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ABSTRACT
Gestures augment speech by performing a variety of communica-
tive functions in humans and virtual agents, and are often related
to speech by complex semantic, rhetorical, prosodic, and affec-
tive elements. In this paper we briefly present an architecture for
human-like gesturing in virtual agents that is designed to real-
ize complex speech-to-gesture mappings by exploiting existing
machine-learning based parsing tools and techniques to extract
these functional elements from speech. We then deeply explore the
rhetorical branch of this architecture, objectively assessing specifi-
cally whether existing rhetorical parsing techniques can classify
gestures into classes with distinct movement properties. To do this,
we take a corpus of spontaneously generated gestures and corre-
late their movement to co-speech utterances. We cluster gestures
based on their rhetorical properties, and then by their movement.
Our objective analysis suggests that some rhetorical structures are
identifiable by our movement features while others require fur-
ther exploration. We explore possibilities behind these findings
and propose future experiments that may further reveal nuances
of the richness of the mapping between speech and motion. This
work builds towards a real-time gesture generator which performs
gestures that effectively convey rich communicative functions.
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1 INTRODUCTION
Gestures play a powerful role in human face-to-face interaction
[21, 30], and moreover reflect the relation between thought, speech,
and motion [10, 30]. Gestures are shown to mirror the fine-grained
structure of dialogue, such as its underlying architecture comprised
of logical and rhetorical units [19]. The complexity of the rela-
tionship between gesture and language is also compounded by
the multiple levels at which one can observe correlations between
motion and speech. Grady [15] found that situated language is
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frequently used to ground abstract metaphors in concrete physi-
cal descriptors (“These fabrics aren’t quite the same, but they’re
close”, p. 283), while Chiu et al. [7] showed how these conceptual
metaphors are readily mapped onto everyday gestures.

One example of the multiple ways in which the communicative
intention can be reflected in gestures is when a person presents
the option of an “important or trivial idea” using different gestural
performances. In one scenario they may emphasize the rhetorical
contrast of “important or trivial” by holding up their right hand
for important and their left hand for trivial. In another situation
they may focus on the semantic aspects of the contrast, making
a large gestural frame to emphasize “important,” and move their
hands close together when they utter “trivial” in order to convey
the relative significance of the ideas through the metaphorical
connection between importance and size.

Because the relationship between speech and gesture is nuanced,
gestures generated by virtual agents often lack the same complexity
displayed in human performances. Some gesture generators are
rule-based [5, 7], and thus have a limited library of both gestures
and understandings of when to deploy them. While many rule
based approaches use acoustic data to modulate gesture [24, 27, 33]
they are still beholden to rules which behavior designers implant
in them. These rules, while effective and grounded in theory, are ul-
timately non-exhaustive and often prescriptive instead of reflective
of gestures which occur naturally and spontaneously.

End-to-end machine learning approaches combat this, and have
recently gained significant traction [12, 13]. These instead take
video and audio data and use it to learn a mapping of speech to
gesture. One challenge here is the need for sufficient data to cap-
ture the complex multi-faceted mapping between communicative
function and gestures. As a result these technique are very good
at conveying prosodic elements in the speech such as emphasis
through rhythmic beat gestures [13, 27] but they lack the sufficient
data to capture more complex relationships; they assume the ges-
ture is solely driven - or at least captured - by the acoustic properties
of speech, as opposed to some deeper communicative function that
may not be reflected acoustically. In addition, these techniques
largely forego designer control, other than limiting the data that is
the input to machine learning, to, for example, specific speakers in
order to capture that speaker’s style [13].

Nevertheless, large language corpora have led to a range of
evolving natural language tools, derived using machine learning,
that can analyze prosody [27], syntactic structure [6], semantic
and metaphoric elements [1, 31, 37] as well as rhetorical structure
within text and dialog [18, 26, 34]. In addition, there is considerable



un-annotated video data that is available to analyze gestures, for
example using tools such as OpenPose [4].

