly urban) settings which contain complex physical
restrictions and social structures for example road
and path networks, large restricted areas of private
land and legal road restrictions such as speed limits
and one-way systems. This paper hence hypothesizes
that the “actual” space represented in the experimen-
tal (Euclidean) variogram is currently ill-informed.
As such, we implement three new distance metrics
into a set of house price Kriging predictors: (1)
approximate road distance, (2) approximate travel
time and (3) a combination of both.

Probably, the key reason for a small uptake in
distance matrix optimization is due to the fact that

CONTACT Henry Crosby h.j.crosby@warwick.ac.uk

GEO-SPATIAL INFORMATION SCIENCE
2018, VOL. 21, NO. 3, 185–194
https://doi.org/10.1080/10095020.2018.1503775

© 2018 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2018.1503775&domain=pdf


one must ensure a valid positive definite covariance
and conditionally negative definite variogram which
cannot be guaranteed with any non-Euclidean dis-
tance functions (Curriero 2005, 2006). For this rea-
son, nonmetric pairwise road distance and travel time
matrices are highly unlikely to produce a valid vario-
gram and covariance function. This puts forth a set of
valid Minkowski distance metrics which are proven
to better approximate restricted road distance and
travel time across the Coventry (United Kingdom)
road network compared with a Euclidean distance.
Each result is compared with a set of popularly
employed validation metrics (1) r2, (2) root mean
squared error (RMSE) and (3) mean absolute percen-
tage error (MAPE) on two validation sampling tech-
niques (1) 10-fold cross-validation and (2)
checkerboard holdout.

The key contributions of this paper are (1) a
Minkowski approximation of a pairwise restricted
road distance metric utilizing OpenStreetMap (OSM);
(2) a Minkowski approximation of a pairwise travel
time metric utilizing OSM; (3) a Minkowski approx-
imation of a pairwise combined restricted road dis-
tance and travel time metric utilizing OSM; (4) a
comparison study of house price predictors in
Coventry with distance metrics (1)–(3) against a com-
monly used Euclidean metric. The final contribution
shows that spatial interpolation can be improved with
non-Euclidean distance functions.

Section 2 reviews related literature, Section 3
explores the open and crowd sourced data utilized to
build a house price training set with road distance and
travel time distance metrics. Section 4 describes the
method offered by this paper in four stages: collapsing
time, distance matrix estimation, variogram fitting and
spatial interpolation. Afterward, Section 5 validates the
procedure undertaken on a set of 3669 real-estate trans-
actions across Coventry. Sections 6 discusses the scien-
tific novelty and impact of this work. Finally, Section 7
concludes the paper with some discussions regarding
further work opened up by this research.

2. Background reading

Most contemporary machine-learning-based AVMs
are hedonic in nature (a function of multiple attri-
butes) (Nelson 1999; McClusky and Borst 2007).
Examples of such attributes relating to residential
property pricing include topography and natural geo-
graphy (Kok, Monkkonen, and Quigley 2011), build-
ing footprint (Pace et al. 1998), school proximity
(Machin and Gibbons 2003), over head pylons
(Bond, Sims, and Dent 2013) and crime (Thaler
1978). However, it has been shown that space
(Crosby et al. 2016) and time (Huang, Wu, and
Barry 2010) can best infer (up to 71% of) a property’s
value (see Section 2.1). This paper attempts to inform

each hedonic AVM by considering how to model
space better.

2.1. House prices in space

Since the early nineteenth century, space and distance
have been theorized as the primary functions for
property valuation. For example, favored prices are
given to those properties within close proximity to its
central market place (Thunen 1826), community cen-
ter (King 1984) or central business district (Caplin
et al. 2008). Most contemporary analysis mimics this
trend, for example predicting property value by using
(1) the average sales price of other properties in the
local comparable markets, (2) a spatial clustering of
properties and demographics (Malczewski 2004) and
(3) a local demographic “trade area” (Daniel 1994).

