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A B S T R A C T

Floods are one of the most devastating types of worldwide disasters in terms of human, economic, and social
losses. If authoritative data is scarce, or unavailable for some periods, other sources of information are required to
improve streamflow estimation and early flood warnings. Georeferenced social media messages are increasingly
being regarded as an alternative source of information for coping with flood risks. However, existing studies have
mostly concentrated on the links between geo-social media activity and flooded areas. Thus, there is still a gap in
research with regard to the use of social media as a proxy for rainfall-runoff estimations and flood forecasting. To
address this, we propose using a transformation function that creates a proxy variable for rainfall by analysing
geo-social media messages and rainfall measurements from authoritative sources, which are later incorporated
within a hydrological model for streamflow estimation. We found that the combined use of official rainfall values
with the social media proxy variable as input for the Probability Distributed Model (PDM), improved streamflow
simulations for flood monitoring. The combination of authoritative sources and transformed geo-social media
data during flood events achieved a 71% degree of accuracy and a 29% underestimation rate in a comparison
made with real streamflow measurements. This is a significant improvement on the respective values of 39% and
58%, achieved when only authoritative data were used for the modelling. This result is clear evidence of the
potential use of derived geo-social media data as a proxy for environmental variables for improving flood early-
warning systems.
1. Introduction

Floods have been gradually increasing throughout the world, and
causing serious levels of human, economic and social losses. For this
reason, forecasting and monitoring have attracted a great deal of atten-
tion as a means of improving early warning systems (Patankar and Pat-
wardhan, 2016; Crochemore et al., 2016). Flood forecasting and
monitoring are being increasingly characterised as a problem of “big
data”, since there are different data sources that can be used to support
decision making, such as satellites, radar systems, rainfall gauges and
hydrological networks (Horita et al., 2017). However, in situations of
crisis management, the apparent overabundance of data is often
accompanied by a simultaneous “information dearth”: a lack of infor-
mation may arise because sensors are not available for certain regions or
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the number of available sensors is not enough to cover the territory with
a suitable resolution. In hydrology, this problem is attributed to the
so-called “ungauged” or “poorly gauged” catchments (Sivapalan et al.,
2003). In response, big data sources are emerging that provide important
information and can supplement traditional sensors. These sources
include data provided by people directly linked to affected areas or
flood-prone areas, which can be used in many natural disaster risk sce-
narios and assist in water resources management (Fraternali et al., 2012).

Over the last few years, there has been a growing interest in using
georeferenced social media to support urban resilience to flooding. The
advance of mobile telecommunications and the widespread use of
smartphones and tablets allow people to act as human sensors, and
generate volunteered geographic information (Goodchild, 2007). More-
over, they have been increasingly recognised and used as an important
17
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resource to support disaster management (Goodchild and Glennon, 2010;
Horita et al., 2015). This spatial information is produced by ordinary
people through different collaborative activities, such as exchanging in-
formation through geotagged social media messages (de Albuquerque
et al., 2017).

One of the advantages of using social media for monitoring flood
events is the extensive spatial coverage of the measurements. These make
it possible to obtain useful information at different points of river
catchment areas and cities where the local inhabitants are able to sup-
plement the static sensors of the hydrometeorological networks. How-
ever, even today there are still multiple challenges that have to be faced;
these, include finding the best way to extract relevant information from
social media and the difficulty of integrating this information with data
from other sources to achieve greater reliability. Furthermore, an addi-
tional challenge is to ensure that these new information sources can be
used to assist the hydrological models to support decision-making with
regard to the early warning system (Mazzoleni et al., 2017; Horita
et al., 2015).

Most of the previous work in this area has concentrated on using
social media data either for flood mapping or exploring spatiotemporal
patterns (Smith et al., 2015; Weng and Lee, 2011; Tkachenko et al.,
2017). In our previous work, we found there were close spatiotemporal
links between social media activity and flood-related events (de Albu-
querque et al., 2015), as well as social media activity and rainfall (de
Andrade et al., 2017). However, to the best of our knowledge, so far no
scientific work has used social media data quantitatively to estimate
hydrological models for flood monitoring. This paper differs from our
previous studies (de Andrade et al., 2017) by going one step further than
simply establishing a correlation between social media activity and
rainfall: it now examines the frequency of rainfall-related messages to
define a data series of non-authoritative rainfall. This data series can then
be used as input to enable a hydrological model to predict streamflow.

