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Rigidity and exotic models for the K –local stable homotopy
category

CONSTANZE ROITZHEIM

Can the model structure of a stable model category be recovered from the triangulated
structure of its homotopy category? This paper introduces a new positive example for
this, namely the K–local stable homotopy at the prime 2. For odd primes, however,
this is not true: we discuss a counterexample given by Jens Franke and show how
such exotic models for the K–local stable homotopy category at odd primes can be
detected.

55P42; 55P60

1 Introduction

When two model categories C and D are Quillen equivalent, then their homotopy
categories Ho.C/ and Ho.D/ are equivalent. But on the other hand, if there is an
equivalence between the homotopy categories of two model categories, can anything
be said about the underlying model structures?

For the stable homotopy category Ho.S/, that is, the homotopy category of spectra,
there is the following result of Schwede [17]:

Rigidity Theorem (Schwede [17]) Let C be a stable model category, and

ˆW Ho.S/ �! Ho.C/

an equivalence of triangulated categories. Then the underlying model categories S and
C are Quillen equivalent.

Usually, when passing from the model category level to the homotopy level, information
can be lost, as “higher homotopy information” like mapping spaces or algebraic K–
theory is defined via the model structure of the underlying model category. However,
the Rigidity Theorem says that for spectra, all such higher homotopy information is
encoded in the triangulated structure of the stable homotopy category.
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1856 Constanze Roitzheim

Now the next question could be if there is a similar result for Bousfield localisations of
the stable homotopy category with respect to certain homology theories. In this paper,
we consider localisation with respect to 2–local complex K–theory K.2/ with

K.2/� D Z.2/Œv1; v
�1
1 �; jv1j D 2:

The K.2/–local model structure is a model structure on the category of spectra where the
weak equivalences are the K.2/�–isomorphisms (see Definition 3.1). For the resulting
K.2/–local stable homotopy category we present the following positive answer to the
rigidity question which is the main result of this paper:

K.2/–local Rigidity Theorem Let C be a stable model category, let L1S denote the
K–local category of spectra at the prime 2, and let

ˆW Ho.L1S/ �! Ho.C/

be an equivalence of triangulated categories. Then L1S and C are Quillen equivalent.

Remark The notation L1 for K.p/–localisation for a prime p referes to the general
context of chromatic localisation: the notation Ln is often used to denote Bousfield
localisation with respect to the Johnson–Wilson theories E.n/ with

E.n/� D Z.p/Œv1; v2; :::; vn; v
�1
n �; jvi j D 2pi

� 2;

and in particular, LK.p/
DLE.1/ .

The proof divides into two main parts. Firstly, we modify the Universal Property of
Spectra introduced by Schwede and Shipley in [18, 5.1] to obtain a Quillen functor pair

X ^�W L1S ��! � C WHom.X;�/

for X Dˆ.L1S0/ where L1S0 denotes the K.2/–local sphere.

Secondly, we consider the left derived functor X ^L� composed with the inverse of
ˆ

Ho.L1S/
X^L�
�����! Ho.C/ ˆ

�1

���! Ho.L1S/:
It is an exact endofunctor of the homotopy category of K.2/–local spectra, mapping
the K.2/–local sphere L1S0 to itself. The spectrum L1S0 is a so-called small weak
generator of L1S . We show that any exact endofunctor fixing this small weak generator
must be a self-equivalence, thus X ^L� is an equivalence of categories induced by a
left Quillen functor. This means that L1S and C are Quillen equivalent.

This paper is organised as follows: Section 2 gives a brief review of the relevant defini-
tions. In Section 3, the Quillen pair X ^�W L1S ��! � C WHom.X;�/ is constructed.
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We prove it to be a Quillen equivalence in Section 4. Next, Section 5 summarizes
the necessary computations in the homotopy groups of the K.2/–local sphere and the
K.2/–local mod–2 Moore spectrum.

As we explain in the last section, there cannot be an odd primary version of the K.2/–
local Rigidity Theorem. For odd primes, Jens Franke constructed an equivalence of
triangulated categories

RW D2p�2.B/ �! Ho.L1S/
between the homotopy category of K–local spectra at an odd prime p and the derived
category of so-called quasi-periodic cochain complexes over a certain abelian category
B (see Franke [7, 3.1]). However, the underlying model categories C2p�2.B/ and L1S
are not Quillen equivalent. This means that C2p�2.B/ is a so-called “exotic model” for
L1S . Last, we give a criterion whether a model for the K.p/–local stable homotopy
category is exotic or not.

As for a prime p any algebraic model for Ho.L1S/ is exotic, the K.2/–local Rigidity
Theorem implies that, in particular, the K.2/–local stable homotopy category is not
equivalent to the derived category of an abelian category.
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2 Stable model categories – a review

Model categories were introduced in the 1960s by Quillen to provide a set-theoretically
clean device to describe homotopy [13]. A model category is a category equipped with
classes of morphisms called weak equivalences, fibrations and cofibrations satisfying
certain axioms (see, for example, Hovey [11, 1.1]). These axioms enable us to define a
notion of homotopy between morphisms.

Very roughly speaking, one then obtains the homotopy category Ho.C/ of a model
category C by formally inverting the weak equivalences, while the model category
axioms ensure that the result is indeed a category.
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1858 Constanze Roitzheim

In order to compare model categories, one studies morphisms of model categories,
so-called Quillen functors.

Definition 2.1 Let C and D be two model categories. An adjoint pair of functors
F W C ��! � D WG is called a Quillen functor pair if F preserves cofibrations and trivial
cofibrations (that is, cofibrations that are also weak equivalences), or equivalently,
if G preserves fibrations and trivial fibrations (that is, fibrations that are also weak
equivalences).

Notation Throughout this paper, we use the following convention: for an adjoint
functor pair F W C ��! � D WG , the top arrow denotes the left adjoint and the bottom
arrow the right adjoint.

Cofibrations are marked // // , fibrations // // and weak equivalences � // .

If an adjoint pair of functors is a Quillen pair, it induces an adjoint pair of functors
LF W Ho.C/ ��! � Ho.D/ WRG (see [11, Lemma 1.3.10]).

Definition 2.2 A Quillen functor pair is called a Quillen equivalence if in addition, for
all cofibrant X 2 C and fibrant Y 2D , a morphism f W FX !Y is a weak equivalence
if and only if its adjoint xf W X !GY is.

One can conclude that a Quillen functor pair is a Quillen equivalence if and only
if it induces an equivalence of homotopy categories [11, Prop. 1.3.13]. But not
only do Quillen equivalent model categories have equivalent homotopy categories,
they also have the “same homotopy theory” in the sense that the higher homotopy
information mentioned in the introduction such as mapping spaces is preserved by
Quillen equivalences.

For a pointed model category C , one can define an adjoint pair of suspension and loop
functors

†W Ho.C/ ��! � Ho.C/ W�:
Without loss of generality let X 2 C be fibrant and cofibrant. We choose a factorisation
X // // C

� // � of the unique morphism from X into the terminal object. The
suspension †X of X is defined as the pushout of the diagram

� Xoo // // C:

Dually, choosing a factorisation � � // A // // X , the loop functor �X of X

is defined as the pullback of the diagram

� // X A:oooo

Geometry & Topology, Volume 11 (2007)
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These constructions are not functorial or adjoint on C , but they become functorial and
adjoint in the homotopy category Ho.C/.

Definition 2.3 A pointed, complete and cocomplete model category C is called stable
if † and � are inverse equivalences of homotopy categories.

Examples for stable model categories are provided by the category of spectra S (see
the beginning of Section 3) or chain complexes C.A/ for certain abelian categories A.