With regards to machine learning, Pace et al. (1998)
describes the implementation of a spatiotemporal
autoregressive model on 70,822 properties in Fairfax
county from 1961 to 1991. Their prediction, with 12
variables, reduced the median absolute error by
37.35% relative to an indicator-based model. In addi-
tion, Crosby et al. (2016) uses a space only house price
Kriging predictor to produce an r2 of 0.72 on a nation-
wide UK AVM. Finally, Huang, Wu and Barry (2010)
put forth a geographically and temporally weighted
regression for house price prediction, in which an r2

of 0.88 is achieved on a dataset of residential house
sales in Calgary (Canada) between 2002 and 2004.

All aforementioned machine-learning approaches
consider cross-validation sampling to estimate the gen-
eralizability of each model. In the case of spatially
dependent data, cross-validation is optimistic due to
its inherent IID assumption. As a result, we shall con-
sider a cross-fold-validation for comparison against
other work but also a spatially aware checkerboard
hold out approach (defined in Section 5).
Additionally, Euclidean distances are exclusively con-
sidered in all of the above work. This paper hypothe-
sizes that house prices are related to a more complex
structural network relating to (restricted) road distance
and travel time; hence, we introduce an approximate
(restricted) road distance and travel time metric using
the Minkowski distance function for a valid house price
Kriging predictor (Matheron 1963; Cressie 1990).

2.2. Non-Euclidean distance-based predictors

Manhattan (Ganio, Torgersen, and Gresswell 2005;
Theodoridou et al. 2015), Geodetic (Banerjee 2005)
and water-based (shortest path over water) (Murphy
et al. 2014) distances have all been implemented in
distance-based learning algorithms, each showing
some minor improvements compared with the
Euclidean function. Each of these methods is
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motivated by some access-restricted environment:
city-based routing, world distances and smooth
edges, respectively. In addition, this paper hypothe-
sizes that road distance and travel time are intrinsic
to contemporary house price modeling, and it is these
features that we approximate.

Without direct access to the above datasets, it cannot
be confirmed that the inputmetrics (Manhattan, geodetic
or water-based) produce a valid variogram. As such,
Curriero (2006) discusses dimensionality reduction to
approximate a Euclideanmetric from a (potentially inva-
lid) non-Euclidean metric input. Using simulated data
with isotropic spatial dependence, their work builds four
omnidirectional variogram estimators, showing their
newly defined “stream” distances consistently outper-
form the standard Euclidean function, whilst remaining
always valid.

Similarly, Zou et al. (2012) produce a Kriging predic-
tor with a road distance network using an Isomap algo-
rithm, a variation of isometric embedding. The predictor
estimates traffic flow in Nanchang, China. This method
uses the Floyd Warshall algorithm to build a nonres-
tricted road network. This does not consider accessibility
restrictions such as one-way systems or traffic lights.

Furthermore, Shahid et al. (2009) approximate the
distance between a set of postcodes and a hospital with a
1 × N vector of Minkowski distances with the p value
which is most correlated with the shortest path along
the Calgary road network. The results from their paper
motivate the experiment in this paper; however, we
uniquely introduce an N × N distance matrix with a
Minkowski p value most correlated to travel time,
restricted road distances and a combination of both.

Finally, a Minkowski distance metric is also put
forth with geographically weighted regression (GWR)
(Lu et al. 2016). Their work tests GWR with a com-
bination of Minkowski p values (1–8, inf ) at inter-
vals of 0.25. This paper uses intervals of p = 0.05. This

paper puts forward the interesting point that, for each
dataset, a new p value may need to be calculated,
which can be time consuming on large datasets.
Notably, both GWR and Kriging are local–spatial
prediction models; however, Kriging prediction is
regularly noted as an improvement to GWR when
validated (Matkan et al. 2010; Meng 2014).

3. Data description

Routing data are provided by the open street routing
machine (OSRM), an open source routing engine for
shortest paths in road networks for cars, bicycles and
walking, supported by OSM. For example, Figure 1(a–
c) shows a comparison of Euclidean distances between 0
and 4 mi, travel time between 0 and 10 min and road
distance between 0 and 4 miles.

