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Abstract. A set of novel hybrid projection approaches are proposed for approx-

imating the response of stochastic partial differential equations which describe

structural dynamic systems. An optimal basis for the response of a stochastic

system has been computed from the eigen modes of the parametrized structural

dynamic system. The hybrid projection methods are obtained by applying ap-

propriate approximations and by reducing the modal basis. These methods have

been further improved by an implementation of a sample based Galerkin error

minimization approach. In total four methods are presented and compared for

numerical accuracy and efficiency by analysing the bending of a Euler-Bernoulli

cantilever beam.

1 Introduction
Propagation of uncertainties in complex engineering dynamical systems is receiving in-

creasing attention. When uncertainties are taken in to account, the equations of motion of

discretised dynamical systems can be expressed by coupled ordinary differential equations

with stochastic coefficients. The computational cost for the solution of such system mainly

depends on the number of degrees of freedom and number of random variables. Among var-

ious numerical methods developed for such systems, the polynomial chaos based Galerkin

projection approach [1] shows significant promise because it is more accurate compared to

the classical expansion based methods [2, 3] and computationally more efficient compared to

the Monte Carlo simulation based methods [4]. However, the computational cost increases

significantly with the number of random variables and the results tend to become less accurate

for longer length of time. In this study, a set of novel projection approaches are developed

to address these issues. The rationale behind proposing a set of methods is to analyse the

effect of altering the nature of the coefficients and vectors associated with projection meth-

ods. Altering the nature of the coefficients and the vectors could result in great computational

savings, however, it could also induce additional error.

2 The stochastic finite element method
The stochastic parameter associated with structures which are governed by stochastic hy-

perbolic partial differential equations can be characterised by the random parameter a(x, θ) on

a bounded domain and a probability space (Θ,F , P). Through the use of the well established

stochastic finite element method, a set of discretised equations can be obtained to represent

and approximate the response of the governing stochastic equations.
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2.1 Discretisation of the random field
In order to proceed with the stochastic finite element method, it is necessary to discretise

the random field that is associated with the governing stochastic equations. In this study, we

consider the stochastic parameter a(x, θ) to be a Gaussian random field with a autocovariance

kernel Ca : D × D → R defined on the domain D. The covariance function is positive

definite, symmetric and square bounded. The random field a(x, θ) can be expressed by a

truncated Karhunen-Loève series expansion. This expansion is achieved by performing a

spectral decomposition of the covariance function of the field, thus resulting in

a(x, θ) = a0(x) +

M�

i=1

�
�λi
�ξi(θ)�φi(x) (1)

where a0(x) is the mean function of the random field and �ξi are uncorrelated standard random

variables. As the random field under consideration is Gaussian, the random variables are

deemed as uncorrelated standard normal random variables with zero mean and an unit vari-

ance. �λi and �φi(x) correspond to the eigenvalues and eigenvectors which satisfy the following

Fredholm integral equation of the second kind�

D

Ca(x1, x2)�φ j(x1) dx1 =
�λ j
�φ j(x2) ∀ j = 1, 2, ... (2)

If the eigenvalues rapidly decay, the value of M can be kept relatively small in order to obtain

an accurate depiction of the Gaussian random field.

2.2 The equation of motion of the stochastic system
The system matrices inherit the randomness of the input stochastic parameters and hence

the stochastic linear system for structural dynamics takes the form of

M(θ)ü(t; θ) + C(θ)u̇(t; θ) +K(θ)u(t; θ) = f0(t) (3)

where M(θ), C(θ) and K(θ) are the random mass, damping and stiffness matrices respectively,

u(t; θ) and its dotted variants are the system response vector and its time derivatives respec-

tively, and f0(t) is the deterministic forcing vector. Following from the discretized spectral

representation of the random field in (1), the system matrices can be expanded in terms of the

functions of the input random variables as

M(θ) =M0 +

p1�

i=1

µi(θi)Mi ∈ R
n×n and K(θ) = K0 +

p2�

i=1

νi(θi)Ki ∈ R
n×n (4)

Here the mass and stiffness matrices have been expressed in terms of their deterministic

components (M0 and K0) and the corresponding random contributions (Mi and Ki) obtained

from discretizing the mass and stiffness parameters with finite number of random variables

(µi(θ) and νi(θ)). The total number of random variables utilized to represent the stochastic

system matrices is M = p1 + p2. For most cases the damping parameter is expressed as linear

combination of the mass matrix and the system stiffness matrix which is the ‘proportional

damping model’ and this has been adopted in the present work.