Our work has pursued the following ideas: (1) these different
analysis techniques provide a way to extract different elements
(semantic, rhetorical and prosodic) from speech while avoiding
the limited data problem, (2) if we break analysis down into these
elements we may be able to afford more designer control, (3) within
a particular analysis element, we assume there will be a difference in
gestural motion properties in order for the communicative function
to be effectively conveyed, and (4) the breakdown into function
and gestural motion also supports driving gestures directly from
communicative functions if available. This suggests the following
approach to generation: Perform these distinct analyses on speech
extracted from video data. Within a particular analysis, such as
rhetorical structure, cluster the associated gesture videos based
on motion properties to derive clusters associated with different
rhetorical elements such as contrast, elaboration, etc. These clusters
then provide candidate gestural motions to convey these functions.

In this paper, we present and assess a potential architectural
model of gesture generation which integrates rhetorical, seman-
tic, affective, and acoustic relationships between utterances and
their accompanying gestural motions. We first present the overall
architecture, and then deeply explore the implementation of the
rhetorical branch of this model as a demonstration of this novel
method of clustering gestures based on co-speech elements and
motion. We present our method of comparing and clustering ges-
tural motion, building off of multiple third-party ontologies and
ML-based NLP tools and the motion database found in [13], and
provide techniques for evaluating the clustering of these gestures,
as well as ways to overlay clusters to provide a complex picture of
the relationship between motion and speech. We focus on what this
clustering technique can objectively tell us about the relationships
between rhetorical structure and gestural motion.

2 ARCHITECTURE OVERVIEW
In this section we present an architecture for a virtual agent which
uses a pre-trained model to perform gestures, and which is agnostic
about how the animations are realized.We refer to this as Clustering
by Communicative Function and Motion (CCFM).

Our proposed architecture attempts to generate gestures which
carry the rhetorical, semantic, and affective communicative func-
tions of natural human gestures. While these categories are non-
exhaustive, there is reason to believe that these provide an effective
foundation for gesture analysis [7, 19, 37]. Since our demonstration
and assessment in this paper focuses on rhetorical structure, we
provide background on its relevance to gesture generation, with
the recognition that all these elements play fundamental roles in
non-verbal communication [2, 10, 36].

While the relationship between discourse structure and gesture
has been explored in virtual agents, we explicitly explore the rela-
tionship between rhetorical structure and gesture with respect to
Rhetorical Structure Theory [25]. Lascardes & Stone [23] conduct
similar work bridging formal analyses with pragmatic interpreta-
tion and generation mechanisms, demonstrating the importance of
the shared roles of theoretical and applied work in this area.

Previous studies have used information contained in rhetori-
cal structures to generate nonverbal behaviour in virtual agents.

Figure 1: Overall architecture of generative model. During the
pre-training step, example USG pairs A through E are tagged and
grouped into functional clusters corresponding to the utterance. An
elaboration on motion sub-clusters is found in Figure 2.

For example, [27] used a rule-based algorithm to extract semantic
and rhetorical content from text and further applied it to generate
nonverbal behavior, including gestures. By using the semantic and
rhetorical content of discourse in addition to prosody to generate
nonverbal behaviour, the character was shown to become more
life-like, and was rated more highly on appropriateness compared
to either prosodic based or random gestures. An important compo-
nent of the mapping between speech and gesture thus appears to
be the high-level relations between units of speech that might be
projected onto specific hand movements during communication.

2.1 Clustering by Communicative Function
and Motion (CCFM)

Our framework takes as input a piece of text and optionally an audio
performance of that text. Its output can be used as an abstraction to
an animation system. This system tags input speech with a variety
of linguistic functional (discrete) labels using third-party parsers,
which it then uses to derive appropriate gestures. Acoustic input is
optional as each functional component of this model acts separately,
and all available information is concatenated at the end.

The architectural overview for this model is shown in Figure
1. The pipeline contains three parallel processes for rhetorical, se-
mantic, and affective domains 1. It clusters gestures together cate-
gorically by tags given by the parsers, derived from the gesture’s
co-speech utterance. This way, when given an utterance, the agent
performs a gesture that occurred with a linguistically similar utter-
ance in the past. This works first by creating the clusters (Section
2.2) offline, then exploiting these pre-calculated clusters at run-time
(Section 2.3).

1In this proposed architecture, acoustic information is to be used primarily to generate
beat gestures, modulate expressive dynamics of gestures, as well as determine domain
priorities over the gestural analyses spanning the utterance in the event multiple
relevant domains cannot be co-articulated with a single gesture. In addition, letting
acoustic information be optional allows the generator flexibility to use pre-recorded
speakers or text-to-speech that may lack interesting prosodic variation.