Our approach is based on the hypothesis that it is possible to use
indicators derived from social media activity for flood monitoring and/or
forecasting, in conjunction with data from hydrometeorological sensors
in streamflowmodelling, to make further improvements to early warning
systems. In this paper, we seek to transform Twitter data into a proxy
variable for precipitation. Transforming this data requires a function that
converts Twitter messages into rainfall values. When setting up the
transformation function, it is assumed that there is a direct relationship
between the intensity of rainfall and the rainfall-related activity of geo-
social media in a given geographical area. We can thus use the rainfall
proxy variable in a rainfall-runoff model to estimate the streamflow.

This paper is structured as follows. Section 2 introduces a discussion
of related works. Section 3 describe the case study and data. Section 4
describes the methodology. Section 5 and 6 examine the main results that
have been achieved and include a discussion of the work. Finally, Section
7 summarizes the general conclusions and makes recommendations for
future work.

2. Related work

Modelling urban catchment behaviour requires high-resolution rain-
fall and detailed physical characteristics owing to the fast hydrologic
response of the catchment (Hapuarachchi et al., 2011; Ochoa-Rodriguez
et al., 2015; Wang et al., 2015). Rainfall data is the main input in rainfall-
driven hydrological models for flood modelling and forecasting. Several
approaches have been tested for different situations to highlight the use
of remote sensing for rainfall-driven flood forecasting (Skinner et al.,
2015; Li et al., 2016) as an alternative to the traditional use of in-situ
measurements. Boni et al. (2016) implemented a near real-time flood--
mapping algorithm using Synthetic Aperture Radar (SAR) together with a
satellite, coupled to a hydraulic model. Tiesi et al. (2016) used surface
network data, radio-sounding profiles, radar and satellite (SEVIRI/MSG)
data for quantitative precipitation forecasting and found they had a
positive effect on the intensity and distribution of the simulated rainfall.
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Studies such as Wang et al. (2015) and Chen et al. (2016) showed that
although radar-based precipitation measurements have the advantage of
being able to reproduce the spatial structure of rainfall fields and their
variation in time with regard to ground-based measurements, they still
cannot achieve the accuracy and resolution required for
urban hydrology.

However, it is not always possible to have information from rain
gauges, or radar and meteorological satellites. Thus, it is necessary to
explore other alternatives for forecasting and monitoring that can miti-
gate the effects of flooding. In response to this need, a new field has
emerged to explore how social data can be combinedwith remote sensing
information to improve flood forecasting in ungauged or poorly gauged
catchments (Sivapalan et al., 2003).

The use of geo-social media in disaster management has been
explored in the literature for various types of hazards such as earthquakes
(Crooks et al., 2013; Sakaki et al., 2010), forest fires (Crooks et al., 2013;
Sakaki et al., 2010), hurricanes (Huang and Xiao, 2015), tsunamis
(Mersham, 2010), agricultural droughts (Enenkel et al., 2015), and floods
(Smith et al., 2015; Weng and Lee, 2011; Tkachenko et al., 2017). In the
particular area of flood management, scientific work has focused on
using social media data for two requirements - flood mapping and
exploring spatiotemporal patterns.

Tweets have been quantitatively used in both forecasting and map-
ping. Schnebele et al. (2014) concluded that a fusion of multiple
non-authoritative data sources helps to fill in gaps in the spatial and
temporal coverage of authoritative data. They used aerial photos, You-
tube videos, Twitter and Google photos to create maps of the damage
caused by Hurricane Sandy. Brouwer et al. (2017) harvested 8000
flood-related tweets from York in England and used this information to
create a probabilistic flood extent map. Patel et al. (2017) used tweets to
produce population maps. Rathore et al. (2017) devised a system that
uses geo-social media to harvest, process, and analyse a large amount of
data at high-speed from Twitter and make decisions in real time. Li et al.
(2017) collected tweets during a period of 18 days in South Carolina,
USA, which involved filtering by means of flood-related keywords, and
found 4268 flood-related tweets. Based on this information, and using
temporal granularity on a daily basis, they found a close correlation
between stream gauge levels and the absolute frequency of flood-related
tweets. In these studies, tweets were a weighting factor for creating
inundation maps.