The homotopy category Ho.C/ of a stable model category C carries the structure of
a triangulated category, where the exact triangles are given by the fiber and cofiber
sequences [11, 7.1.6].

In particular, the stable homotopy category Ho.S/ and the derived category D.A/ of
an abelian category A are triangulated categories.

Furthermore, note the following: given a Quillen pair F W C ��! � D WG with C and D
being stable model categories, the left derived and right derived functors LF and RG

are exact functors, that is, preserve exact triangles. This justifies the general rigidity
question for stable model categories, namely, whether two stable model categories
whose homotopy categories are equivalent as triangulated categories, are Quillen
equivalent. However, the Rigidity Theorems for Ho.S/ and Ho.L1S/ do not claim
that the given equivalence ˆ is induced by a Quillen functor, they just claim that the
given stable model categories are linked by some Quillen equivalence. The question
about possible uniqueness of this Quillen functor is still unanswered.

3 The Quillen functor pair

3.1 Universal property of spectra

In this section, we construct a Quillen functor pair between the category of spectra
equipped with the K.2/–local model structure L1S and our given stable model category
C .

Throughout this paper, S denotes the category of spectra with the stable Bousfield–
Friedlander model structure [4]. Here a spectrum X is a sequence of pointed simplicial
sets .X0;X1; :::/ together with structure maps �X

n W †Xn ! XnC1 . A morphism
f W X !Y of spectra is a collection of morphisms of pointed simplicial sets fnW Xn!

Yn that are compatible with the structure maps, that is, fnC1 ı �
X
n D �

Y
n ı†fn for all

n� 0. The K.2/–local model structure on the category of spectra is a localisation of
the Bousfield–Friedlander model structure:

Geometry & Topology, Volume 11 (2007)



1860 Constanze Roitzheim

Definition 3.1 (K.2/–local model structure for spectra) A morphism of spectra
f W A �! B is called a

� weak equivalence if K.2/�f W K.2/�.A/ �!K.2/�.B/ is an isomorphism,

� cofibration, if the induced map

†Bn[†An AnC1 �! BnC1

is a cofibration of simplicial sets for all n� 1 and A0 �! B0 is a cofibration
of simplicial sets,

� fibration if f has the right lifting property with respect to trivial cofibrations,
that is, cofibrations that are also K.2/�–isomorphisms.

Remark A spectrum X is fibrant with respect to this model structure if and only if it
is K.2/–local in Ho.S/ and an �–spectrum.

With the above choices, the category of spectra becomes a stable model category, de-
noted by L1S . (For the definition of generalised Bousfield localisations see Hirschhorn
[9, Definition 3.3.1]. For the existence of Bousfield localisations with respect to a
generalised homology theory, see [9, Theorem 4.1.1]. The author believes that this
theorem can be applied to this special case by using the set-theoretical methods of
Bousfield [1, Sections 10–11]. However, the author does not know of any written
reference for such a proof.)

Now, to construct our desired Quillen functor pair between L1S and C , we use the
following.

Universal Property of Spectra (Schwede–Shipley [18]) Let C be a stable model
category, and let X 2 C be fibrant and cofibrant. Then there is a Quillen adjoint functor
pair

X ^�W S ��! � C WHom.X;�/

where X ^� sends the sphere spectrum S0 to X .

Forgetting their model structures, S and L1S are the same categories, so the above
property gives us an adjoint pair of functors

X ^�W L1S ��! � C WHom.X;�/

for any X . However, it is not obvious under which conditions this functor pair is a
Quillen functor pair.

Geometry & Topology, Volume 11 (2007)
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Before we answer this, let us briefly summarize the construction of the functor

Hom.X;�/W C �! S:

For simplicity, let us assume C to be a pointed simplicial model category, that is, a
category equipped with three functors

�˝�W C � sSet* �! C

.�/.�/W sSet*op
�C �! C

mapC.�;�/W Cop
� C �! sSet*

satisfying certain adjunction properties and compatibilty with the model structure on
C . (For details, see Goerss and Jardine [8, Definition II.2.1].)

Notation In the pointed case, the first functor is usually denoted �^� instead of
�˝�. However, we choose to write �˝� to avoid confusion with the functor X ^�

as in the Universal Property of Spectra.

For Y 2 C , we define the nth level space of the spectrum Hom.X;Y / to be

Hom.X;Y /n WDmapC.!
nX;Y / 2 sSet*

where !nX is a cofibrant replacement of an nth desuspension of X . We define !nX

inductively by setting !0X DX and for n� 1 by choosing a factorisation

� // // !nX
�

'n

// // �.!n�1X / :

By e'n we denote the morphism †!nX �!!n�1X that is adjoint to 'n . The structure
map †Hom.X;Y /n�1 �! Hom.X;Y /n of the spectrum Hom.X;Y / is now given
by the adjoint of the map

mapC.!
n�1X;Y /

mapC. e'n ;Y /
��������!mapC.†!

nX;Y /'�mapC.!
nX;Y /:

As !nX is cofibrant in C , the functor mapC.!
nX;�/W C �! sSet* preserves fibrations

and trivial fibrations (see Hovey [11, Section 5]). One can conclude from this that
the functor Hom.X;�/W C �! S preserves fibrations and trivial fibrations (as shown
in Schwede and Shipley [18, 6.2]). In particular, Hom.X;Y / is an �–spectrum for
fibrant Y , which is something we are going to make use of in the proof of the next
proposition.

Geometry & Topology, Volume 11 (2007)
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Proposition 3.2 Let ˆW Ho.L1S/ �! Ho.C/ be an equivalence of triangulated cat-
egories, and let X be a cofibrant and fibrant object in C isomorphic to ˆ.L1S0/.
Then

X ^�W L1S ��! � C WHom.X;�/

is a Quillen functor pair with respect to the K.2/–local model structure on the left side.

This proposition will be proven at the end of Section 3.2.

Notation Throughout the rest of this paper, X will be a fixed fibrant and cofibrant
replacement of ˆ.L1S0/. For a stable model category D , and A;B in D , ŒA;B�D�
denotes the graded group of morphisms in the homotopy category of D . All spectra are
assumed to be 2–local, in particular S0 D S0

.2/
. By M we denote the mod–2 Moore

spectrum M.Z=2/.

3.2 v1–periodicity

The key ingredient in the proof of the proposition is showing that the spectra Hom.X;Y /
are K.2/–local for all fibrant Y 2 C . A spectrum A is K.2/–local if and only if v4

1

induces an isomorphism of its mod–2 homotopy groups ŒM;A�S� (see Bousfield [2,
Section 4]). To be more precise:

For a prime p , let K.1/ denote the first Morava K–theory with

K.1/� D Z=p Œv1; v
�1
1 �:

Any p–local finite spectrum A with H Q�.A/ D 0 but K.1/�.A/ ¤ 0 possesses a
v1 –self map (see Hopkins and Smith [10, Section 3]), that is, a map

v
pi

1
W †pi .2p�2/A �!A

inducing an isomorphism in K.1/–homology. The notation is standard but slightly
misleading since it seems to imply that vpj

1
is a power of an existing morphism v1 .

However, this need not be the case:

In the case p D 2, the mod–2 Moore spectrum M has a v1 –self map

v4
1 W †

8M �!M

that induces an isomorphism in K.1/–homology, or in this case equivalently, K.2/–
homology. This is the smallest degree v1 –self map that can be realised on M . Also,
this v1 –self map v4

1
need not be unique, but our methods do not depend on this choice.
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Lemma 3.3 The map

.v4
1/
�
W ŒM;Hom.X;Y /�Sn �! ŒM;Hom.X;Y /�SnC8

is an isomorphism for all n 2 Z and all Y 2 C . Thus, Hom.X;Y / is K.2/–local for all
Y .