2.2 Pre-training the model
In pre-training, the model draws from a set of gestures and their
associated audio and transcription of utterances. Throughout this
paper, we refer to each utterance segment and the gesture that
co-occurs with it temporally as an Utterance-Segment-Gesture
(USG) pair. In this context, the Utterance Segment is the segment
of the utterance which is relevant to one particular rhetorical tag.
For example, the phrase “I would tell him, but it is too late” would
be parsed into multiple USGs: “I would tell him,” and “but it is
too late,” and the relevant motion (specifically the gestural stroke)
associated with only the corresponding specific segment of the
overall utterance.
2.2.1 Functional Domains. For the purposes of this architecture we
define a Functional Domain as a level at which natural language
can be analyzed. In this case, we refer to the Rhetorical, Affective,
and Semantic domains.

The architecture requires an interface to third-party Functional
Parsers, with the possible outputs from these parsers defining the
set of Functional Tags that can be applied to USG pairs in the
input dataset. This interface makes the architecture agnostic to the
parser’s implementations. It is thus suitably flexible to accommo-
date evolving rhetorical, semantic, and affective text parsers popular
in NLP communities, as well as acoustic feature extractors2. This
modularity also allows our architecture to take a communicative in-
tent or function as input, instead of text or audio. This feature gives
it flexibility and an advantage over end-to-end machine learning,
and makes it compatible with SAIBA guidelines for implementing
virtual agents [22].
2.2.2 Clustering by Function and Motion. The architecture uses the
functional parsers to assign functional tags to all USG pairs. Each
USG pair thus has at least one functional tag within each functional
domain.With these tags, it establishes a Functional Clustering by
grouping USG pairs together with others with the same functional
tag. This defines different clusterings for each functional domain,
with different USG pairs grouped together in different domains.

For each cluster in each functional domain, it then creates a Sub-
clustering based on the motion of the gesture (Figure 2). Each USG
pair thus appears in exactly one (motion-derived) sub-cluster in at
least one (functional) cluster, for each functional domain (Figure 1).

The motion sub-clusters are further refined through pruning
and combining. It is necessary to prune out sub-clusters which are
significantly larger than the rest. These can occur due to noise,
because not every gesture within a USG pair with a particular
functional tag is necessarily relevant to that functional domain.
In the “important or trivial” example, in the Size cluster, this USG
pair may not cluster neatly with others, instead clustering into
a messier sub-cluster which can be avoided at runtime as it is
unlikely to contain gestures that are meaningfully associated with
the “Size” semantic aspect of speech. Accordingly, the architecture
works by assigning multiple functional tags, forming a categorical
clustering for each functional domain. This explicitly recognizes
that the gesture may be relevant to, for example, the rhetorical
structure of the utterance, but not to the semantic content.

2Although switching parsers would require an interface to be defined between the
parser output and input to this model. For example, the output of rhetorical parsers
differ according to the underlying theory on which they are based.

Figure 2: An illustration of rhetorical motion sub-clusters
within tagged clusters in the functional Rhetorical domain.

Large motion sub-clusters also form because speakers are not
constantly in motion as they speak, so many gestures have little
to no motion at all and cluster together (motion does not take the
speaker’s static pose into account).

Following pruning of each sub-clustering, each sub-cluster is
compared to each sub-cluster in the other domains to create a
distance matrix for all sub-clusters that spans across functional
domains. This matrix describes the difference in motion between
one sub-cluster and all other sub-clusters (across all functional
domains), providing crucial further information with which an
agent can select which sub-cluster to execute at runtime.We discuss
the runtime use of this distance matrix below.

2.3 Runtime execution
At runtime, an agent uses the same parsers from pre-training to
analyze an incoming utterance to perform. The agent may then
select one of these functional components to emphasize according
to its context, or perform a beat gesture. How an agent can choose a
domain to emphasize is explored in [9, 27, 32]. If the agent chooses
to perform a gesture according to one of these functions, it selects
a sub-cluster from the appropriate functional cluster to retrieve
motion information and perform a gesture.