There are other studies that are confined to demonstrating the rela-
tionship between flood-related messages and flood events. Weng and Lee
(2011) collected tweets for a month in June 2010 to detect events in
Singapore, and based on this information, they built the signal events
that were reported on Twitter automatically, by means of a wavelet
transform. However, in this period, they only detected a single flood
event. Smith et al. (2015) used tweets to improve and extrapolate data
from hydraulic modelling to assess flooding. This was carried out through
two events that occurred in the city of Newcastle. Tkachenko et al. (2017)
also used flood-related geo-tagged messages from Flickr to detect floods
in England.

Going one step further towards achieving a quantitative integration of
social media activities into flood forecasting models, is of value as a
supplementary resource for monitoring catchments, given the fact that
sometimes the rain gauges that are usually used for this activity, are not
available or fail for various reasons, such as a lack of maintenance.

3. Case study and data

This section describes the data that will be used, both authoritative
and social media data, and conducts an exploratory analysis of
spatial data.

3.1. The Aricanduva catchment

The Aricanduva catchment (Fig. 1) is located in the city of Sao Paulo,



Fig. 1. Aricanduva watershed, Sao Paulo Metropolitan Region, selected for this study.
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Brazil, a metropolitan region with more than 20 million inhabitants, with
the largest population density in Brazil. Aricanduva is a tributary of the
Tiete River, the main river of the city, and has a total drainage area of 100
km2. In this study we selected a sub-catchment of 88 km2, where the Sao
Paulo Flood Warning System (SAISP)1 - the organization responsible for
measuring water levels – has three water level sensors, of which one was
selected because is close to a risk-prone area subject to frequent flash
flooding (see Fig. 2). Water level sensor measurements are provided
every 10 min by SAISP. The precipitation data is also provided every
10 min by the National Center for Monitoring and Early Warning of
Natural Disasters (CEMADEN).2

3.2. Social media data

The social media data used in this study were gathered from the
Twitter platform using the public streaming Application Programming
Interface (API) to obtain georeferenced tweets within a bounding box
that encompasses the city of Sao Paulo. The total number of tweets
collected was 15,883,710. The georeferenced tweets (1,631,329) were
then filtered by means of keywords (21,804). From the 1st to 30th
January 2016 and from 8th November 2016, to 28th February 2017, we
found 3830 geotagged tweets related to floods within the city of Sao
Paulo. As in the case of our previous study (de Andrade et al., 2017), we
filtered the messages to find words related to rain (chuva in Portuguese),
intense rainfall and rainbows, but excluded common unrelated expres-
sions (Fig. 3). Some examples for related tweets can be found in Table 1.
Fig. 4 shows the spatial distribution of the rainfall-related tweets in the
city of Sao Paulo during this period.

The geo-located tweets containing the keywords were collected and
assigned to temporal bins of 10 min in a variable called “absolute fre-
quency of real-time messages” fkw. Other variables obtained from the
related tweets are the cumulative frequencies of every Δt min.
1 https://www.saisp.br/estaticos/sitenovo/home.xmlt.
2 http://www.cemaden.gov.br/.
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3.3. Authoritative data

Rainfall data were collected from CEMADEN with the aid of an API
Application. The data is updated at intervals of 10 min when the cu-
mulative volume in the period is higher than 0.2 mm. However, if no
rainfall is recorded, the data are available every hour. Thus, since our
modelling is aimed at providing a tool to predict floods, the rainfall-
runoff calibration is carried out for some previous rainfall events, when
there is a total precipitation greater than 10 mm. This meant that 30
rainfall events greater than 10 mm were chosen for model calibration
(from 2015-04-06 to 2015-12-29 and 2016-02-05 to 2016-10-14) and
another 15 were chosen for validation (from 2016-01-01 to 2016-01-30
and 2016-11-09 to 2017-02-27). The quality and consistency of the
available rain gauge information were assessed by comparing it with the
information gathered by the University of Sao Paulo (USP), Sao Paulo,
and its observatory, which calculates the monthly rainfall rate.3This in-
formation allowed us to validate the accumulated magnitudes of the
rainfall stations. As a result, we decided to use three sensors that showed
values that were consistent with both sources.

