A hybrid spectral and metamodeling approach for the stochastic finite element analysis of structural dynamic systems

Kundu, A., DiazDelaO, F.A., Adhikari, S. and Friswell, M.I. (2014) A hybrid spectral and metamodeling approach for the stochastic finite element analysis of structural dynamic systems. Computer Methods in Applied Mechanics and Engineering, 270, pp. 201-219. (doi: 10.1016/j.cma.2013.11.013)

Full text not currently available from Enlighten.

Abstract

A novel approach for uncertainty propagation and response statistics estimation of randomly parametrized structural dynamic systems is developed in this paper. The frequency domain response of a stochastic finite element system is resolved at randomly sampled design points in the input stochastic space with an infinite series expansion using preconditioned stochastic Krylov bases. The system response is expressed in the eigenvector space of the structural system weighted with finite order rational functions of the input random variables, termed spectral functions. The higher the order of the spectral functions, the more accurate is the order of approximation of the stochastic system response. However, this increased accuracy comes at a computational cost. This cost is mitigated by using a Bayesian metamodel. The proposed approach is used to the analyze the stochastic vibration response of a corrugated panel with random elastic parameters. The results obtained with the proposed hybrid approach are compared with direct Monte Carlo simulations, which have been considered as the benchmark solution.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Adhikari, Professor Sondipon
Authors: Kundu, A., DiazDelaO, F.A., Adhikari, S., and Friswell, M.I.
College/School:College of Science and Engineering > School of Engineering > Infrastructure and Environment
Journal Name:Computer Methods in Applied Mechanics and Engineering
Publisher:Elsevier
ISSN:0045-7825
ISSN (Online):1879-2138

University Staff: Request a correction | Enlighten Editors: Update this record