Before we prove this lemma, we have to look at the image of certain elements in
��L1S0 under the functor X ^ �, namely the Hopf elements � 2 �1L1S0; � 2

�3L1S0 and � 2 �7L1S0 , and further, the elements y0 2 �0L1S0;y1 2 �1L1S0

and � 2 �9L1S0 .

(For details about the generators of the stable homotopy groups of the K.2/–local
sphere and their multiplicative relations see the table of generators of ��L1S0 at the
beginning of Section 5.1.)

Lemma 3.4 For �; �; �;y0;y1; and � in ��L1S0 as before, we have

X ^ �Dˆ.�/ or ˆ.�/Cˆ.y1/ X ^�Dˆ.�/ or ˆ.�/Cˆ.�2�/

X ^ � D uˆ.�/ for some odd u 2 Z X ^ � D xuˆ.�/ for some odd xu 2 Z

X ^y0 Dˆ.y0/ X ^y1 Dˆ.y1/:

Notation Here, by X ^� we actually mean the left derived functor L.X ^�/ of the
Quillen functor X ^�W S �! C in the Universal Property of Spectra (see Schwede
and Shipley [18]) . However, we omit the L in the notation for simplicity.

Since the proof of this lemma is rather long, we postpone it until a separate appendix.
We continue with the proof of Lemma 3.3.

Proof We now prove Lemma 3.3, that is, that the mod–2 homotopy groups of
Hom.X;Y / are v4

1
–periodic for all Y 2 C . By adjunction, it suffices to prove that

.X ^ v4
1/
�
W ŒX ^M;Y �Cn �! ŒX ^†8M;Y �Cn

is an isomorphism for all integers n. Via the equivalence ˆ, the left and right side are
isomorphic to ŒM; ˆ�1.Y /�

L1S
n and Œ†8M; ˆ�1.Y /�

L1S
n , respectively. Since .v4

1
/�

is an isomorphism between these two groups, and therefore

ˆ.v4
1/
�
W ŒX ^M;Y �Cn �! ŒX ^†8M;Y �Cn

is an isomorphism, we will now investigate how X ^v4
1

differs from ˆ.v4
1
/ by making

use of the preceding lemma and the computations in Section 5.
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The element X ^ v4
1

lies in ŒX ^†8M;X ^M �C
0

, which, via ˆ and Computation 5.7,
is isomorphic to

ŒM;M �
L1S
8
Š Z=4fv4

1g˚Z=2ff�� ı pinch; IdL1M ^��g:

By Corollary 5.8, 2v4
1
D incl ı� ı pinch, so by Lemma 3.4, either

2.X ^ v4
1/D .X ^ incl/ ı .X ^�/ ı .X ^ pinch/

Dˆ.incl/ ıˆ.�/ ıˆ.pinch/

Dˆ.incl ı� ı pinch/Dˆ.2v4
1/

D 2ˆ.v4
1/

or

2.X ^ v4
1/D .X ^ incl/ ı .X ^�/ ı .X ^ pinch/

Dˆ.incl/ ı .ˆ.�/Cˆ.�2�// ıˆ.pinch/

Dˆ.incl ı� ı pinch/C 0Dˆ.2v4
1/

D 2ˆ.v4
1/

as either X ^�Dˆ.�/ or X ^�Dˆ.�/Cˆ.�2�/. (Note that incl ı�2� ıpinchD 0

by (3).)

This means that X ^ v4
1

can only differ from ˆ.v4
1
/ by an element of order at most

two, that is,

X ^ v4
1 Dˆ.v

4
1/Cˆ.T /; for some T 2 ŒM;M �

L1S
8

; 2T D 0:

We will now show that all such v4
1
CT are isomorphisms in Ho.L1S/.

We will see that each T 2 ŒM;M �
L1S
8

with 2T D 0 induces the zero map in K.2/–
homology. It is enough to check this for 2v4

1
; �� ı pinch and IdL1M ^�� as each T

in question is a sum of those.

The elements � 2 �1L1S0 and pinch 2 ŒM;S0�
L1S
�1

both induce the zero map in
K.2/–homology for degree reasons, as K.2/�.S

0/ is concentrated in even degrees.
Hence,

K.2/�.IdL1M ^��/; K.2/�.�� ı pinch/ and K.2/�.2v
4
1/DK.2/�.incl ı� ı pinch/

are zero. (For the last equation, see Corollary 5.8.)

The element v4
1

is of course a K.2/�–isomorphism, and thus, each v4
1
CT also is, as

K.2/�.v
4
1 CT /DK.2/�.v

4
1/CK.2/�.T /DK.2/�.v

4
1/C 0DK.2/�.v

4
1/:
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Rigidity and exotic models for the K–local stable homotopy category 1865

Consequently, every v4
1
CT is an isomorphism in Ho.L1S/. Hence, by adjunction,

.v4
1/
�
W ŒM;Hom.X;Y /�Sn �! ŒM;Hom.X;Y /�SnC8

is an isomorphism for all n and Y , so Hom.X;Y / is a K.2/–local spectrum for all
Y 2 C .

Finally, we can prove Proposition 3.2, which says that for X Šˆ.L1S0/, the Universal
Property of Spectra provides a Quillen functor pair between L1S and C .

Proof We show that the functor

Hom.X;�/W C �!L1S

is a right Quillen functor, that is, preserves fibrations and trivial fibrations.

Since the cofibrations in S are the same as in L1S , the left adjoint

X ^�W L1S �! C

preserves cofibrations because X ^�W S �! C is already a Quillen functor by the
Universal Property of Spectra. Via adjunction it follows that

Hom.X;�/W C �!L1S

preserves trivial fibrations.

Now it remains to show that Hom.X;�/ preserves fibrations. By Dugger [6, A.2] it
suffices to show that Hom.X;�/ preserves fibrations between fibrant objects. We do
this in the following steps:

� for Y 2 C fibrant, Hom.X;Y / is fibrant in L1S
� Hom.X;�/ sends fibrations to level fibrations

� level fibrations between fibrant objects in L1S are fibrations.

Let Y 2C be fibrant. Then, by Schwede and Shipley [18, 6.2], the spectrum Hom.X;Y /
is an �–spectrum, as also described at the beginning of Subsection 3.1. By Lemma
3.3, Hom.X;Y / is K.2/–local. So since in L1S the fibrant objects are exactly the
K.2/–local �–spectra, Hom.X;Y / is fibrant for fibrant Y .

By construction, the functor Hom.X;�/ sends fibrations to level fibrations, see [18,
6.2]. But level fibrations between fibrant objects are fibrations in L1S :

Geometry & Topology, Volume 11 (2007)
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Let A;B 2L1S be fibrant, and let f W A �! B be a level fibration. As both A and
B are fibrant, f is a fibration in S . In L1S we use the Factorisation Axiom to factor
f as the composite of a fibration and a trivial cofibration

A // �
i

// C p
// // B:

By assumption, B is fibrant, and so must be C . So i is a K.2/�–isomorphism between
K.2/�–local spectra and therefore a ��–isomorphism. Also, i is a cofibration in S
since it is a cofibration in L1S , so i is a trivial cofibration in S .

Consequently, i has the left lifting property in S with respect to the level
fibration f

A��

i
��

A

f
����

C
p //

h
>>

B:

This gives us a commutative diagram in L1S

A
i //

f

��

id

''
C

h //

p
����

A

f

��
B B B

which says that f is a retract of the L1S –fibration p and therefore a fibration in L1S
by the Retract Axiom of model categories.

Putting these steps together, we have shown that Hom.X;�/ is a right Quillen functor,
which proves the proposition.