The diagrams show how restrictions can alter the
lag between points in a real estate predictor. In addi-
tion, Table 1 provides a description of all restrictions
considered. The residential sold price data are sourced
from Her Majesty’s land registry’s openly available
“Price Paid” database. These data are space and time
stamped for all residential properties that have been
sold in England and Wales since 1995. All freehold
houses between 1 January 2016 and the 1 January 2017
in the city of Coventry are used. Additionally,
Ordnance Survey (OS) offers an educationally avail-
able dataset containing all the address locations in the
United Kingdom. Table 2 provides a name, descrip-
tion and data type for all key data utilized.

To ensure that these data contain the expected
SAC required for successful hypothesis testing, the
standard Moran’s I-test is considered:

I ¼ N
W

P
i

P
j wijðsi ��sÞðsj ��sÞP

i ðsi ��sÞ2 (1)

Figure 1. A comparison of an Euclidean distance matrix versus a drive time distance matrix and a road distance matrix around
the center point of Coventry. (a) Euclidean distance buffer from 0 to 4 miles around the centre of Coventry; (b) Travel time
distance buffer from 0 to 10 minutes drive time around the centre of Coventry; (c) Road distance buffer from 0 to 4 miles around
the centre of Coventry.
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where si = observations, wi;j = distance weightings,
N = total number of observations,
W =

Pn
i¼1
Pn

j¼1 wij and �s is the mean of s. If

Iobserved > > Iexpected, then the values at location si are
positively autocorrelated, else negatively correlated.

As expected, the houses dataset (containing 3669
properties) showed a strong result of
Iobserved ¼ 0:1559136> > Iexpected ¼ �0:00267094,
also showing a standard deviation of 0:001123158
and p value ! 0. These results allow us to reject
the null hypothesis that there is no SAC present at
significance level α = 0:05. These results emphasize
the appropriateness of spatial interpolation.

4. Scientific method

Given that house prices contain some spatial relation-
ships, we undertake prediction on all houses sold in
Coventry. This paper introduces a multiple stage
approach. The first stage converts a discrete, nonuni-
form, spatiotemporal sold price dataset D into a uni-
form time singular sold price output DT utilizing a
space–time comparable process in Coventry. Stage 2
attempts to utilize Minkowski coefficients to predict
the road distance and travel time values for all pair-
wise house price points. Finally, stage 3 builds a set of
variograms for each distance metric and stage 4
implements ordinary Kriging to identify a new

feature of spatial dependencies related to real-estate
prices. The resulting model is trained on a sample of
3669 instances and is validated against five distance
metrics (Euclidean, Manhattan, road distance, travel
time and a combination) using 10-fold cross-valida-
tion and checkerboard hold out. Algorithm 1 pro-
vides the pseudo-code for our entire experiment.

4.1. Stage 1: collapsing time

The price paid data for 2016 are addressed only (here-
within named D). This accounts for 3669 sales in
Coventry. Stage 1 predicts each property’s sale price
based on its value on the 1 January 2017 (for time
singularity). This process involves each property being
assigned some percentage price change based on the
date that it was sold and the lower super output area
that the property is contained within to produce a value
for all 3669 properties at the date 1 January 2017 (DT).
The error for the purposes of this experiment is mini-
mal or nonexistent due to the small temporal and
spatial aggregate areas being considered.

4.2. Stage 2: distance matrix estimation

Consider a list of points {si; i ¼ 1; . . . ; n} in a Euclidean
space Rn of dimension n. A matrix D9Rn�n

þ is called a
Euclidean distance metric such that d2i;j are the pairwise

distances between all other points si and sj
(d2i;j ¼ jjsi � sjjj2 ¼ si; sih i þ sj; sj

� �� 2 si; sj
� �Þ. Hence,

all di;j must satisfy each of the four distance metric
properties such that

di;j > 0 si�sj (P1: Non-negativity)
di;j ¼ 0, si ¼ sj (P2: Self-distance)

di;j ¼ dj;i (P3: Symmetry)
di;j � di;k þ dk;j (P4: Triangle inequality)

Table 1. All restrictions to road network and travel time OSRM
calculation from OSM labels.
Restriction
type Description

Barrier (Rising) bollard, cattle grid, border control, checkpoint,
toll booth, sally port, (lift) gate etc.