2.3 Formulating dynamic systems in the frequency domain
The methods for obtaining the discretised random form of the governing partial differ-

ential equations are well-established in stochastic finite element literature. By utilising the

stochastic finite element method, the response a multiple-degrees-of-freedom structural vi-

bration problem in the frequency domain can be expressed as
D0(ω) +

M�

j=1

ξ j(θ)D j(ω)

 ũ(ω, θ) = f̃0(ω) (5)
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D0(ω) +

M�

j=1

ξ j(θ)D j(ω)

 ũ(ω, θ) = f̃0(ω) (5)

where D0(ω) ∈ CN×N represents the complex deterministic part of the system and D j(ω) ∈

R
N×N the random components. The total number of random variables, M, corresponds to the

number of random variables associated with the Karhunen-Loève series expansion. For the

systems under consideration, the expressions for D0 and D j are as follows

D0(ω) = −ω2M0 + iωC0 +K0 (6)

D j(ω) = −ω2M j for j = 1, 2, . . . , p1

D j(ω) = K j−p1
for j = p1 + 1, p1 + 2, . . . , p1 + p2 (7)

where M0, K0, C0 are deterministic mass, stiffness and damping matrices, and Mi and Ki are

symmetric matrices which contribute towards the random components of the mass and stiff-

ness matrices. ũ(ω, θ) and f̃0(ω) are the dynamic response and the forcing in the frequency

domain. For this study, ξ(θ) = {ξi(θ)} for i = 1, . . . ,M is considered to be a set of uncorre-

lated standard Gaussian random variables. The first p1 random variables are used to model

the random mass matrices, and the remaining random variables used to model the random

stiffness matrices. The damping framework utilised in this study is a constant modal damp-

ing model [5]. Therefore, the matrix ζ is a diagonal matrix which contains modal damping

factors, ζ = diag[ζ1, ζ2, . . . ζN] ∈ RN×N . It is assumed that the all the diagonal entries are

equal, therefore ζ1 = ζ2 = · · · = ζN . In the subsequent sections, different projection methods

for efficiently approximating the response of Equation (5) are proposed and compared. The

methods are subsequently applied for all θ ∈ Θ and for every frequency value ω ∈ Ω.

3 Derivation of the projection methods
We will initially consider two projection methods which have different characteristics.

In order to compare the accuracy and effectiveness methods, a benchmark solution can be

obtained by implementing a direct Monte Carlo approach [DMCS]

ũDMCS (ω, θ) = [−ω2M(θ) + iωC0 +K(θ)]−1f̃0(ω) (8)

for each frequency and realisation. The rationale behind proposing different methods is to

analyse the effect of the nature of the coefficients and their associated vectors. The first two

methods under consideration have the following characteristics:

• Projecting onto a stochastic basis with stochastic coefficients [SS]

• Projecting onto a deterministic basis with deterministic coefficients [DD]

For both methods, we aim to keep the basis vector independent of the frequency. This is done

in an attempt to reduce the computational effort if more than one frequency value were to be

analysed. We initially consider the case which incorporates the whole stochastic nature of

Equation (5).