4 The Quillen equivalence

Again, let ˆW Ho.L1S/�!Ho.C/ be an equivalence of triangulated categories and let
X be a fibrant and cofibrant replacement of ˆ.L1S0/. In the last section we modified
the Universal Property of Spectra (see Schwede and Shipley [18]) to construct a Quillen
functor pair

X ^�W L1S ��! � C WHom.X;�/:

This section will be devoted to showing that .X ^�;Hom.X;�// is a Quillen equiva-
lence.

Notation The left derived functor of the Quillen functor X ^�W L1S �! C will be
denoted X ^L�.
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4.1 Homotopy type of Hom.X;X/

Our first goal is to show that Hom.X;X / is stably equivalent to the K.2/–local sphere
spectrum. Define

�W S0
�! Hom.X;X /

to be the morphism adjoint to the isomorphism X ^S0 Š X . Since Hom.X;X / is
K.2/–local by Lemma 3.3, � factors over the K.2/–local sphere

S0

L1

��

� // Hom.X;X /

L1S0

�

88

Proposition 4.1 The map � is a �n –isomorphism for all integers n.

Proof We have the following diagram

�nL1S0 Š ŒS0;S0�
L1S
n

�� //

X^L�

��

ŒS0;Hom.X;X /�Sn

ŒX;X �Cn

Š

adj

55jjjjjjjjjjjjjjjjj

It is commutative because, by definition of �, for ˛ 2 ��L1S0 the image of X ^L ˛

under the adjunction isomorphism is precisely � ı˛ . Hence, �� is an isomorphism if
and only if

X ^L
�W ŒS0;S0�L1S

n �! ŒX;X �Cn

is an isomorphism. We show that

‰W ŒS0;S0�L1S
n

X^L�
�����! ŒX;X �Cn

ˆ�1

���! ŒS0;S0�L1S
n

is an isomorphism for all n.

The statement that ‰ is an isomorphism in degree 0 through 9 follows directly from
Lemma 3.4 (see also the table at the beginning of Section 5.1). Therefore, by adjunc-
tion, �� is an isomorphism in degree 0 through 9. It follows that � also induces an
isomorphism between all rational homotopy groups of L1S0 and Hom.X;X / as these
are concentrated in degree zero.

Using the exact triangle

L1S0 2
�!L1S0 incl

��!L1M
pinch
���!L1S1
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together with the 5–lemma, it follows that

‰W ŒM;S0�L1S
n �! ŒM;S0�L1S

n

is an isomorphism for nD 0; :::; 8. (We are still using our fixed isomorphism X ^M Š

ˆ.L1M / which is omitted from our notation.)

Now M has a v
1

–self map v4
1

that induces an isomorphism in K.2/–homology, so

v4
1 W †

8L1M �!L1M

is an isomorphism in Ho.L1S/. Using the commutative diagram

ŒM;S0�
L1S
n

‰ //

Š.v4
1
/�

��

ŒM;S0�
L1S
n

Š.‰.v4
1
//�

��

ŒM;S0�
L1S
nC8

‰ // ŒM;S0�
L1S
nC8

we obtain by induction that

‰W ŒM;S0�L1S
n �! ŒM;S0�L1S

n

is an isomorphism for all integers n. (Note that the commutativity of the above diagram
does not depend on the choice of the fixed isomorphisms X ^M Š ˆ.L1M / and
X ^S0 Šˆ.L1S0/.) Hence, by adjunction, � gives an isomorphism on the mod–2
homotopy groups of L1S0 and Hom.X;X /.

But any map that induces isomorphisms between the rational homotopy groups and the
mod–2 homotopy groups of 2–local spectra must be a weak equivalence. Thus,

��W �nL1S0
�! �n Hom.X;X /

is an isomorphism for all n, so L1S0 and Hom.X;X / are stably equivalent via �.

With this, we can now prove the K.2/–local Rigidity Theorem:

4.2 Proof of the Main Theorem

Theorem 4.2 Let ˆW Ho.L1S/ �! Ho.C/ be an equivalence of triangulated cate-
gories, X a fibrant and cofibrant replacement of ˆ.L1S0/, and

X ^�W L1S ��! � C WHom.X;�/

the Quillen functor pair from Proposition 3.2. Then .X ^�;Hom.X;�// is a Quillen
equivalence.
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Proof By Hovey [11, 1.3.16], it suffices to show the following:

(1) RHom.X;�/W Ho.C/ �! Ho.L1S/ reflects isomorphisms

(2) The map A �! RHom.X;X ^L A/ is an isomorphism for all A 2 Ho.L1S/.

(Here RHom.X;�/ denotes the right derived functor of the Quillen functor
Hom.X;�/W C �!L1S .)

To prove these two points, we make use of the fact that Ho.L1S/ is a compactly
generated triangulated category:

The K.2/–local sphere is a small weak generator in Ho.L1S/, that is, ŒS0;��L1S

commutes with coproducts and detects isomorphisms. So by Keller [12, 4.2], any
triangulated subcategory of Ho.L1S/ that is closed under coproducts and containing
the sphere must already be Ho.L1S/ itself. Since ˆ is an equivalence of triangulated
categories, ˆ.L1S0/DX is a small weak generator for Ho.C/, that is, any triangulated
subcategory of Ho.C/ that is closed under coproducts and containing X is again Ho.C/
itself.

Let us first show that RHom.X;�/ reflects isomorphisms. For a morphism f W Y �!

Z in C , let RHom.X; f /W RHom.X;Y / �! RHom.X;Z/ be an isomorphism in
Ho.L1S/, so

ŒS0;RHom.X;Y /�L1S
�

RHom.X ;f /
��������! ŒS0;RHom.X;Z/�L1S

�

is an isomorphism. By adjunction,

ŒX;Y �C�
f�

�! ŒX;Z�C�

is an isomorphism.

But as X is a generator in Ho.C/ (see above), it detects isomorphisms, so

f W Y �!Z

is an isomorphism in Ho.C/ which proves the first point.

To prove the second point, we define T to be the full subcategory of Ho.L1S/ con-
taining those A 2 Ho.L1S/ such that

A �! RHom.X;X ^L A/

is an isomorphism. We want to prove that T D Ho.L1S/.

Geometry & Topology, Volume 11 (2007)



1870 Constanze Roitzheim

Since RHom.X;�/ and X ^L � are exact functors, T is triangulated. By
Proposition 4.1, L1S0 2 T . Now let Ai ; i 2 I , be a family of objects in T . We
want to prove that

ì2I

Ai 2 T . By adjunction,

h
S0;RHom

�
X;X ^L

�a
i

Ai

��iL1S

�
Š

h
X;X ^L

�a
i

Ai

�iC
�
:

As a left adjoint, X ^L� commutes with coproducts, soh
X;X ^L

�a
i

Ai

�iC
�
Š

h
X;
a

i

�
X ^L Ai

�iC
�
:

Since X Šˆ.L1S0/ is small, we haveh
X;
a

i

.X ^L Ai/
iC
�
Š

M
i

�
X;X ^L Ai

�C
�
Š

M
i

�
S0;RHom.X;X ^L Ai/

�L1S
�

:

As Ai 2 T for all i ,

ŒS0;Ai �
L1S
� Š

�
S0;RHom

�
X;X ^L Ai

��L1S
�

;

induced by

Ai
Š
�! RHom

�
X;X ^L Ai

�
:

So by naturality of the preceding isomorphisms,h
S0;

a
i

Ai

iL1S

�
Š

h
S0;RHom

�
X;X ^L

�a
i

Ai

��iL1S

�

is an isomorphism induced by the mapa
i

Ai �! RHom
�
X;X ^L

�a
i

Ai

��
:

Since the K.2/–local sphere detects isomorphisms, this map is an isomorphism in
Ho.L1S/.