Fig. 5 shows an example of the difficulties that a situation room, (such
as the one in CEMADEN), may face when there are problems with
authoritative data. The image was taken from the official interactive map
on February 2nd 2017.4 It can be seen that on this date, there were some
sensors that did not report data at all (black points), as well as apparent
inconsistencies in the measurements made by some sensors, concerning
the amount of rainfall that fell on the city of Sao Paulo. These situations
provide a further reason for using alternative information sources to
assist flood monitoring and early warning systems.

3.4. Exploratory data analysis

An initial exploratory data analysis is displayed in Fig. 6, which
summarizes the absolute frequency of two time-series. One is carried out
3 http://www.estacao.iag.usp.br/.
4 http://www.cemaden.gov.br/mapainterativo/3830.
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Fig. 2. SAISP reported flood points.

Fig. 3. Frequently-related and unrelated words. All the keywords are in unicode standard.
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for the key words of Twitter phrases related to rainfall processes and
collected at the same time. The other one corresponds to the rainfall
depths measured by the authoritative sensors. Evidence obtained from
plotting the two time series, reveal a time-dependent significant rela-
tionship between the frequency of the tweets and rainfall depths.

As shown in Fig. 6, in some events the two series did not follow the
same behaviour or have the same relative magnitude. For instance, on
November 12th, 2016, there was a peak in the frequency of tweets, which
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coincided with a live performance of Guns and Roses, an American hard
rock band. Those who attended the concert filled Twitter with images
and messages in Portuguese and English referring to “November Rain”, a
well-known song played by this band. This reaction seems to have been
heightened by the fact that it was sung while it was raining in the city.
One example of how false positives can occur in detections is illustrated
by the following tweet: “luizh.ap: November Rain com direito a chuva e
bal~oes vermelhos #GunsNRoses #gunsnrosesreunion #Axl #Slash #Duff
#GNR”which can be translated as “November Rain with the right to rain
and red balloons!!”. These constraints call for a methodology for refining
geotagged data related to rainfall, as explained in the following section.

4. Methodology

Fig. 7 displays the methodological structure adopted to transform
data from social media into a hydrometeorological proxy variable. The
methodology is divided into four stages: (a) hydrological data (calibra-
tion and rainfall-streamflow modelling) (b) social media data (fitting the
transformation function proxy) (c) social media data (transformation of
social media signal into hydrometeorological data) (d) comparison with
real data. In each stage, a series of activities is carried out. Each of these
processes are in turn explained in the next sections.
4.1. Hydrologic data

The first methodological procedure carried out was the calibration of
the hydrological model that was used to obtain a transformation of
authoritative and social media rainfall values into streamflow. This is a
classic procedure in hydrology where some hydrometeorological



Table 1
Some related tweet messages collected in this study.

Date/Time Portuguese version Translated version

2016-11-09
20:34:23

“EM MINHA DEFESA…… que fique claro que vim por causa da chuva impratic�avel
e s�o tomando uma coca (@Hooters) https://t.co/KEFYXy8YM4”

“IN MY DEFENSE…… that it is clear that I came because of the impractical rain
and only drinking a coke (@Hooters) https://t.co/KEFYXy8YM4”

2016-12-03
21:43:25

“Início da noite sede s�abado, com chuva… que lindo presente de Deus! (Sem filtros)
https://t.co/Js7kmDrOZY”

“Early Saturday night, with rain … what a beautiful gift from God! (No filters)
https://t.co/Js7kmDrOZY”

2016-12-11
18:35:23

“Muita chuva…… j�a vi que vou ganhar ch�a de cadeira…… partiu casa carioca……

https://t.co/E1q4rM5ivE”
“A lot of rain …… I've already seen that I'm going to get a long wait …… I left
carioca house …… https://t.co/E1q4rM5ivE”

2017-02-27
0:38:15

“Chuva, chuva, chuva e mais chuva … https://t.co/wH2GOnqz80” “Rain, rain, rain and more rain … https://t.co/wH2GOnqz80”

Fig. 4. City of Sao Paulo during the analysed period, with related tweets as black points,
rainfall gauges as blue triangles and the Aricanduva catchment shaded in gray. (For
interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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variables such as rainfall and streamflow are used to calibrate the model
(Muleta, 2011). In view of the fact that the methodology is designed to be
used in ungauged and poorly gauged catchments or when there are
sensors subject to failures, simple modelling seems to be more appro-
priate (Sivapalan et al., 2003).