The agent must select between motion sub-clusters of its as-
signed functional cluster. To do this, the agent accesses the infor-
mation in the distance matrix for each sub-cluster in the functional
clusters. This is used to compare sub-clusters across the functional
clusters that the utterance belongs to. For example, our “impor-
tant or trivial,” example with a rhetorical “Contrast,” tag and a
semantic “Size,” tag (illustrated in Figure 3). The agent can compare
the sub-clusters within these functional clusters to determine the
nearest-neighbor sub-cluster, indicating that the particular motion
described by these sub-clusters may be salient to multiple functional
components of that utterance segment3.
3Conversely, to reduce potential communicative ambiguity of a gesture, the agent
could select a sub-cluster maximally different from other potentially relevant sub-
clusters. The specifics of motion sub-cluster selection and its impact on subjective
interpretation of gestures is not explored here.



Figure 3: An illustration of how the architecture can select a ges-
ture performance for the “important or trivial” example utterance.

Once a sub-cluster is selected, the agent may choose to perform
a gesture from it in any number of ways. Our architecture does not
prescribe a specific animation but rather a family of motions which
the agent’s overarching architecture may interpret in a manner
appropriate to that specific agent (explored in section 2.4).

The labeling, clustering of the input dataset, and distance calcu-
lation of sub-clusters is done in pre-training. Because of this, the
speed, and therefore feasibility of using this model in real time,
is determined by the speed of the functional parsers in tagging
an incoming utterance, as well as by the algorithm’s contextual
analysis in choosing a functional domain to emphasize.

2.3.1 Example Usage. We described the structure of this algorithm
of pre-training to cluster a large corpus of gestures and select can-
didate gestures at runtime. We will now go step-by-step through
our implementation of this architecture with an example utterance
to illustrate how this model generates gestures in real time.

Let us give our example utterance “important or trivial” to an
agent using this model to perform (visually illustrated in Figure 3).
This incoming utterance is analyzed and broken up by the func-
tional parsers and given the “Contrast” rhetorical tag, the “Neutral”
affective tag, and the “Size” semantic tag. For purposes of this
example, let us assume context tells the agent to emphasize the
rhetorical domain of speech. We then look at all sub-clusters within
the rhetorical Contrast cluster, and use the distance matrix calcu-
lated in pre-training to find the closest motion sub-cluster within
the Size or Neutral functional clusters. The sub-cluster within the
Contrast functional cluster which has the smallest distance to a
motion sub-cluster of another domain - in this case either Size or
Neutral - will be selected to perform. Potential examples of runtime
animation using this pipeline are shown in section 2.4.

Figure 4 shows two specific candidate gestures from the Con-
trast motion sub-cluster obtained using this process in our specific
implementation, described below in Section 3. Notice how despite
different starting positions, angles, and even speakers, these two
gestures follow a similar path, resulting in similar motions.

2.4 Animation Options
Although our architecture does not specify an animation pipeline,
here we put forth several alternatives given the purpose of the
model. As the intended use is a dynamic gesture generator to be

(a) Starting and post-stroke poses for gesture by Speaker 1

(b) Starting and post-stroke poses for gesture by Speaker 2

Figure 4: Two gestures from the same motion sub-cluster
within the “Contrast” rhetorical cluster using our imple-
mentation and input dataset.

used for on-the-fly gesture generation, these options mainly occur
after pre-training and prior to runtime usage.

One option may be that an animation is created to represent
each sub-cluster, with sub-clusters providing reference video for the
virtual agent designer or animator. Alternatively, one can analyze
a pre-defined library of animations to determine which sub-cluster
they each belong to, and use this to map sub-clusters to anima-
tions. In both cases, at runtime the agent would simply perform
the animation associated with its chosen sub-cluster. This solution
ensures the animation is appropriate and appears natural for the
agent’s form. This is feasible because the sub-clusters are clustered
according to motion, and thus a sub-cluster can be represented by
a single animation.

Another option could be to use the motion of USG pairs within
the sub-cluster to define a “centroid” gesture. This has the added
benefit of being able to be altered dynamically at runtime, although
the architecture itself does not specify these alterations. However,
this relies on the motion of the USG pairs to be transformed into
an animation compatible format (e.g. BVH). This would therefore
not be feasible with datasets that do not specify 3D motion.