So we have seen that T is triangulated, contains L1S0 and is closed under coproducts.

As Ho.L1S/ is compactly generated with generator L1S0 , every triangulated subcat-
egory of Ho.L1S/ containing L1S0 that is closed under coproducts must already be
Ho.L1S/ itself by the criterion of Keller mentioned earlier, so T D Ho.L1S/. This
means that

A �! RHom
�
X;X ^L A

�
is an isomorphism for all A 2 Ho.L1S/.
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We can now conclude that .X ^�;Hom.X;�// is a Quillen equivalence for X Š

ˆ.L1S0/. So, given an equivalence of triangulated categories

ˆW Ho.L1S/ �! Ho.C/

we have proven that C and L1S are Quillen equivalent, which proves the K–local
Rigidity Theorem at the prime 2.

5 Computations

For our main proofs we need information about ŒM;M �
L1S
� and ŒS0;M �

L1S
� in certain

degrees. The necessary computations will be summarized in this section.

5.1 Generators and relations of ��L1S 0

First, let us look at the homotopy groups of the K.2/–local sphere (see, for example,
Bousfield [2, Proposition 4.5] or Ravenel [14, 8.15]). The ring homomorphism

L1W ��S
0
�! ��L1S0

induced by K.2/–localisation is surjective in degrees � 2, and it has a cokernel
isomorphic to Z=2 in degrees 0 and 1. There is a unique order 2 element of �0L1S0

called y0 , and y1 D �y0 is a generator of the second Z=2 summand in �1L1S0 .
The other elements of ��L1S0 are given the names of their (not necessarily unique)
preimage in ��S0 . So in low degrees we have the elements shown in Table 1.

k �kL1S0 k �kL1S0

0 Z.2/f�g˚Z=2fy0g 5 0
1 Z=2f�;y1g 6 0
2 Z=2f�2g 7 Z=16f�g

3 Z=8f�g 8 Z=2f��g

4 0 9 Z=2f�2�; �g

Table 1

Moreover, we have

(1) 4� D �3; �y1 D 0;y2
0 D 0;y2

1 D 0; �y1 D 0 and �y0 D �
2�
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by Ravenel [14, 8.15.(d)]. Furthermore, we make use of the following Toda bracket
relations:

8� D h�; 8; �i

� 2 h2; 8�; �i .indeterminacy: �2�/

The element � is the unique element of the second Toda bracket with Adams filtration
five. For a reference for the relations, see Toda [19, Lemma 5.13, Lemma 10.9, tables
in Chapter XIV].

Notation Throughout this paper, we read Toda brackets from right to left, that is, in
the same direction as the composition of morphisms.

5.2 Homotopy groups and endomorphisms of L1M

We will now compute some homotopy groups of the K.2/–local mod–2 Moore spectrum.
The long exact homotopy sequence of the exact triangle

L1S0 2
�!L1S0 incl

��!L1M
pinch
���!L1S1

splits into short exact sequences of the form

0 �! �mC1L1S0=.2/
incl�
���! �mC1L1M

pinch�
����! f�mL1S0

g2 �! 0:

Here, f�mL1S0g2 denotes the 2–torsion of the group �mL1S0 , that is, all x 2

�mL1S0 with 2x D 0.

Let x 2 f�mL1S0g2 , and zx 2 �mC1L1M a lift of x , that is, an element with
pinch ızx D x . We have pinch�.2zx/ D 0, so 2zx has a unique preimage under the
map incl� . This preimage is �x 2 �mC1L1S0=.2/, as

incl�.�x/D .incl ı� ı pinch/ ı zx D 2zx;

remembering incl ı� ı pinchD 2 IdL1M :

Notation A preimage of an element x under the pinch map will be denoted by zx .
This zx need not be unique, but the following computations do not depend on the choice
of such an zx unless stated.

For some particular examples this gives us

Computation 5.1 �0L1M Š Z=2fincl; incl ıy0g
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Computation 5.2 �1L1M Š Z=4f zy0g˚Z=2fincl ı�g

Computation 5.3 �8L1M Š Z=2fincl ı��;f8� g
Computation 5.4 �9L1M Š Z=4ff�� g˚Z=2fincl ı�g

Also, note that

(2) incl ıy1 ı pinchD incl ı�y0 pinchD 2 zy0 pinchD zy0.2 pinch/D 0;

and

(3) incl ı�2� ı pinchD 2f�� pinchD f�� .2 pinch/D 0:

To specify the element f8� in Computation 5.3 and for further applications we need
the following:

Lemma 5.5 8� D pinch ıv4
1
ı incl in Ho.L1S/.

Proof The element pinch ıv4
1
ı incl lies in �7L1S0 . Since 2 pinchD 0, it has order

at most two, so the element in question is either 8� or 0.

Assume that pinch ıv4
1
ı inclD 0, then v4

1
ı incl factors over the fiber of the pinch map,

which, after K.2/–localisation, gives us the commutative diagram

†8L1M
v4

1 // L1M

L1S8

incl

OO

' // L1S0

incl

OO

The element ' lies in �8L1S0Š Z=2f��g, so ' D �a for either aD 0 or aD � . We
now apply the mth K.1/–homology to the above diagram, using this factorisation of
' :

K.1/m.L1S8/
incl� //

��

��

K.1/m.†
8L1M /

.v4
1
/� // K.1/m.L1M /

K.1/m.L1S7/
a� // K.1/m.L1S0/

incl�

OO

For even m, incl� D K.1/m.incl/ is an isomorphism, and the map v4
1

is a K.1/�–
isomorphism, so the upper row is an isomorphism for even m. However, �� lowers
the degree by one, so it must be zero since the K.1/–homology of the sphere is
concentrated in even degrees. Thus, we have arrived at a contradiction.
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So since there is no ' 2 �8L1S0 with incl ı' D v4
1
ı incl, the composition

pinch ıv4
1
ı incl 2 �7S0 is nonzero, has order two and therefore must be 8� .

Corollary 5.6 �8L1M Š Z=2fincl ı��; v4
1
ı inclg

Computation 5.7 ŒM;M �
L1S
8
Š Z=4fv4

1
g˚Z=2ff�� ı pinch; IdL1M ^��g

Proof We consider the short exact sequence

(4) 0 �! �9L1M=.2/
pinch�

����! ŒM;M �
L1S
8

incl�
���! f�8L1M g2 �! 0:

Let x 2f�8L1M g2 , xx 2 ŒM;M �
L1S
8

with incl�.xx/D xxıinclDx . Since 2 IdL1M xD

0, the element 2xx has a unique preimage q 2 �9L1M=.2/. This q lies in the Toda
bracket

˝
2 IdL1M ;x; 2

˛
:

L1S8 2 // L1S8 x //

incl $$JJJJJJJJJ
L1M

2 IdL1M
// L1M

†8L1M

xx

OO

pinch $$JJJJJJJJJ

L1S9

q2h2 IdL1M ;x;2i

OO

So to determine whether 2xx D 0 for any x 2 f�8L1M g2 , we have to compute the
brackets

˝
2 IdL1M ; v4

1
ı incl; 2

˛
and

˝
2 IdL1M ; incl ı��; 2

˛
.