The Probability Distributed Model (PDM) and similar models derived
from it, are conceptual rainfall-runoff models that are widely used in
research and hydrological applications (Alvarez-Garreton et al., 2014),
such as parameter prediction updating, flood forecasting, and the
regionalization of parameters using the Kalman filter, (Lamb, 1999;
Moradkhani et al., 2005; Kay et al., 2009). PDM transforms rainfall and
the estimation of the evapotranspiration time series of a catchment into
streamflow at the outlet of the catchment. Moore (2007) provides a
detailed description of the process modelled, parameters and model
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formulation. PDM has been chosen in preference to distributed and
physically-based hydrological models because it requires a reasonable
number of hydrometeorological variables (i.e. rainfall, potential evapo-
transpiration and streamflow), and is a spatially-lumped, parsimonious
and user-friendly model, which reduces the modelling time. In contrast,
distributed and physically-based hydrological models involve high
computational requirements for simulating spatio-temporal processes in
multiple control sections through non-linear equations.

In this paper, the PDM has been calibrated and validated with time-
steps of 10 min, that take account of the available 10-min rainfall data
and the rapid response time, (ca. 30min) of the studied catchment. Based
on ArcGIS and ASTER GDEM, the catchment area was estimated to be 88
km2. An optimization protocol was developed to calibrate the parameters
of the PDM using Python 3.x language and DEAP (Distributed Evolu-
tionary Algorithms in Python) Library. The PDM parameters were cali-
brated using Nash-Sutcliffe Efficiency (NSE) as an objective function
(Muleta, 2011; Nash and Sutcliffe, 1970). Details of the model parame-
ters have already been described in Moore (2007).

The streamflow was calculated from both three rain gauges of the
CEMADEN official network, and two other approximations: the
maximum inter-station rainfall depth every 10 min, and the spatially-
estimated mean precipitation depth, which were estimated by means of
the Inverse Distance Weighting (IDW) method. Table 2 summarizes the
NSE values for the calibration and validation of the PDM model.

Transformation of authoritative rainfall data in streamflow depends
on the calibration performed. In this case, the rainfall from authoritative
gauges is used to model the streamflow in the same period of social media
harvesting. The simulated streamflow will be later compared with the
one obtained from the social media modelling and the real values from
authoritative sources. Low performance in calibration and validation is
probably due to problems in the rain gauges, as already mentioned.
4.2. Parameter fitting for the transformation function

To create the transformation function, three properties from people's
behaviour in social media were assumed: proportionality, randomness
and semantic singularity. First, it is supposed that people use more social
media when discussing a phenomenon of great significance. In this case,
the number of people talking about it will depend on how they were
affected and thus, the intensity of the phenomenon might be directly
proportional to the number of related tweets. This behaviour can be
measured using bins of cumulative tweets over a certain period,
depending on the duration of the phenomenon. Second, people do not
“speak” in a synchronous way, namely, the users randomly post mes-
sages, before, during or after the phenomenon occurs (de Andrade et al.,
2017). Third, people tend to use related words when the phenomenon
becomes more intense/weaker or singular/unusual, which can lead to
semantic singularities. For example, other hydrometeorological phe-
nomena could be incorporated into the tweets because their beauty or
intensity make people talk more about them. This brings about an in-
crease in posting, with phrases, photos or videos, like a rainbow imme-
diately after a storm, or the dazzling light of lightning flashes during a
thunderstorm.

We propose a linear regression model between the frequency of social

https://t.co/KEFYXy8YM4
https://t.co/KEFYXy8YM4
https://t.co/Js7kmDrOZY
https://t.co/Js7kmDrOZY
https://t.co/E1q4rM5ivE
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Fig. 5. Problems with authoritative data, February 2nd, 2017.