3.1 Projecting onto a stochastic basis with stochastic coefficients [SS]

For such an approach, we initially consider the generalised undamped eigenvalue problem

K(θ)φk(θ) = λk(θ)M(θ)φk(θ); k = 1, 2, . . .N (9)

where λk(θ) and φk(θ) are the kth undamped random eigenvalue and eigenvector. For con-

venience, matrices that contain the whole set of random eigenvalues and eigenvectors are

defined as follows

Ω
2(θ) = diag [λ1(θ), λ2(θ), . . . , λn(θ)] ∈ RN×N and

Φ(θ) =
[
φ1(θ),φ2(θ), . . . ,φn(θ)

]
∈ RN×N (10)

The eigenvalues are arranged in ascending order so λ1(θ) < λ2(θ) < . . . < λn(θ) and their

corresponding eigenvectors are mass normalised and arranged in the same order. Therefore,
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it is apparent that ΦT (θ)M(θ)Φ(θ) = I and ΦT (θ)K(θ)Φ(θ) = Ω2(θ). As the undamped

eigenvectors from a complete basis, it is possible to obtain the response of Equation (5)

through projecting on the undamped eigenvectors. By combining the stated identities with

the stochastic finite representations introduced in the previous section, an expression for the

response of a stochastically parametrised system can be expressed as

ũS S (ω, θ) =

N�

j=1

α j(ω, θ)a j(θ) =

N�

j=1


φT

j (θ)f̃0(ω)

λ j(θ) − ω2 + 2i
�
λ j(θ)ωζ

φ j(θ) (11)

where N corresponds to the number of degrees of freedom associated with the dynamic struc-

ture. Therefore, the response of the dynamic stochastic system under consideration has been

represented in the required form.

3.2 Projecting onto a deterministic basis with deterministic coefficients [DD]
As a worst-case scenario, we consider the case of projecting deterministic coefficients

onto a deterministic basis. The method is initiated by considering the deterministic equivalent

of Equation (11), therefore, we deem all the eigensolution to be deterministic. For this case,

the response vector takes the following form

ũDD(ω) =

N�

j=1

γ0 j
(ω)c j (12)

where γ0 j
(ω) ∈ C and c j ∈ C

N are deterministic scalars and vectors respectively. If both

the undamped random eigenvalues and eigenvectors seen in Equation (11) are exchanged for

their deterministic counterpart, the response vector takes the following form

ũDD(ω) =

N�

j=1


φT

0 j
f̃0

λ0 j
− ω2 + 2i

�
λ0 j
ωζ

 φ0 j
(13)

where λ0 j
and φ0 j

denote the jth undamped deterministic eigenvalue and eigenvector respec-

tively. Due to all the terms in Equation (13) being deterministic, the stochastic nature of the

system is not at all incorporated into the response vector. It can be deduced that Equation

(13) provides the deterministic solution and therefore can be established as a worst case sce-

nario. However, if the coefficient of variation associated with the stochastic process is low,

this method could provide an adequate approximation of the mean of the true solution.

4 Computational reduction
At present, the computational time associated with both the proposed methods can be

considered quite high, especially for a high degree of freedom finite element system. This is

due:

• A large number of terms are present in the summations given by Equations (11) and (13).

At present, the number of terms in the series correspond to the number of degrees of free-

dom.

• Calculating the random eigensolutions is computationally expensive. This only applies to

the first method.

Combining these with the need to simulate the methods for a large number of sample points

result in a large computational effort. As a result, these issues have been addressed in the

following sections.

4.1 Approximating the undamped eigensolutions
Calculating the exact undamped random eigensolutions can be extremely expensive, espe-

cially if the number of degrees of freedom is large. Thus a sensitivity approach to approximate
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4.1 Approximating the undamped eigensolutions
Calculating the exact undamped random eigensolutions can be extremely expensive, espe-

cially if the number of degrees of freedom is large. Thus a sensitivity approach to approximate

the eigensolutions could computationally be a better option. Due to the low computational

effort associated with the first order perturbation method, this method has been used to ap-

proximate both the undamped random eigenvalues and eigenvectors. Therefore the random

eigenvalues and eigenvectors can be approximated by the following expansions

λ j ≈ λ0 j
+

M�

k=1

�
∂λ j

∂ξk

�
dξk(θ) and φ j ≈ φ0 j

+

M�

k=1

�
∂φ j

∂ξk

�
dξk(θ) (14)

where λ0 j
and φ0 j

are the jth deterministic undamped eigenvalue and eigenvector respectively,

and dξk(θ) is set of random variables. Expressions for the derivatives of the undamped random

eigenvalues and eigenvectors with respect to ξk are given by

∂λ j

∂ξk
= φT

0 j

�
∂K

∂ξk
− λ0 j

∂M

∂ξk

�
φ0 j

∂φ j

∂ξk
= −

1

2

�
φT

0 j

∂M

∂ξk
φ0 j

�
+

N�

i=1� j

φT
0k

�
∂K
∂ξk
− λ0 j

∂M
∂ξk

�
φ0 j

λ0 j
− λ0k

φ0k
(15)