Restriction Motor vehicle, vehicle, permissive, designated,
destination, private, agricultural, forestry, emergency,
parking aisle etc.

Speed profile Motorway, trunk, primary, secondary, tertiary, ferry,
residential, living street, track, unclassified etc.

Surface
speeds

Concrete, paved, cement, compacted, paving stones,
metal, grass, gravel, unpaved, cobblestone, stone,
sand, mud etc.

Tracktype
speeds

Grade 1–5, intermediate, bad, horrible, impassable etc.

Maxspeed Urban, rural, trunk, motorway, single/dual carriageway
U-Turn Time in seconds
Traffic signal Time in seconds
Oneway Boolean, y/n
Route speed Ferrys, piers, movable bridges

Table 2. Feature name, description and data type in HMLR’s
Price Paid dataset.

Feature name Description
Data
type

UID Unique transaction identifier Integer
Property type Flat, terraced, semi-detached,

detached
String

Tenure Freehold or leasehold Binary
Date of transaction Transaction date for the property Date/

Time
Address Full address including postcode String
Build status Is the property newly built Binary

Algorithm 1: Collapsing time distance matrix selection variogram para-
meter selection spatial interpolation.

Required: Kord, dp, D, maximum likelihood estimator (MLE)

1: Input: D ¼ fXst ; Yst ; g s ¼ 1 : Sf g
t ¼ t0 : Δt : Tf g

2: Temporal mapping to time τ:
3: Dτ  gðDÞ"t; s 2 t0 : Δt : Tf g; 1 : Sf g
4: Stratified sampling: Sample across each LSOA
5: Dτ

σ,σstratifiedðDτÞ
6: for z in {road distance, travel time, linear combination} do
7: dpz = argmaxpr2ðdp; zÞ
8: for z in {road distance, travel time, linear combination} do
9: for V in 10-folds, Checkerboard do
10: Variogram selection on vs← MLE (TrainðDτ

σÞ; dpz Þ
11: Ordinary Kriging on Prices  Kord(TrainðDτ

σÞ; TestðDτ
σÞ; vsÞ

12: return r2; RMSE;MAPE
13: Finish

188 H. CROSBY ET AL.



Although each property is necessary, they are not
exclusively sufficient. The road distance example
satisfies just some of these properties (P1, P2); how-
ever, it does not exclusively fulfill P3 or P4. A prac-
tical example would be to consider a one-way system
in a city, whereby one route may be longer than its
counterpart route. Figure 2 shows an exact example
where the distance between houses A to B is 0.24 mi
along the red dotted line which takes a route along
“Brownshill Green Road” and is marked as a one-way
system, this means that the route B to A must be
different, which, in this case, is further; hence, the
distance matrix is not symmetric. The same reasoning
applies for a travel time matrix.

A daily average distance and travel time is calcu-
lated to overcome changing patterns. With regards to
producing a road distance and travel time matrix
which satisfies P3 and P4, one must produce a matrix
prediction. A simple method of making the distance
matrix symmetric would be to duplicate the lower
triangle, select the minimum or maximum of the
lower/upper triangle or calculating the average
between route A ! B and B ! A. However, this
doesn’t always overcome the problem of P4 as a
shorter nonrestricted route could potentially be
found. The experiment of this paper instead consid-
ers Minkowski coefficients:

dð�x;�yÞ ¼ ð
Xn
i¼1
jxi � yijpÞ1=p (2)

where x and y are the longitudinal and latitudinal
points of each data point i. Matrix d has a p ≥ 1 as a
result of the Minkowski inequality (Hardy,
Littlewood, and Pólya 1952). Euclidean and

Manhattan are special cases of p = 2 and p = 1,
respectively. More specifically, it can be seen that
Manhattan and Euclidean have several similarities,
most notably that the Manhattan distance is always
greater than or equal to Euclidean distance and that
when reduced to a one-dimensional state, Manhattan
is exactly Euclidean unlike any other values of p
which shows the significance of these special cases.
Assuming that there is a Minkowski p value that is
similar to road distance, travel time or a combination
of both, then this Minkowski value can be used as a
valid estimate of road distance and/or travel time.

