A novel reduced spectral function approach for finite element analysis of stochastic dynamical systems

Kundu, A. and Adhikari, S. (2013) A novel reduced spectral function approach for finite element analysis of stochastic dynamical systems. In: Papadrakakis, M., Stefanou, G. and Papadopoulos, V. (eds.) Computational Methods in Stochastic Dynamics. Series: Computational methods in applied sciences, 26 (26). Springer: Dordrecht, pp. 31-54. ISBN 9789400751347 (doi: 10.1007/978-94-007-5134-7_3)

Full text not currently available from Enlighten.

Abstract

This work provides the theoretical development and simulation results of a novel Galerkin subspace projection scheme for damped dynamic systems with stochastic coefficients and homogeneous Dirichlet boundary conditions. The fundamental idea involved here is to solve the stochastic dynamic system in the frequency domain by projecting the solution into a reduced finite dimensional spatio-random vector basis spanning the stochastic Krylov subspace to approximate the response. Subsequently, Galerkin weighting coefficients have been employed to minimize the error induced due to the use of the reduced basis and a finite order of the spectral functions and hence to explicitly evaluate the stochastic system response. The statistical moments of the solution have been evaluated at all frequencies to illustrate and compare the stochastic system response with the deterministic case. The results have been validated with direct Monte-Carlo simulation for different correlation lengths and variability of randomness.

Item Type:Book Sections
Additional Information:Print ISBN: 9789400751330.
Status:Published
Glasgow Author(s) Enlighten ID:Adhikari, Professor Sondipon
Authors: Kundu, A., and Adhikari, S.
College/School:College of Science and Engineering > School of Engineering > Infrastructure and Environment
Journal Name:Computational Methods in Applied Sciences
Publisher:Springer
ISBN:9789400751347
Related URLs:

University Staff: Request a correction | Enlighten Editors: Update this record