The full algebraic details for obtaining the derivatives have been omitted, however for a com-

prehensive discussion about their derivations can be found in [6]. In the instance of Equation

(15), the values of both ∂M
∂ξk

and ∂K
∂ξk

are

∂M

∂ξk
=


Mk, for j = 1, 2, . . . , p1

0, otherwise

∂K

∂ξk
=


Kk−p1

, for k = p1 + 1, p1 + 2, . . . , p1 + p2

0, otherwise
(16)

where Mk and Kk − p1 correspond to the random components of the mass and stiffness ma-

trices.

4.2 Modal basis reduction

At present, all the methods described in Section 3 require the calculation and summation

of N terms. However, we aim to lower the computational effort of the proposed methods by

applying suitable truncations. By revisiting the ordering of the eigenvalues seen in Equation

(10), it can be deduced that

λ1(θ) < λ2(θ) < . . . < λN(θ) (17)

where λ j(θ) corresponds to the jth eigenvalue. From the scalar terms α j(ω, θ) and γ0 j
(ω) seen

Equations (11) and (13), it can be observed that the eigenvalues appear in the denominator.

The scalar α j(ω, θ) is shown for illustration

α j(ω, θ) =
φT

j (θ)f̃0

λ j(θ) − ω2 + 2i
�
λ j(θ)ωζ

(18)

For the values of j satisfying λ j(θ) + 2i
�
λ j(θ)ωζ > ω

2, it is apparent that the value of the

denominator increases as the value of j increases. Therefore, it is established that the value

of α j(ω, θ) generally decreases as the value of j increases. Consequently the upper limits of

the summations seen in Equations (11) and (13) can be lowered. In turn, these equations can

be expressed as

ũS S (ω, θ) ≈

nr�

j=1


φT

j (θ)f̃0

λ j(θ) − ω2 + 2i
�
λ j(θ)ωζ

φ j(θ) (19)
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ũDD(ω) ≈

nr�

j=1


φT

0 j
f̃0

λ0 j
− ω2 + 2i

�
λ0 j
ωζ

 φ0 j
(20)

respectively, where nr < N. The value of nr can either be predefined or it can defined by

applying an iterative framework.

5 Sample based Galerkin error minimisation
Two different projection methods have been proposed in Section 3. The first projects ran-

dom scalars onto a stochastic basis whilst the third method projects deterministic scalars onto

a deterministic basis. We have shown that it is possible to approximate the random eigensolu-

tions that arise in the proposed methods in order to lower the computational effort. However

these approximations, in addition to the modal reduction introduced in Section 4.2 introduces

error into the calculation. This has motivated an error minimisation technique through apply-

ing a sample based Galerkin approach [7]. As a result, in addition to the methods introduced

in Section 3, the following two projection methods are proposed:

• A sample based Galerkin approach with projecting onto a stochastic basis with stochastic

coefficients [SSG]

• A sample based Galerkin approach with projecting onto a deterministic basis with deter-

ministic coefficients [DDG]

The case of incorporating a sample based Galerkin approach with projecting onto a stochastic

basis with stochastic coefficients is initially considered.