Estimation optimization
For this experiment, three scenarios are attempted:

(1) find the Minkowski p value with the highest r2

value to the actual road distance matrix
(p = 1.55),

(2) find the Minkowski p value with the highest r2

value to the actual travel time matrix
(p = 1.7) and

(3) find the Minkowski p value with the highest r2

value to the actual road distance matrix and
travel time matrix using linear regres-
sion (p = 1.6).

Figure 3 shows the r2 value for each Minkowski p at
0.05 intervals between 1 (Manhattan) and 2
(Euclidean). It can be seen that a combination of the
two distance matrices has the highest r2 = 0:946 value at
p ¼ 1:6, which shows that Minkowski coefficients are
capable of predicting a realistic urban environment with
a road network, much better than Euclidean or
Manhattan distance matrices.

Figure 2. A situation where P3 and P4 are not satisfied.
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The combined road distance and travel time
matrix is calculated as a linear model with four
variables: (1) road distance A ! B, (2) road
distance B ! A, (3) travel time A ! B, (4)
travel time B ! A. This is an approach which
to our knowledge has never before been under-
taken and attempts to fully understand the utility
function of a house purchaser. Fig 4 provides a
comparison of each physical distance (Euclidean,
Manhattan, actual road [in both directions] and
optimal Minkowski estimate) between two points.

4.3. Stage 3: variogram fitting

For comparison, we test all of the highly correlated
Minkowski p values (p ¼ ½1; 1:55; 1:6; 1:7; 2�) against

each scenario (road distance, travel time and a combina-
tion). Let’s assume a set of spatial locations S (i.e. long-
itudinal and latitudinal points) such that
Si : i ¼ 1; . . . ; n are known and that ZðsÞ : s�D is a real
valued stochastic process over random fields. For one to
predict some value (house prices) ZðsoÞ at location s0
from observed values ZðsiÞ : i ¼ 1; . . . ; n, theymust first
ensure that the data represent a complete sampling of a
single realization such that

E½ZðsÞ� ¼ μ for all s�D (3)

and

cov½Zðs1Þ;Zðs2Þ� ¼ Cðs1 � s2Þ for all s1; s2�D (4)

A function which assumes Equations 3 and 4 is
called second-order stationary. Suppose a function
γðs1 � s2Þ is the semivariogram and that the data
have a stationary covariance, then the semivariance
is related to the covariance function with a nugget,
sill and range (Cressie 1988).

With this in mind, the covariance function is esti-
mated, by fitting a parametric model to the calculated
semivariance utilizing least squares. This function
assumes that the semivariance of the data can be
modeled. The process ran 5 times, one for each dis-
tance matrix. The different distance matrices alter the
semivariance of the data such that the lag for each
point is always greater than or equal to a Euclidean
matrix but not consistently or linearly greater than or
equal to; hence, the semivariance for each spatial lag
will alter with each distance matrix. This is due to the
fact that the estimated variogram model and para-
meters, which are a function of distance, will differ as
the distance between each value si does too. Noting
the results in Section 6, it is not surprising to find that
the same model (Matern) is optimal in all cases

Figure 3. The goodness of fit value for each Minkowski coeffi-
cient tested against the OSRM’s actual road distance calcula-
tions, travel time calculations and a linear model of both (here
embedded R2 = r2, and P-Value = p-value). (a) OSRM road
distance versus Minkowski p-value goodness of fit graph; (b)
OSRM travel time versus Minkowski p-value goodness of fit
graph; (c) OSRM linear combination of road distance and travel
time versus Minkowski p-value goodness of fit graph.