3 MODEL IMPLEMENTATION FOR THE
RHETORICAL DOMAIN

In this section we describe a method of parsing, comparing, and
clustering gestures to determine their relationship to rhetorical com-
municative functions. First, we describe the tools used to compile
our dataset. Then, we discuss our specific methods of characterising
and comparing motion between gestures. We then describe how
we compare the physical characteristics of gestures to feed into a
clustering algorithm. Finally, we state our hypotheses underlying



the use of this technique, which combines research on human ges-
tures with computational analysis. For brevity, we only describe
our implementation and objective analysis of the rhetorical domain
in detail, using it to illustrate the overall approach to the different
analysis pathways.

3.1 Input data
We used the pre-segmented motion and video of gestures found
in [13] as our gesture dataset. We then used Google Cloud Speech
API to retrieve the transcripts that accompany each gesture. We
analyzed audio from the entire video to provide context for better
speech recognition, then matched the transcript section to each
individual gesture based on timestamps of the original gestures and
words received by the speech API. We then parsed these transcripts
using the CODRA rhetorical parser [18] which is powered by the
Charniak re-ranking parser [29] 4. To do this, we also sent the entire
transcript at once - as opposed to an individual sentence or short
paragraph that would correspond to a single gesture - to achieve
better rhetorical parses. Together, these tools provided a rich dataset
of gesture movement and accompanying verbal communication,
comprised of 11 speakers and over 500,000 minutes of frontal video.

3.1.1 Splitting gestures. Although in actual behavior, there is am-
biguity over what constitutes an individual gesture, we can break
them into the phases of the individual gesture and phrases com-
prised of multiple gestures [30]. For our analysis purposes, the
key phase of a gesture is its stroke, which carries the meaning.
The stroke phase can vary in length [21]. Gestures in this dataset
were between 2 and 250 seconds (60-7500 frames), with longer ges-
tures naturally containing more varied movement. It was therefore
necessary to break these into a shorter, more standardized length.

It is common to split gestures based on motion quality [8], how-
ever we found this led to splitting gestures in the middle of spoken
phrases. This created abruptly segmented and consequently con-
fusing co-speech context for resulting gestures.

As an alternative method, we split the gestures based on the
rhetorical parses of the transcripts. This preserves context in par-
ticular phrases, however it relies on gestures occurring with their
relevant speech at the same time, whereas in reality gestures often
precede speech [20]. This also introduces the problem of biasing
the gestures towards being relevant for rhetorical parses, as we
purposefully split gestures with respect to the rhetoric aspects of
speech, as opposed to detecting a shift in semantics or changes
in pitch. Furthermore, this segmentation relies on the quality of
the rhetorical parser. Alternative implementations could also break
gestures syntactically or affectively based on the functional parser,
perhaps even splitting differently for different domains.

Splitting large gesture phrases into smaller units fails to incor-
porate important large-scale rhetorical structure that takes place at
the paragraph (or higher) levels. For example, often in speech we
reference an idea and give it “space,” in our physical surroundings
[14]. We may then elaborate on that idea in various ways, refer-
encing the physical space we created for it utterances later [28].
By analyzing gestures as individual units, we knowingly fail to

4Current additional implementations not expanded upon in this paper use the VADER
sentiment analysis parser [17] for affective parses and Spacy [16] feeding into the
TRIPS ontology [38] for semantic parses.

detect high-level rhetorical structure. We consider losing out on
high-level rhetorical structure by effectively shortening our average
gesture an acceptable trade-off to better cluster motion, as the pur-
pose of this model is to generate relevant and meaningful gestures
given distinct utterances, such as a turn of dialog, as opposed to,
for example, a speech or lecture.

3.2 Motion Sub-Clustering
After obtaining rhetorical parses and clusters from the input data,
we then create sub-clusterings based on motion for each of the
rhetorical clusters. This includes determining how best to charac-
terize the motion from keyframe values, as well as how to cluster
these gestures once a suitable distance metric is determined.

3.2.1 Characterizing Gesture Motion. In order to cluster gestures
by their motion, we developed a distance metric to determine how
similar or dissimilar the motions of gestures are, which necessarily
works on gestures of differing lengths. We use high-level features
to create a descriptive Feature Vector of a gesture5.

We created a 12-dimensional feature space of motion. This con-
sists of: the maximum and minimum distance of the palms from
each other, the maximum andminimum velocity and acceleration of
each palm, the distance the hands move together and apart through-
out the gesture, the maximum and minimum vertical and horizontal
orientation of each palm, and the extent to which the hands cycle,
oscillate, and change hand position over the course of the gesture.
Note that these features are agnostic to the absolute position of
keyframes, instead focusing on relative position between hands,
and also put emphasis on two-handed gestures. We then normalized
each feature across gestures, and performed K-Means clustering
using the Euclidean distance of these feature vectors. The use of
these features reduces each gesture down to a single feature vector,
which allows gesture comparison across different video conditions.