5.1 A sample based Galerkin approach with projecting onto a stochastic basis

with stochastic coefficients [SSG]
The response vector for the given case is modified to take the following series represen-

tation

ũS S G(ω, θ) ≈

nr�

j=1

c j(ω, θ)


φT

j (θ)f̃0

λ j(θ) − ω2 + 2i
�
λ j(θ)ωζ

φ j(θ)

=

nr�

j=1

c j (ω, θ)α j (ω, θ)φ j (θ) (21)

Here α j(ω, θ) and φ j(θ) correspond to the random scalars and random eigenvectors seen in

Equation (11), whilst c j (ω, θ) ∈ C are constants which need to be obtained for each realisa-

tion. This can be done by applying a sample based Galerkin approach. We initially consider

the following residual

r(ω, θ) =

� M�

i=0

Di(ω)ξi(θ)

�� nr�

j=1

c j(ω, θ)α j(ω, θ)φ j(θ)

�
− f̃0(ω) ∈ CN (22)

where ξ0 = 1 is used in order to simplify the summation. Di(ω), ξi(θ) and f̃0(ω) correspond

to the terms arising in Equations (5). By making the residual orthogonal to a basis function,

the unknown c j(ω, θ) can be computed. As Equation (21) can be viewed as a projection onto

a stochastic basis, the residual is made orthogonal to the undamped random eigenvectors

r(ω, θ) ⊥ φk(θ) ∀ k = 1, 2, . . .nr (23)

As a sample based Galerkin approach is considered, applying the orthogonality condition

results in

φT
k (θ)

�� M�

i=0

Di(ω)ξi(θ)

�� nr�

j=1

c j(ω, θ)α j(ω, θ)φ j(θ)

�
− φT

k (θ)f̃0(ω)

�
= 0 (24)
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a stochastic basis, the residual is made orthogonal to the undamped random eigenvectors

r(ω, θ) ⊥ φk(θ) ∀ k = 1, 2, . . .nr (23)

As a sample based Galerkin approach is considered, applying the orthogonality condition

results in

φT
k (θ)

�� M�

i=0

Di(ω)ξi(θ)

�� nr�

j=1

c j(ω, θ)α j(ω, θ)φ j(θ)

�
− φT

k (θ)f̃0(ω)

�
= 0 (24)

By manipulating Equation (24) it is possible to re-write the equation in the following form

nr�

j=1

� M�

i=0

�
φT

k (θ)Di(ω)φ j(θ)
� �
ξi(θ)α j(ω, θ)

� �

������������������������������������������������������������������������������������������������
Z1(ω,θ)

c j(ω, θ)��������
c1(ω,θ)

= φT
k (θ)f̃0(ω)������������������

y1(ω)

(25)

By defining the vector c1 (ω, θ) =
�
c1 (ω, θ) c2 (ω, θ) . . . cnr

(ω, θ)
�T

, Equation (25) can be re-

written as

Z1(ω, θ)c1(ω, θ) = y1(ω, θ) j, k = 1, 2, . . . , nr (26)

where Z1k j
(ω, θ) =

�M
i=0

�
φT

k (θ)Di(ω)φ j(θ)
� �
ξi(θ)α j(ω, θ)

�
; ∀ j, k = 1, 2, . . .nr and y1(ω, θ) =

φT
k (θ)f̃0(ω). The number of equations that need to be solved in order to calculate the unknown

vector c(ω, θ) corresponds to the value of nr. By increasing the number of terms from nr to

nr+1, the number of terms in Z1(ω, θ) increases by 2n+1. Therefore the lower the dimension

of the reduced system, the fewer the number of equations that need to be solved. This is of

importance as the given procedure needs to be repeated for every realisation and for every

frequency under consideration.

5.2 A sample based Galerkin approach with projecting onto a deterministic basis

with deterministic coefficients [DDG]
A Galerkin approach can also be considered for the case that contains undamped deter-

ministic eigenvalues and eigenvectors. For this case, the response vector is defined as follows

ũDDG(ω, θ) ≈

nr�

j=1

c j(ω, θ)


φT

0 j
f̃0

λ0 j
− ω2 + 2i

�
λ0 j
ωζ

φ0 j

=

nr�

j=1

c j (ω, θ) γ0 j
(ω)φ0 j

(27)

where γ0 j
(ω) and φ0 j

correspond to the deterministic scalars and the undamped deterministic

eigenvectors introduced in Equation (13), and c j (ω, θ) ∈ C are unknown constants which

need to obtained for each realisation of each frequency. By applying a sample based Galerkin

approach, the following set of equations can be derived to obtain the unknown constants