Figure 4. A streetmap comparing the distances: the road
distance, the Euclidean distance, the Manhattan distance
and the Minkowski estimated distance.
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because each distance matrix used to plot the lag is
highly correlated. The Matern model is

CνðdÞ ¼ σ2
21�ν

ΓðνÞ ð
ffiffiffiffiffi
2ν
p d

ρ
ÞνKνð

ffiffiffiffiffi
2ν
p d

ρ
Þ (5)

where Γ is the gamma function; Kν is the modified
Bessel function of the second kind, and ρ and ν are
non-negative parameters of the covariance. The best
parameters use maximum likelihood estimates (MLE)
for random fields that are satisfied through Equations
3 and 4.

4.4. Stages 4: spatial interpolation

For this paper, we will consider ordinary Kriging
only. Kriging is used to estimate the aforementioned
values (Zðs0Þ), based on the surrounding existing
values (ZðsiÞ) such that Zðs0Þ is an equation of coeffi-
cients λi each multiplied by their respective value
ZðsiÞ. In the case of ordinary Kriging, variogram
values show the relationship between the, in our
case, house price data and the point of inter-
est (Zðs0Þ).

Ẑðs0Þ ¼
Xn
i¼1

λiZðsiÞ (6)

This equation is required such that it is unbiased and
minimizes the mean squared error, which when
minimized is

σ2kðs0Þ ¼
Xn
i¼1

λiγðsi � s0Þ þm (7)

where m is the Lagrangian multiplier used to ensureP
λi ¼ 1. Hence, ordinary Kriging assumes a con-

stant mean of the underlying real-valued random
function ZðsoÞ. The Kriging variance is simply mini-
mized by using m as defined above. We calculate five
variograms for prediction comparison (restricted
road distance, travel time, Euclidean, Manhattan
and combined road distance and travel time).

5. Cross-validation and validation metrics

Cross-validation splits the dataset into two subsets: a
training set where a model is fitted on and a valida-
tion test set where the model is evaluated on (Stone
1974). The main purpose of cross-validation is to
detect over fitting and estimate how well a model
will generalize to unseen data. k-Fold cross-validation
is the most popular method, in which data are parti-
tioned into k subsets, performs the analysis on k − 1
subsets (training) and validates the analysis on the
remainder. The process is repeated k times where the
test set is different each time. The validation results
between each fold are averaged to reduce outlier bias

(Kohavi 1995). Given the popularity of k-fold cross-
validation, we apply the method with 10-folds.

k-Fold cross-validation, on the other hand, can be
inappropriate in a spatial setting due to its inherent IID
assumption which is violated by spatial dependency. As
such, we also put forth an alternative method which
attempts to take account for some of the spatial depen-
dencies in house price data known as stratified checker-
board holdout. This method provides a training sample
of 1832 properties and test sample of 1837 properties.
Figure 5 shows the checkerboard polygons used to sepa-
rate the training and validation test set for each experi-
ment. This method attempts to provide a more realistic
estimation of the models generalization performance;
however, it contains a smaller training set, which may
provide pessimistic results. In addition, the training and
test data contain SAC at the checkerboard borders; so,
this method does not fully remove the spatial
dependency.

The experiment’s success is measured on a number
of validation metrics: (1) r2, (2) RMSE and (3)
MAPE. A paired T-test is also undertaken to state
whether the results are statistically significant enough
for the null hypothesis that the price of a house can
be predicted by space only.