Although the features chosen are well-documented as meaning-
ful in gesture literature [3] they are by no means exhaustive. This
technique also relies on assumptions by the implementer on the
relative importance of various features of the gesture, which may be
given weights (which may themselves fluctuate based on functional
domain). We discuss these limitations further in the Discussion.

3.2.2 Clustering Algorithm. We performed K-Means clustering for
each rhetorical functional cluster. We used the scikit-learn [35]
implementation of K-Means clustering, and combined each cluster
with only one gesture with its next-closest cluster. We also broke
apart all clusters in the bottom 10% of silhouette scores, reassigning
gestures to the next closest cluster. We determined the optimal
number of clusters by running the clustering multiple times to
observe the highest silhouette scores.

3.3 Hypotheses
We have illustrated a model with which to generate gestures for
virtual agents in real time. The quality of these gestures relies on
the assumption that the movements from USG pairs can be captured
and meaningfully sub-clustered to obtain a group of gestures with

5We focus on hand and arm gestures, but this architecture does not preclude analyzing
full-body poses or facial gestures if such information was available.



similar motion profiles according to our selected features. There-
fore, our analysis of the rhetorical element of the model tests the
assumption that after creating functional clusters using tags ob-
tained from the parser, we are able to effectively sub-cluster USG
pairs. The alternative to this would be that despite breaking ges-
tures into functional categories, they do not cluster meaningfully
using the selected features.

The other hypothesis to be tested is that sub-clustering bymotion
is in fact necessary and effective to produce communicatively mean-
ingful gestures. It may be the case that gestures may be immediately
clustered according to communicative function and naturally form
families of similar motion.

4 ANALYSIS AND RESULTS
In this section we discuss our methods of determining the efficacy of
our clustering techniques, and the necessity of performing motion
sub-clustering in order to generate communicatively meaningful
gestures. We define objective metrics with behavioral correlates
that evaluate to what extent we can expect the architecture defined
above to perform gestures that are relevant to a given utterance.

Using the rhetorical splicing technique described in 3.1.1, we
achieved a dataset of 66,529 gestures across 8 speakers. Of these,
there were 226 unique rhetorical tags. However, as the parser only
provided 20 tags, some of these are sequences of tags. For simplicity,
we dropped all gestures with multiple tags (the impact of this is
discussed further in Section 5). Additionally, some of these tags
do not carry gestural significance (such as the “Nucleus” tag). All
such tags were grouped into one cluster with no tag. In the end this
produced 43,683 gestures with 15 rhetorical clusters.

4.1 Analysis Technique
We measured sub-clustering quality with the silhouette score with
respect to the Feature Vector distance metric described in 3.2.1. The
silhouette score measures how well a USG pair fits within its own
cluster, compared to others around it. The silhouette score 𝑠𝑖 for
one USG pair i is defined as:

𝑠𝑖 =
𝑏 (𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥 (𝑎(𝑖), 𝑏 (𝑖) , 𝑖 𝑓 ∥𝐶𝑖 ∥ > 1 (1)

Where 𝑎(𝑖) is the mean distance between i and all other points in
its cluster,𝐶𝑖 . This is a measure of how well i fits into its cluster (the
smaller the value, the better the assignment). 𝑏 (𝑖) is the mean value
between i and all other points in the next best fit cluster for i (with a
higher value meaning a worse fit). This is a proxy for how dissimilar
the next-closest cluster is (the between-cluster distance). This score
necessarily falls between -1 and 1, with 1 being the best fit. We
compute this value for all points in cluster 𝐶𝑖 , and use the mean
to describe the silhouette score 𝑠 (𝐶𝑖 ) for the cluster. We further
describe the score of a clustering as the average silhouette score
for all clusters within that clustering.

High silhouette scores indicate a USG pair fits well within its own
cluster, and not with the next-closest cluster. While this does lose
some nuance of explicitly measuring the distance between clusters
and cluster density, it is a useful proxy that is a well-established met-
ric to measure cluster quality in the field of machine learning. This
metric is also comprised of behaviorally relevant measurements:
between-cluster distance, and within-cluster similarity.