Since 2 IdL1M D incl ı� ı pinch, the first bracket can be written as˝
2 IdL1M ; v4

1 ı incl; 2
˛
D
˝
incl ı� ı pinch; v4

1 ı incl; 2
˛

D
˝
incl ı�; pinch ıv4

1 ı incl; 2
˛

D
˝
incl ı�; 8�; 2

˛
D incl ı

˝
�; 8�; 2

˛
where the second and fourth equality are due to the Juggling Theorem (see Ravenel
[15, A1.4.6]) and the third equality is due to Lemma 5.5. This means that 2v4

1
is

hit in the short exact sequence by incl ı� or incl ı
�
�C �2�

�
, as � 2 h�; 8�; 2i with

indeterminacy �2� . Since

incl ı�2� ı pinchD 2f�� pinchD 0 by (3);
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we have in either case
2v4

1 D incl ı� ı pinch¤ 0:

The second bracket gives us˝
2 IdL1M ; incl ı��; 2

˛
D
˝
incl ı�; pinch ı incl ı��; 2

˛
D
˝
incl ı�; 0; 2

˛
D 0:

The indeterminacy here is 2�9L1M , that is, zero in �9L1M =.2/. Applying these
computations to the short exact sequence (4) gives us now the desired result: we now
know that ŒM;M �

L1S
8
Š Z=4˚ Z=2˚ Z=2 with v4

1
generating the Z=4 summand,

and z�� ı pinch generating one of the Z=2 summands. Looking at the sequence (4)
again we see that any element P 2 ŒM;M �

L1S
8

with P ı inclD incl ı�� can be taken
to be a generator of the other Z=2 summand, so we choose P D IdL1M ^�� (where
^ denotes the smash product in the homotopy category of S ).

Corollary 5.8 2v4
1
D incl ı� ı pinch¤ 0.

6 The case against odd primes

As mentioned in the introduction, in the case of p > 2, rigidity for K.p/–local spectra
cannot hold because of an example constructed by Franke in [7]. In this section, we
give a brief review of this exotic model and explain where the proof of the K.2/–local
Rigidity Theorem must fail when replacing 2 by an odd prime p .

6.1 Franke’s exotic models

Throughout the rest of this section, let p denote an odd prime. Franke proves that
the homotopy category of K.p/–local spectra is triangulated equivalent to the derived
category of .2p�2/–twisted cochain complexes over a certain abelian category B .

Theorem 6.1 (Franke [7]) There is an equivalence of categories

RW D2p�2.B/ �! Ho.L1S/

where D2p�2.B/ denotes the derived category of twisted cochain complexes over an
abelian category B , and Ho.L1S/ the homotopy category of K.p/–local spectra for
an odd prime p .

We are now going to explain the ingredients of this theorem. We begin with the abelian
categories A and B . The category B consists of Z.p/–modules together with the action
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of Adams operations  k ; k 2 Z�
.p/

, satisfying some further conditions. (Details can be
found in Bousfield [3] or Franke [7, 3.1], see also Clarke, Crossley and Whitehouse
[5].)

To build the category A out of the above category, we additionally need the following:
Let T W B �! B denote the following self-equivalence:

For all M 2 B; T .M / D M as a Z.p/–module, but on T .M /, the Adams
operation  k now equals kp�1 k W M �!M for all k 2 Z.

An object M2A is defined as a collection of modules MD .Mn/n2Z , where Mn 2B ,
together with isomorphisms

T .Mn/
Š
�!MnC2p�2 for all n 2 Z:

The resulting category A is equivalent to the category of E.1/�E.1/–comodules, with
E.1/ denoting the Adams summand of p–local K–theory with coefficient groups

E.1/� Š Z.p/Œv1; v
�1
1 �; jv1j D 2p� 2:

Note the following: For X a spectrum, the E.1/�E.1/–comodule E.1/�.X / is an
object of A in the above sense by taking Mn WD E.1/n.X /, and the operations  k

being the usual Adams operations.

From now on B will be viewed as the subcategory of A consisting of those objects
.Mn/n2Z such that

Mn D

�
M if n� 0 mod 2p� 2

0 otherwise

for a Z.p/–module M with Adams operations as before. This describes a so-called
split of period 2p� 2 of A: B �A is a Serre class such thatM

0�i<2p�2

B �!A

.Bi/0�i<2p�2 7�!

M
0�i<2p�2

Bi Œi �

is an equivalence of categories, where Œi � denotes the i –fold internal shift in the grading,
that is, M Œi �n DMi�n:

Now we describe the source of Franke’s equivalence.

Definition 6.2 The category C2p�2.B/ of twisted cochain complexes with values in
B is defined as follows:
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An object is a cochain complex C � with C i 2B for all i together with an isomorphism
of cochain complexes

˛C W T
2p�2.C �/ �! C �Œ2p� 2�D C �C2p�2:

The morphisms are those morphisms of cochain complexes f W C � ! D� that are
compatible with the periodicity isomorphisms, that is, the following diagram commutes:

T 2p�2.C �/
˛C //

T 2p�2.f /
��

C �Œ2p� 2�

f Œ2p�2�

��
T 2p�2.D�/

˛D // D�Œ2p� 2�:

Such a cochain complex C � is called injective if each C i is injective in B . A morphism
in C2p�2.B/ is called a quasi-isomorphism if it induces an isomorphism in cohomology.
C � is called strictly injective if it is injective, and, for each acyclic complex D� , the
cochain complex Hom�C2p�2.B/.D

�;C �/ is again acyclic.

Proposition 6.3 (Franke [7, 1.3.3, Proposition 3]) There is a model structure on
C2p�2.B/ such that

� weak equivalences are the quasi-isomorphisms,

� cofibrations are the monomorphisms,

� fibrations are the componentwise split epimorphisms with strictly injective kernel.

Notation D2p�2.B/ denotes the derived category of C2p�2.B/, that is, the homotopy
category of this model category with respect to the above model structure.

Franke’s functor RW D2p�2.B/ �! Ho.L1S/ now reconstructs a spectrum from the
algebraic data given by C � for each twisted cochain complex C � over B . The idea is
to first associate a spectrum to each of the boundaries of C � and the quotients of C �

by the boundaries. These spectra Xˇi
and Xi

.1� i � 2p�2/ are put into a diagram

Xˇ1
::: Xˇi�1

Xˇi
Xˇ2p�2

X1

OO
22

Xi�1

OOaa

Xi

OObbEEEEEEEE
:::

``

X2p�2
:

OO

In the next step, the Xˇi
’s and Xi

’s are pasted together by the homotopy colimit of
this diagram. So all in all, the result is a spectrum X DR.C �/ 2 Ho.L1S/ assigned
to a twisted cochain complex C � 2D2p�2.B/.
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The condition that p is odd is a special case of the condition that the splitting index of
the abelian category A (into 2p� 2 shifted copies of B ) is bigger than the injective
dimension of A, which is 2. This ensures sparseness in certain Adams spectral
sequences which the proof of Franke’s theorem relies on. For details, see Franke [7,
Section 2] and Roitzheim [16, Section 1–3].

Next, we note that

Proposition 6.4 The categories D2p�2.B/ and Ho.L1S/ are not Quillen equivalent.
In particular, R is not derived from a Quillen equivalence.

Proof The proof of this relies on the mapping spaces with respect to D2p�2.B/ and
Ho.L1S/. The categories D1.A/ and D2p�2.B/ are not simplicial, but the technique
of framings of Hovey [11, Chapter 5] allows the definition of a reasonable mapping
space functor

mapC.�;�/W Ho.C/�Ho.Cop/ �! Ho.sSet*/

for any pointed model category C .

A Quillen equivalence F W C ��! � D WG would induce an isomorphism of mapping
spaces

mapC.X;Y /
�
�!mapD.LF.X /;LF.Y //

for X;Y in C .