Fig. 6. Time series of rainfall depths (left) with frequency of tweets (right) for the period of study January 2016 and from November 8th, 2016 to February 28th, 2017.
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Fig. 7. Methodological structure to transform authoritative and social media information to improve flood monitoring.

Table 2
NSE performance.

Sensor name NSE value (calibration) NSE value (validation)

Burgo Paulista 0.37 0.11
Cidade Tiradentes 0.39 �0.03
Boa Esperana 0.59 0.30
Max values 0.63 0.40
IDW 0.51 0.21
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media data and the rainfall authoritative data for the signal conversion
function to predict a proxy variable of rainfall data, with the following
154
functional structure:

psocial ¼ α
�
1þ ηstrong þ ηsoft

� fkw
Ainterest

þ
Xn

i¼20

βi
FkwðiÞ
Ainterest

where psocial is the proxy of the precipitation variable resulting from the
transformation of tweets to rainfall. The variable fkw represents the ab-
solute frequency of the number of tweets and the variable FkwðiÞ repre-
sents the accumulated absolute frequency for the number of tweets for i
cumulative periods (with i ¼ 20;30;40;…min). Ainterest is the area where
tweets are being harvested, i.e. the city of Sao Paulo. Furthermore, ηstrong
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and ηsoft are two dummy variables that capture the multiplicative effect,
in which some tweets have words that strengthen or reduce the intensity
of the rainfall respectively. An example of a strong multiplicative effect is
“heavy rain”, whereas a weak multiplicative effect might imply the
word “rainbow”.

The system collects social media data by means of an API to fitting the
transformation function. Following this, the messages are filtered by
geotag and keywords. As a result, the frequency of keywords is obtained
and the variables are created. Then, a 5-fold cross validation procedure
for the fitting of the function is applied to regress the authoritative
rainfall against social media data, which encompasses the whole city. In
this procedure, one month is removed from the sample and used later to
validate the transformation function of the same month, and avoid any
bias in the resulting function. These stages are repeated to obtain a
transformation function for each month.
4.3. Rainfall-runoff estimation from social media data using the
transformation function

In transforming the social media data into a rainfall proxy, data were
collected inside the catchment to obtain a rainfall proxy for this place. We
collected the same variables with the same temporal resolution examined
in Section 4.2. Once the tweets had been collected, the frequencies of the
tweets were replaced inside the function created in the past section.
However, since hydrological processes, like rainfall-runoff, are only
possible in systems such as catchments, where the boundaries do not
necessarily match the administrative boundaries of the city, a “region-
alization” of the tweets within a catchment-area is carried out by dividing
the frequencies of the related tweets every 10 min within the drainage
area of the catchment. Thus, this process differs from the parameter
fitting process where the whole area of the city is covered. Finally, the
estimated rainfall values were used as input of the PDM hydrological
model to generate the streamflow data.
4.4. Comparison of the joint use of traditional hydrological modelling and
modelling from social media

This step involves comparing real streamflow values (from SAISP),
with estimated streamflow values calculated from social media messages
(Sect. 4.2) and with authoritative rainfall (from CEMADEN)-runoff
modelling (Sect. 4.1). This comparison is made by determining if the
real streamflow values are found within the confidence interval of the
models, or have been overestimated/underestimated instead. This
assessment makes it possible to establish the accuracy of these cases
when the modelling is only carried out by means of social networks data,
and employing the transformation function to estimate rainfall values for
the “ungauged” catchments, i.e. when we do not have to rely on
authoritative sensors. Additionally, we analysed the case when the re-
sults from both models are employed, by selecting the maximum and
minimum values of the confidence interval of each model and evaluating
their accuracy to predict real streamflow values. This scenario is equiv-
alent to the case of “poorly gauged” catchments, where data from both
sources is available but the authoritative data are inaccurate and/
or imprecise.
Table 3
Regression coefficients for the parameter fitting of the transformation function of geo-social da

Coefficients January 2016 November 2016

α 322:5±214:4 436:0±234:6
β 547:0±83:2 607:5±83:8

ηstrong – –

ηsoft �872:4±385:8 �1236:0±312:2

R2adj 0.283 0.294
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5. Results

We estimated several linear regression models that were robust to
heteroscedasticity to create the transformation functions for each month
(see Table 3). Following the 5-fold cross validation procedure, each
column summarizes the data for the transformation function of each
month. A small coefficient indicates that for this specific month the
people wrote tweets related to rain in a more synchronous way with the
rainfall measurements. That is why in December all the coefficients
decrease in magnitude.