A large between-cluster distance is indicative that the motions
in a cluster are distinct from others near it. That is, the motion of
those gestures map exclusively to their corresponding rhetorical
tag, suggesting such a gesture should only be used when that tag
is present or risk being confusing for the viewer.Since no other
sub-clusters contain similar motions, the motion will be highly
communicatively distinct within that categorical tag. Put another
way, when accompanied by an utterance that falls within that
functional category, the motion of a cluster that is highly distinct
from other sub-clusters is likely to carry meaning.

Sub-clusters with high within-cluster similarity indicate a low
variance in performance: a well-defined, specific motion. Such char-
acteristics are relevant in the virtual-agent space because a col-
lection of gestures with very similar movement profiles indicates
the potential use of a pre-crafted library of gestures, which can be
pre-loaded and run without the heavy computation of generating a
completely novel gesture on-the-fly.

4.1.1 Functional only vs. Functional with sub-clustering. Measuring
the quality of the clusters created by only using the functional
co-speech elements of the gestures can indicate how well the par-
ticular motion of a gesture is relevant for the functional domain.
We explored the possibility that it may be possible to skip motion
sub-clustering and exclusively use functional clusters to define mo-
tion. We obtain silhouette scores for these clusters by using the
Feature Vectors of each USG pair in a functional cluster to create
a centroid, then measure cluster overlap using distances of these
Feature Vectors to their own and other clusters’ centroids.

We present two alternatives when collecting metrics: evaluating
the quality of the Motion Sub-Clusterings (for example, the sub-
clusters only within the Contrast cluster, Figure 5a), or evaluating
the quality of the Functional Clusterings without sub-clustering
(Figure 5b). If silhouette scores are high in the initial functional
clustering, then there would be no need for motion sub-clustering
as the motions defined in each category may be sufficiently dis-
tinct.Notably, these two analyses compare different sets of gestures:
the former compares the motion sub-clustering only of USG pairs
with a specific functional tag, while the latter compares the mo-
tion of all USG pairs by determining cluster quality using clusters
defined by functional labels.

4.1.2 Individual vs. aggregated speaker sets. Finally, we compared
the silhouette scores for both clusterings (Functional only, and
Functional with Sub-Clustering) with those of individual speakers
(Figure 5c). For this, we ran the model on all 8 speakers and found
the average silhouette score for motion sub-clusterings and func-
tional clusterings. This allows us to see trends which emerge in
individuals that may be obfuscated in a dataset that aggregates all
speakers. We then compare this to an aggregated dataset which
contains the gestures of all speakers.

We present three evaluations of these two possible clusterings
using the silhouette scores: The average silhouette score of in-
dividual speakers for functional and motion sub-clustering, the
average silhouette score of the aggregated gesture set for function
and sub-clustering, and the breakdown of silhouette values for
sub-clusterings using the aggregated speaker dataset.



(a) Visual representation of Sub-clustering analysis (aggregated).

(b) Visual representation of Functional analysis (aggregated).

(c) Visual representation of Sub-clustering analysis (individuals).

Figure 5: Demonstrations of Sub-clustering or Functional
Clustering, and Individual and Aggregated speaker set anal-
ysis. Notice how sub-clusterings for individual speakers
may result in different numbers of sub-clusters for a func-
tional tag, and thatUSGpairs for the same speakermay be in
the same sub-cluster when analyzed on the aggregate level
but not on the individual level. Regardless, the functional
tags remain constant.

Sub-clustering Functional clustering
Individual speakers 0.317 (0.289) 0.018 (0.153)
Aggregated speakers 0.280 (0.304) 0.009 (0.151)

Table 1: Average and (standard deviation) of silhouette
scores of clusterings for individuals and aggregated speak-
ers, for sub-clustering and functional-only clustering (no
motion sub-clustering).