Back to our special case: The category C2p�2.B/ is abelian, so for all C1;C2 2

C2p�2.B/, the n–simplices of mapC2p�2.B/.C1;C2/ form an abelian group, and the
simplicial structure maps are group homomorphisms, so mapC2p�2.B/.C1;C2/ is not
just a simplicial set but a simplicial abelian group. From Goerss and Jardine [8,
Proposition III.2.20], it follows that mapC2p�2.B/.C1;C2/ is a product of Eilenberg–
Mac Lane spaces. However, there are spectra for which the mapping spaces over
L1S are not products of Eilenberg–Mac Lane spaces, for example mapL1S.S

0;S0/Š

QL1S0 D colimn�
nL1Sn: Thus, C2p�2.B/ and L1S cannot be Quillen equivalent

and C2p�2.B/ provides an exotic model for L1S .

6.2 A criterion for exotic models

In this subsection, let L1S denote the model category of spectra with the K.p/–local
model structure for p > 2. How can we check in general whether a stable model
category C provides an exotic model for L1S or not?

In fact, we are going to prove that the answer to this question relies on the behaviour
of just one element in the stable homotopy groups of the sphere: C is an exotic model
for Ho.L1S/ if and only if X ^ ˛1 D 0 for ˛1 2 �2p�3S0 and X ^�W S �! C as
before.
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The action of ��S0 on morphism sets We look at the action of ��S0 on the mor-
phism sets of a stable homotopy category C in order to single out possible exotic
models for Ho.L1S/. In addition to the mapping space functor

mapC.�;�/W Ho.Cop/�Ho.C/ �! Ho.sSet*/

introduced in the proof of Proposition 6.4, one can use framings again to define a
functor

�˝�W Ho.C/�Ho.sSet*/ �! Ho.C/

such that

A˝�W Ho.sSet*/ ��! � Ho.C/ WmapC.A;�/

is an adjoint functor pair for A 2 C (see Schwede and Shipley [18, Construction 2.4]).
For Y;Z 2 C , we now use this functor to define a left action

�nS0
˝ ŒY;Z�Ck

�
�! ŒY;Z�CnCk :

Let f 2 ŒY;Z�C
k
D Hom0

Ho.C/.†
kY;Z/ D Hom0

Ho.C/.Y ˝ Sk ;Z/. (Note that the
suspension functor † defined in Section 2 is isomorphic to the functor � ˝ S1 ,
with S1 denoting the simplicial 1–sphere.) For ˛ 2 �nS0 we choose a representative
aW SnCl �!Sl in Ho.sSet*/. The element f˝a now lies in ŒY˝Sk˝SnCl ;Z˝Sl �C

0

which is isomorphic to ŒY;Z�C
nCk

since C is stable.

Definition 6.5 We now define �.˛; f / WD ˛ �f to be the unique element in ŒY;Z�C
nCk

such that .˛ � f /˝ idSl D f ˝ a in ŒY ˝SnCkCl ;Z ˝Sl �C
0

. (For details, see [18,
Construction 2.4].)

Definition 6.6 Let C and D be stable model categories. A functor

ƒW Ho.C/ �! Ho.D/

is called ��S
0 –exact [18, Definition 2.2] if ƒ is exact and ��S

0 –linear, that is,
compatible with the ��S0 –action.

There is an important example of a ��S0 –linear functor: If F W C �! D is a left
Quillen functor, then its left derived functor LF W Ho.C/ �! Ho.D/ is ��S0 –exact
[18, Lemma 6.1]. Later in this section, we are going to apply this to the left Quillen
functor X ^�W S �! C from the Universal Property of Spectra.
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Universal Property of K.p/–local spectra Let us return to the proof of the Universal
Property for K.p/–local spectra and its first step, the question whether the spectra
Hom.X;Y / are K.p/–local for Y 2C . This is again equivalent to the mod–p homotopy
groups of Hom.X;Y / being v1 –periodic (see Bousfield [2, Section 4]).

Let MDM.Z=p/ denote the mod–p Moore spectrum. For odd primes, the v1 –self
map of M of smallest existing degree is not vp2

1
as in the case p D 2, but

v1W †
2p�2M �!M

itself. So a spectrum Hom.X;Y / is K.p/–local if and only if the precomposition
morphism

.v1/
�
W ŒM;Hom.X;Y /�Sn �! ŒM;Hom.X;Y /�SnC2p�2

is an isomorphism for all n. By adjunction, this is equivalent to

.X ^ v1/
�
W ŒX ^M;Y �Cn �! ŒX ^M;Y �CnC2p�2

being an isomorphism for all n. The morphism X ^ v1 lies in

ŒX ^M;X ^M �C2p�2 Š Œˆ.L1M /; ˆ.L1M /�C2p�2 Š ŒM;M �
L1S
2p�2

D Z=pfv1g:

So .X ^ v1/
� is either an isomorphism or the zero map.

The element ˛1 2 �2p�3L1S0 D Z=pf˛1g factors as

˛1 D pinch ıv1 ı incl;

which can be computed by similar methods to those in Section 5. It follows that
X ^ v1 D 0 if and only if X ^ ˛1 D 0. Let us investigate the two cases X ^ ˛1 D 0

and X ^˛1 ¤ 0 separately.

Case 1: X ^˛1 D 0 We are going to prove that in this case, C and L1S cannot be
Quillen equivalent by using the ��S0 –action defined earlier in this section.

The functor X ^�W S �! C from the Universal Property of Spectra is a left Quillen
functor, and therefore its left derived X ^� is ��S0 –linear. (Again, we omit the L

for left derived from our notation.) So the diagram

��S
0˝ ŒS0;S0�S�

� //

id˝.X^�/
��

ŒS0;S0�S�

X^�
��

��S
0˝ ŒX;X �C�

� // ŒX;X �C�
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commutes. Consequently, for ˛ 2 ��S0 we have

X ^˛ DX ^ .IdS0 �˛/

D .X ^�/ ı�.˛; IdS0/

D � ı .id˝.X ^�//.˛; IdS0/

D �.˛;X ^ IdS0/

D �.˛; IdX /

D ˛ � IdX :(5)

Let us assume that there is a functor

F W L1S �! C

that is part of a Quillen equivalence. (Without loss of generality, let F be a left Quillen
functor.) So then its derived functor LF would be a ��S0 –exact equivalence, in
particular ŒS0;S0�

L1S
� and ŒX;X �C� would be isomorphic as ��S0 –modules. However,

this cannot be the case as

˛1 � IdX DX ^˛1 D 0 and ˛1 � IdS0 D ˛1 ¤ 0:

So we have shown

Proposition 6.7 If X ^˛1 D 0, then L1S and C are not Quillen equivalent.

Next, we will see that the condition X ^˛1 ¤ 0 is both necessary and sufficient for
the existence of a Quillen equivalence between L1S and C .

Case 2: X ^˛1¤ 0 We have seen at the beginning of this subsection that X ^˛1¤ 0

implies that the mod–p homotopy groups of a spectrum Hom.X;Y / are v1 –periodic.
Therefore, all Hom.X;Y / are K.p/–local for Y 2 C . With the methods of Proposition
3.2 it now follows that

X ^�W L1S ��! � C WHom.X;�/

is a Quillen functor pair for X Dˆ.L1S0/.

Analogously to Section 4, we now show that Hom.X;X / is equivalent to the K.p/–
local sphere by showing that the map

�W L1S0
�! Hom.X;X /

is a ��–isomorphism. Again, this is the case if and only if

‰W ŒS0;S0�L1S
n

X^L�
�����! ŒX;X �Cn

ˆ�1

���! ŒS0;S0�L1S
n
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is an isomorphism for all n 2 Z. For n D �1; :::; 2p � 1 this follows easily as
the only nontrivial homotopy groups of L1S0 in this range are �0L1S0 D Z.p/f�g

and �2p�3L1S0 D Z=pf˛1g (see Ravenel [14, 8.10.(b)]). By our assumption that
X^˛1¤0 we can conclude that ‰.˛1/ is a nonzero multiple of ˛1 . With the 5–lemma
it follows that

‰W ŒM;S0�L1S
n �! ŒM;S0�L1S

n

is an isomorphism for nD 0; :::; 2p� 2.