Based on these results, some simulations were carried out within the
Aridancuva catchment using related tweets and authoritative rainfall
data; these were incorporated into the PDM rainfall-runoff model. Fig. 8a
shows the period from January 25th to January 31st, 2016. It can be seen
that for the rainfall events of January 26th and 28th, the proxy variable
from Twitter performed better than the one with authoritative rainfall
data. However, in the period after January 29th, the behaviour of the
variables generated by social media considerably overestimated the
streamflow values.

In turn, in Fig. 8b, it was observed that on December 10th, there is a
peak in the simulation carried out by the social media proxy, which was
not found either in the real value or in the authoritative model. From the
end of December 10th until December 12nd, it was observed that only the
model with authoritative data followed the streamflow pattern. How-
ever, none of them provided a suitable estimate for the highest peak
streamflow, (the one above 200 m3=s).

Moreover, in the period from January 20th to 28th, 2017, Fig. 8c
shows how the Twitter proxy variable reacted to all the observed peaks of
the time series. It was only in some cases, such as on January 25th, that
this reaction took place after the flood occurrence, except on January
26th, when the geo-social media reacted a bit earlier. In contrast, the
streamflow only estimated from the authoritative data when the
modelling was conducted in a suitable way.

For the period from February 1st to February 9th, 2017 (Fig. 8d), it
was observed that both simulations, whether carried out with the social
media proxy or with authoritative data, follow the pattern of the
streamflow. However, the authoritative model did not perform well for
the first peak of streamflow, (above 200m3=s); on the contrary, the social
media-based model reacted late, although it had a suitable magnitude.
Moreover, from the end of February 6th until February 7th, the model
that was based on social media reacted better.

In Fig. 8e, there are 5 peaks close to 100 m3=s for the period from
February, 22nd to February, 28th, 2017 and it can be observed that
sometimes the authorized data performs better while sometimes the so-
cial media proxy data does. However, on February 25th when there was a
peak in the streamflow with a value greater than 700 m3=s, the social
media streamflow proxy captured it more accurately. This pattern is
probably due to convective rainfall, which is concentrated in some parts
of the catchment area far away from the available rainfall gauges.

A summary of the streamflow simulation is shown in Table 4. Based
on the values of the proxy variable obtained from Twitter, the simulation
provides correct values in 31.3% of the cases, while overestimation is
found in 19.0% and underestimation in 49.5% of the cases for the entire
period. In the case of modelling with authoritative rainfall gauges, the
real values are in the correct range of 38.6%, while underestimation and
ta.

December 2016 January 2017 February 2017

– 427:4±268:0 231:3±210:2
134:7±23:4 558:5±92:6 563:0±80:2

329:0±251:2 – 812:8±497:8
�255:5±76:4 �993:7±443:0 �1129:7±476:2

0.220 0.257 0.255



Table 4
Percentage of correct estimates, and cases of overestimation and underestimation of the streamflow within the confidence interval, with the use of social media and authoritative data.

Social media only Authoritative sensor only Composite of social media and authoritative sensors

Observations of estimates within the model's confidence interval 31.3 38.6 70.9
Observations of cases that were underestimated 49.5 58.4 28.6
Observations of cases that were overestimated 19.0 3.0 0.5

Fig. 8. Examples of social media rainfall (upper, time series) and authoritative rainfall (center, time-series), with simulated streamflow (shaded) and observed streamflow (line in bold) at
the Aricanduva catchment. Streamflow simulation using only authoritative sensors are shaded in blue and simulation from social media are shaded in red. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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overestimation are found in around 58.4% and 3.0% of the cases,
respectively.