The r2 calculation measures the predictor’s (ZðSÞ
“goodness of fit” [the model’s ability to fit the test
data (S)]):

r2 ¼ NðP S x ZðSÞÞ � ðP SÞðPZðSÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNPðS2Þ � ðP SÞ2ÞðNPðZðSÞ2Þ � ðPZðSÞÞ2Þ

q
0
B@

1
CA

2

(8)

The RMSE intuitively takes the square root of the
sum of the mean squared errors:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn
i¼1
ðsi � zðsiÞÞ2

s
(9)

MAPE is the mean absolute error, expressed as a
percentage:

Figure 5. Spatially aware checkerboard sampling utilized in
the validation process to confirm the model is not over fitted.
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MAPE ¼ 100
N

Pn
i¼1 ðsi � zðsiÞÞ2

si

 !
(10)

The paired T-test shows whether the mean of a
population of predicted data-points (i.e. predicted
house prices) differs significantly from the mean of
the actual population. This is calculated as the ratio of
signal to noise such that

t ¼
�ZðSÞ � �S
σ=

ffiffiffi
n
p (11)

where �ZðSÞ and �S are the mean values of the pre-
dicted dataset and the actual data set, respectively.
Finally, the p value compares our value with that of
the Student T distribution with n� 1 degrees of free-
dom. The smaller the p value, the more statistically
significant the model is deemed to be.

6. Results

This paper applied ordinary Kriging five times, each
fitted with a variogram exploitingMinkowski predictions
used to simulate a more appropriate valuation environ-
ment. Tables 3 and 4 provide the validation results for
eachmodel showing that non-Euclidean distancemetrics
can produce a more appropriate set of parameters for
house price prediction in Coventry. For example, the best
performing model utilizes a linear regression of OSRM’s
road distance and travel time in both directions.

In assessing Tables 3 and 4, it can be seen that a
Minkowski p of 1.6 is consistently the best performing
and Euclidean is the least. Figure 6(a) visualizes the
prediction versus actual price for all properties trained
with our best performing distance matrix (p = 1.6). In
addition, Figure 6(b) shows the uncertainty bounds
between folds for all properties in the price paid dataset.
The best performing models T-value and P-value are
reported to be 1.312 and 0.1896, respectively, showing
that space as a single variate is weak on its own; some
more covariates could really support the model. In
general, the results show that residential valuation has
a relatively strong SAC which, with the use of appro-
priate distance metrics, can be improved. In addition, a
Students’s T-test between experiments is calculated to
show that the best performing (p = 1.6) and poorest
performing (Euclidean) Kriging outputs provide a sta-
tistically significant improvement with a P value of
0.0458. This is an appropriate test because the two
populations have very similar (almost equal) variances
(86,555 and 86,657, respectively).

7. Conclusion

This research has (1) converted a discrete, nonuniform,
spatiotemporal sold price datasetD into a uniform time
singular sold price output DT utilizing a space–time
comparable process in Coventry; (2) deployed a novel
method of N × N road distance and travel time

Table 3. Results for 10-fold cross-validation.
10-fold cross-validation

Distance matrix p = 1 (Manhattan) p = 1.55 p = 1.6 p = 1.7 p = 2 (Euclidean)

r2 0.683 0.6847 0.6901 0.6843 0.663
RMSE 57,115 57,000 57,013 57,439 58,913
MAPE 17.92% 17.9% 17.895% 18.01% 18.12%

Table 4. Results for checkerboard holdout.
Checkerboard stratified validation

Distance matrix p = 1 (Manhattan) p = 1.55 p = 1.6 p = 1.7 p = 2 (Euclidean)

r2 0.4509 0.4514 0.4558 0.4499 0.4418
RMSE 82,414 82,367 81,940 82,507 82,972
MAPE 24.52% 24.51% 24.40% 24.53% 24.57%

Figure 6. Validation diagrams: (a) the actual versus predicted graph and (b) house price prediction graph with uncertainty
bounds both with a Minkowski coefficient of p = 1.6.
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predictions; (3) built five variograms, each with a dif-
ferent distance function; (4) produced a spatially aware
ordinary Kriging calculation identifying house price
spatial dependencies. In addition, each of the models
is tested using MAPE, RMSE and r2 yielding an
adjusted r2 value of 0.69 compared with the traditional
Euclidean approach at 0.66. Future work is to include
(1) testing the hypothesis with other applications and
spatial interpolation methods; (2) implementing the
findings into the space, property, economic, network
and time algorithm from Crosby et al. (2016); and (3)
introducing a set of covariates.
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