We now use that v1W †
2p�2M �!M is an isomorphism in Ho.L1S/, so by proceed-

ing with exactly the same method as in Proposition 4.1 we conclude that �W L1S0 �!

Hom.X;X / induces a ��–isomorphism between L1S0 and Hom.X;X /, and so,
analogously to Theorem 4.2,

X ^�W L1S ��! � C WHom.X;�/

is a Quillen equivalence for odd primes.

We summarize this subsection in the following theorem:

Theorem 6.8 Let ˆW Ho.L1S/ �! Ho.C/ be an equivalence of triangulated cate-
gories, where L1S denotes the category of spectra with the K.p/–local model structure
for p odd. Then L1S and C are Quillen equivalent if and only if

X ^˛1 ¤ 0; for X Dˆ.L1S0/; ˛1 2 �2p�3S0
D Z=pf˛1g:

However, while this Theorem tells us if a model C for L1S is exotic or not, it does
not answer the question of whether two exotic models are Quillen equivalent.

In particular, let us call a model algebraic if it is a model that is also an abelian category,
such as Franke’s example C D C2p�2.B/. An algebraic model is necessarily exotic
by the mapping space argument given in the proof of Proposition 6.4. It would be
interesting to find out if two algebraic models are automatically Quillen equivalent or
not.

Appendix A Proof of Lemma 3.4

Lemma 3.4 For �; �; �;y0;y1; and � in ��L1S0 as before, we have

X ^ �Dˆ.�/ or ˆ.�/Cˆ.y1/ X ^�Dˆ.�/ or ˆ.�/Cˆ.�2�/

X ^ � D uˆ.�/ for some odd u 2 Z X ^ � D xuˆ.�/ for some odd xu 2 Z

X ^y0 Dˆ.y0/ X ^y1 Dˆ.y1/:
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Proof X ^ �: On the mod–2 Moore spectrum M , 2 IdM factors as

M
pinch
���! S1 �

��! S0 incl
��!M;

and this composition is nonzero. Here, pinch denotes the map that “pinches” off the
bottom cell of M , and incl denotes the inclusion of the zero-sphere into the bottom
cell of M . Consequently, 2 IdL1M factors as

L1M
pinch
���!L1S1 �

��!L1S0 incl
��!L1M:

Recall that � survives K.2/–localisation. We now consider the exact triangle

S0 2
�! S0 incl

��!M
pinch
���! S1

in Ho.S/. The functor X ^�W Ho.S/ �! Ho.C/ is exact on the homotopy level, ˆ
is exact and X ^S0 Šˆ.L1S0/, so we can choose an isomorphism

X ^M Šˆ.L1M /

such that X ^ pinch corresponds to ˆ.pinch/ and X ^ incl corresponds to ˆ.incl/.

The functor X ^� is additive on the homotopy level, so

(6) X ^ 2 IdL1M D 2 IdX^M ¤ 0;

since

ŒX ^M;X ^M �C0 Š Œˆ.L1M /; ˆ.L1M /�C0 Š ŒM;M �
L1S
0
Š Z=4fIdL1M g:

Furthermore, 2 IdX^M factors as

X ^M
X^pinch
�����!X ^S1 X^�

���!X ^S0 X^incl
����!X ^M:

Consequently,

X ^ � 2 ŒX;X �C1 Š Z=2fˆ.�/;ˆ.y1/g

cannot be zero.

Also, X ^ � cannot be ˆ.y1/ either: the composition

L1M
pinch
���!L1S1 y1

�!L1S0 incl
��!L1M

is zero by equation (2) in Section 5. So if X ^ �Dˆ.y1/, then
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2 IdX^M D .X ^ incl/ ı .X ^ �/ ı .X ^ pinch/

Dˆ.incl/ ıˆ.y1/ ıˆ.pinch/

Dˆ.incl ıy1 ı pinch/Dˆ.0/D 0;(7)

which is a contradiction to (6). It follows that either

(8) X ^ �Dˆ.�/ or X ^ �Dˆ.�/Cˆ.y1/:

X ^ � : Whether X ^ �Dˆ.�/ or X ^ �Dˆ.�/Cˆ.y1/, we have

X ^ �3
D .X ^ �/3 Dˆ.�/3:

as �y1 and y2
1

are both zero in ��L1S0 . Since in �3L1S0 there is the relation
�3 D 4� , we have

4.X ^ �/DX ^ �3
D 4ˆ.�/:

As 4ˆ.�/¤ 0 in ŒX;X �C
3
Š Z=8fˆ.�/g, X ^ � has order eight in this group and is

therefore a generator. Consequently

(9) X ^ � D uˆ.�/; for some odd integer u 2 Z:

X ^ � : For X ^ � we look at the Toda bracket relation

8� D h�; 8; �i :

From this we obtain
X ^ 8� 2 hX ^ �;X ^ 8;X ^ �i :

The indeterminacy of this Toda bracket is zero, thus, equality holds. By the computations
above, we get

8.X ^ �/DX ^ 8� D huˆ.�/;ˆ.8/;uˆ.�/i D u2ˆ.8�/

which is nonzero in ŒX;X �C
7
Š Z=16fˆ.�/g. We conclude that X ^ � has order 16 in

this group, so

(10) X ^ � D xuˆ.�/; for some odd integer xu 2 Z:

X ^�: Next, we use that � 2 h2; 8�; �i with indeterminacy �2� . It follows that

X ^� 2 hX ^ 2;X ^ 8�;X ^ �i :

Using our previous computations, this bracket either equals h2; ˆ.8�/;ˆ.�/i or
h2; ˆ.8�/;ˆ.�/Cˆ.y1/i.
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In the first case, h2; ˆ.8�/;ˆ.�/i Dˆ.h2; 8�; �i/D fˆ.�/;ˆ.�/Cˆ.�2�/g which
is what we want.

For the second case, we compute

(11) h2; 8�; �Cy1i � h2; 8�; �iC h2; 8�;y1i :

The bracket on the left side has indeterminacy �2� , which is the same as the
intederminacy of the first bracket on the right side. The last bracket has
indeterminacy zero and contains the set h2; 8�; �iy0 D f�y0; �y0C �

2�y0g D f�
2�g

(by the relations given in (1), so it equals f�2�g. Thus, equality holds in (11), and we
can also conclude in this case that

X ^� 2 fˆ.�/;ˆ.�/Cˆ.�2�/g:

X ^y0 : Next, we look at X ^y0 . Since y0 is the only nonzero torsion element in
�0L0S0 D Z.2/ ˚ Z=2, the element X ^ y0 must be a torsion element as well,
because the functor X ^� is additive. Consequently, X ^ y0 either equals ˆ.y0/ or
zero.

We now make use of the multiplicative relation �y0D �
2� (see Ravenel [14, 8.15.(d)]).

We have already seen that X ^ �2� D xuˆ.�2�/ ¤ 0, so X ^ y0 cannot be zero.
Consequently,

X ^y0 Dˆ.y0/:

X ^y1 : Now determining X ^y1 is easy: we have y1 D �y0 , so

X ^y1 D .X ^ �/.X ^y0/Dˆ.�/ˆ.y0/ or Dˆ.�/ˆ.y0/Cˆ.y
2
0/

which in either case equals ˆ.y1/ since y2
0
D 0 by Ravenel [14, 8.15.(d)].
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