We also simulated a combined rainfall variable consisting of the social
media proxy variable and the rainfall gauge. In this case, the accuracy of
the forecasting significantly increases, since it is able to predict the value
of the real streamflow correctly in about 70.9% of the cases. The un-
derestimation is reduced to 28.6% and there is no overestimation for the
period. This significant result clearly shows the potential value of using
data from social media to assist in monitoring environmental problems
such as floods. An example of the combined simulation for the period
from January 25th to January 31st, 2016 is shown in Fig. 8f.

6. Discussion

The results of this study support the use of social media information to
estimate the precipitation rate or flow in poorly gauged catchments,
which could help in issuing early flood warnings. In the catchments that
are currently in operation, but where there are incomplete records or
with sensors undergoing maintenance, the use of alternative, social
156
media proxy variables could become even more useful. Posting and
sharing information through social media where it is capable of being
transformed into viable proxy variables, as an alternative monitoring
data source, is a means of heightening people's awareness and is of value
for fostering community resilience, especially for streamflowmonitoring,
and forecasting purposes. Another possible application of social media-
based information lies in detecting authoritative sensors that have on-
line problems, and thus require maintenance.

The results of this study complement and extend previous research in
the area. For instance, Mazzoleni et al. (2017) designed a hydrological
model with data collected by citizens to improve the accuracy of flood
forecasts and showed that these data can reinforce the traditional
monitored areas provided by static sensor networks. However, these data
do not come from social media, but from citizen observatories, which are
a more structured form of crowdsourced geographic data, based on
dedicated data collection platforms (Degrossi et al., 2014; de Albu-
querque et al., 2015), and are more difficult to disseminate than widely
used social media platforms. In contrast, Rosser et al. (2017) used
geo-referenced photographs from social media, optical remote sensing,
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and high-resolution terrain maps, to design a Bayesian statistical model
that estimates the probability of floods through weight-of-evidence
analysis. However, they only used these data to generate flood maps,
which might detect the occurrence of floods through an ex-post evalua-
tion, but were not able to assist forecasting impending events.

In this paper, we obtained modest values for the Adjusted Coefficient
of Determination (R2adj<0:30) in the equations that transforms social
media data into precipitation, a result that complements our previous
results discussed in de Andrade et al. (2017). The fact that these values
are low, can perhaps be attributed to problems with a) the quality of the
rainfall gauge information, b) the modelling resolution and c) the
different time synchronism of the sensors collected from different sour-
ces, i.e. national centers, and state agencies with the social media posts.
However, this temporal resolution is crucial for timing hydrological re-
sponses like streamflows at an urban catchment. Moreover, these values
could probably be improved with the aid of other social media platforms
(e.g. Instagram, Flickr) or by including other variables such as informa-
tion quality protocols, the spatiotemporal context, literacy and the eco-
nomic circumstances of the citizens posting social media, as well as the
content of information, among other factors. In addition, other methods
could be tested to transform the signal by using other transformation
algorithms to achieve a better performance.

It is worth noting that the messages we used here are not discrimi-
nated by the temporal context in which they were published, but only
filtered by types of keywords or by their spatial location, and this might
be another limitation of the model. Additional research should be carried
out to review the information with regard to the type of temporal context
of the messages before, during or after the rainfall events or thunder-
storms. In this area, the focal point of our study has been on monitoring
but future studies should take into account how a real-time environ-
mental application can be formed.

7. Conclusion

This paper provides strong evidence that data from geo-social media
can be used to derive proxy variables for rainfall and streamflow. The
frequency of related messages from social media was used as a proxy for
rainfall, which in turn can provide input for hydrological models to
predict streamflows and flood conditions. Data from social media could
be used to assist in issuing early flood warnings and to improve rainfall-
runoff from observational, authoritative networks and even observed
urban streamflow. Evidence showed that better results can be achieved
by merging authoritative data with information from social media. The
available social media data on its own should be treated with caution,
because of the risk of bias and uncertainty with regard to streamflow
estimation. In future research, the methods and results might be further
compared with other studies, i.e. from different catchments, with several
rainfall-runoff events and various time-collection periods. Despite any
limitations, it is hoped that the methods employed in this paper can assist
in making multiple sources of data and information more available and
thus make cities more resilient to extreme events such as floods.

8. Data access statement

All data created during this research are openly available from the
University of Warwick data archive at http://wrap.warwick.ac.uk/
94300/.
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