Z2(ω, θ)c2(ω, θ) = y2(ω, θ) j, k = 1, 2, . . . , nr (28)

where Z2k j
(ω, θ) =

M�

i=0

�
φT

0k
Di(ω)φ0 j

� �
ξi(θ)γ0 j

(ω)
�

;

γ0 j
(ω) =

nr�

j=1


φT

0 j
f̃0

λ0 j
− ω2 + 2i

�
λ0 j
ωζ



y2(ω) = φT
0k

f̃0(ω) ∀ j, k = 1, 2, . . .nr

and c2(ω, θ) is the vector that contains the unknown constants c j(ω, θ)

Similarly to the SSG method, Equation (28) needs to be solved for every realisation in each

considered frequency. The computational effort associated with this method is considerably

lower than the SSG method as the scalars γ0 j
only need to be calculated once for each given

frequency. The aim of this method is to incorporate the whole stochastic nature of system

within the unknown scalars c j(ω, θ). However it is not known if the Galerkin approach can

substantially lower the error as all the eigensolutions used are deterministic. This method is

of significant interest as it is known that the behaviour of deterministic and stochastic systems

can differ substantially, especially if the coefficient of variation is significantly large.



8

MATEC Web of Conferences 211, 01003 (2018) https://doi.org/10.1051/matecconf/201821101003
VETOMAC XIV

6 Numerical example
The four methods proposed and discussed in Sections 3 and 5 are applied to analyse a

classical Euler-Bernoulli cantilever beam. As the beam is clamped at one end, the displace-

ment and rotational degrees of freedom at that particular end are zero. The beam is of length

L, width W and thickness H and is discretised into 100 elements by applying the stochastic fi-

nite element method. This results in the cantilever beam having 200 degrees of freedom. The

values of the parameters and the properties of the cantilever beam are given in Table 1. For

Paramater Value

Length of the beam (L) 1.00 m

Width of the beam (W) 0.03 m

Height of the beam (H) 0.003 m

Material density of the beam (ρ) 7800 kgm−1

Constant modal damping factor (ζ) 2%

Deterministic value of the Young’s modulus of the material (E0) 69 × 109 Nm−2

Deterministic value of the second moment of area (I0) 6.75 × 10−11 m4

Table 1: The values of the parameters and the properties of the cantilever beam.

the cantilever beam, its bending rigidity, EI, is assumed to be a stochastic parameter. This

stochastic parameter is assumed to be a stationary Gaussian random field of the following

form

EI( θ) = E0I0 [1 + a(x, θ)] (29)

where x corresponds to the coordinate along the length of the beam, a(x, θ) is a zero mean

stationary Gaussian random field, and E0I0 is the mean of the bending rigidity. The autoco-

variance kernel of the random field is given by

Ca(x1, x2) = e(|x1−x2|)/µa (30)

where µa corresponds to the correlation length. The values of the correlation length and input

standard deviation are set to µa =
L
2

and σa = 0.20 respectively, whilst four terms have been

retained in the Karhunen–Loève expansion. The case of an unit amplitude harmonic point

load acting on the free tip of the beam is considered for the frequency range 0 − 450 Hz at

an interval of 2 Hz. This corresponds to considering 226 frequency values. For the given

beam, this allows for the first eight resequence frequencies to be studied. 10, 000 Monte

Carlo simulation samples are considered for each frequency step. It has been numerically

verified that using 10, 000 Monte Carlo samples gives a satisfactory level of convergence for

the first two moments of the quantities of interest. By taking the DMCS method to be a

benchmark, the proposed methods, SS, DD, SSG and DDG have been compared through the

use of relative error indicators. The approximate L2 relative error of the mean of the response

vector at each frequency step is defined as follows

ε̂
µ
L2 (ω) =

||µDMCS (ω) − µCM(ω)||L2

||µDMCS (ω)||L2

(31)

where µDMCS denotes the mean of the response vector obtained by using the DMCS method,

and µCM denotes the mean of the response vector obtained by using a comparable method.

This method ensures that the error arising from each of the projection methods can be char-

acterised by a single value for each ω ∈ Ω. Figure 1 depicts the log of the approximate

L2 relative error of the mean of the response vector for different values of nr and for each

frequency step. It can be easily deduced that the DD method introduces considerably more

error than the other methods at the resonance frequencies. The visible troughs seen in the
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load acting on the free tip of the beam is considered for the frequency range 0 − 450 Hz at
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verified that using 10, 000 Monte Carlo samples gives a satisfactory level of convergence for

the first two moments of the quantities of interest. By taking the DMCS method to be a
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vector at each frequency step is defined as follows
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where µDMCS denotes the mean of the response vector obtained by using the DMCS method,

and µCM denotes the mean of the response vector obtained by using a comparable method.

This method ensures that the error arising from each of the projection methods can be char-

acterised by a single value for each ω ∈ Ω. Figure 1 depicts the log of the approximate

L2 relative error of the mean of the response vector for different values of nr and for each

frequency step. It can be easily deduced that the DD method introduces considerably more
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Figure 1: The log of the approximate L2 relative error of the standard deviation of the response vector

when σa = 0.20. The contour plots depict the log of the approximate L2 relative error for different

values of nr (y-axis) at each frequency step (x-axis).

relative error arising from the SS, SSG and DDG methods correspond to the resonance fre-

quencies. For a given value of nr the trend of the approximate relative error increases with

the frequency. This is to be expected as the higher order terms in the summations become

more important as the frequency increases. The relative errors induced by both the sample

based Galerkin methods are almost identical. This suggests that computing the stochastic

eigensolutions is non-essential if a sample based Galerkin method is used. The expression

for the approximate L2 relative error of the standard deviation takes a similar form

ε̂σ
L2 (ω) =

||σDMCS (ω) − σCM(ω)||L2

||σDMCS (ω)||L2

(32)

where σDMCS denotes the standard deviation of the response vector obtained by using the

DMCS method, and σCM denotes the standard deviation of the response vector obtained by

using a comparable method. Figure 2 depicts the log of the approximate L2 relative error of

the standard deviation of the response vector for different values of nr at each frequency step.

It is apparent that the DD method does not capture the standard deviation of the DMCS very
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Figure 2: The log of the approximate L2 relative error of the standard deviation of the response vector

when σa = 0.20. The contour plots depict the log of the approximate L2 relative error for different

values of nr (y-axis) at each frequency step (x-axis).

well, however this was to be expected. The SS method does not capture the standard deviation

of the DMCS very well either, however, all the sample based Galerkin methods capture the

necessary standard deviation very well, especially when the frequency step corresponds to a

resonance value. Similarly to the case of the approximate L2 relative error of the mean of the

response vector, the approximate L2 relative error of the standard deviation of the response

vector are extremely similar for both the Galerkin methods.

7 Conclusion
In this study, a set of hybrid projection methods has been proposed to analyse the effect

of altering the nature of the coefficients and vectors which are associated with projection
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methods. Following the implementation of a stochastic finite element method, two projec-

tion methods have been developed by utilising the random eigenvalue problem. The first

method utilises both random eigenvalues and eigenvectors, and the second uses determinis-

tic eigensolutions. In order to reduce the computational effort associated with the methods,

the random eigensolutions have been approximated by a first order perturbation and only the

dominant projection terms have been retained. Due to the approximations and the reduced

modal basis, two additional projection methods have been proposed. These methods utilise a

sample based Galerkin error minimisation approach in an attempt to lower the error. In the

example provided, it is apparent that if the Galerkin error minimisation approach is applied,

calculating the stochastic eigensolutions is unwarranted. The Galerkin method compensates

for the error induced while utilising the baseline eigenmodes. Therefore, a Monte Carlo type

sample-based method to evaluate the coefficients and their associate basis can be avoided.

The application of the Galerkin error minimisation approach in conjunction with projecting

onto a deterministic basis with deterministic coefficients [DDG] produces a level of accuracy

comparable to any of the other proposed methods. Our study leads us to suggest that this

simple approach has significant potential for analysing stochastic structural systems.
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