4.2 Interpretation of results
The improvement in scores when measuring cluster quality for mo-
tion sub-clusters instead of functional clusters (Table 1) indicates
that clustering by motion is necessary after functional clustering.
This firmly confirms our hypothesis that functional tag by itself is
not enough to define a gesture, and rejects the alternative proposed
in 3.3 that motion sub-clustering may be unnecessary. This makes
intuitive sense from the “important or trivial,” example as this is
reflective of a phrase that may be gestured in very different ways
depending on communicative function. By clustering by motion

Rhetorical Tag N𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠 N𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 Silhouette score
Span 20622 88 -0.25 (0.420)
Elaboration 7269 26 0.621 (0.265)
Attribution 5795 17 0.680 (0.275)
Joint 3404 11 0.413 (0.186)
Temporal 2081 15 0.314 (0.276)
Same-Unit 1988 88 0.713 (0.249)
Cause 667 9 0.685 (0.278)
Enablement 472 3 0.099 (0.391)
Background 418 27 0.280 (0.263)
Condition 360 10 0.176 (0.347)
Contrast 250 12 0.436 (0.251)
None 183 3 -0.018 (0.320)
Comparison 96 8 0.045 (0.282)
Manner-Means 52 5 0.019 (0.305)
Explanation 26 2 -0.014 (0.331)

Table 2: The breakdown of sub-clustering scores for each
rhetorical tag when using aggregated speaker set. Number
of gestures, number of motion sub-clusters, and mean and
(standard deviation) of silhouette scores for sub-clusters. Se-
lected scores over threshold of 0.6 in bold.

after clustering by functional tag, we separate out these very differ-
ent motions and begin to establish correlational links across and
within functional domains.

Furthermore, the relatively high silhouette scores for some rhetor-
ical categories (Table 2) indicate that the selected features do effec-
tively distinguish between motions within a particular rhetorical
structure for some rhetorical tags, and that these motions are dis-
tinct within a rhetorical structure. These results establish moderate
support for our hypothesis that clustering gestures by rhetorical
structure of corresponding co-utterances, then sub-clustering by
motion properties within those categories creates well-structured
clusters that are relevant to the rhetorical category.

The high variation in clustering quality between rhetorical tags
(Table 2) suggests that some structures do not have consistent
canonical forms that are neatly captured by the features we used.
Some of these are surprising (such as the Comparison cluster) and
challenge assumptions about what features may be relevant for a
particular gesture.

The higher average sub-clustering silhouette scores for indi-
vidual speakers (Table 1) suggests this method is somewhat better
suited tomodeling gestures of individuals than an aggregated group,
although this difference is small. This is consistent with individuals
having strong tendencies to gesture in a particular style[13]. Still,
the small differences in average sub-clustering scores (Table 1) and
per tag values between 0.50-0.70 (Table 2) together suggest that
this method is still effective when applied to aggregated speakers.

Another possibility is the higher scores for individual speakers
are an artifact of different speaking conditions. While all videos
are frontal views of the speaker, slightly varying angles as well
as the relative size of the speaker in view makes even relational
changes in position of keypoints imprecise across different video
conditions. For example, if one speaker’s videos lead them to be
larger in relation to the overall space, their relative hand variation
will look larger as well. However, this result is surprising as we



would expect that if individuals gesture in a consistent manner,
those motions would form a distinct sub-cluster within the larger
aggregated set, and furthermore we would expect this effect to be
exacerbated by variation in video settings.

5 DISCUSSION
That some sub-clusterings achieve high silhouette scores (Table
2) indicates not only that there are many ways in which individ-
uals gesture during any particular phrase, but also that rhetorical
structure is indeed relevant to those motions. While there are many
ways to gesture for a particular phrase, there is a limited number
of families of gestures that many individuals tend to use. This is an
argument for the appropriateness of gesture libraries, as one could
create a specific animation for each sub-cluster (as discussed in 2.4).

One finding was similar silhouette scores for individuals and the
aggregated group of speakers (Table 1). This suggests that although
individuals have their own distinct and precise style of gesturing,
resulting in a more effective clustering of their motions, there are
some linguistic circumstances under which individuals tend to use
similar motions to convey certain communicative functions.

One improvement that may further improve scores for motion
sub-clustering is to explore a wider variety of motion features to
map to rhetorical tags. Clusters with poor scores may perform
better if we calculated motion by different features. This highlights
how this architecture is not only a functional mechanism to produce
gestures but may in the future also be used to test hypotheses of
which features correlate to which rhetorical structures – or other
high-level linguistic dimensions. Furthermore, a hybrid or weighted-
feature system (particularly with automated techniques to derive
weights) to determine feature vectors may lead to improvements in
this domain, as certain features play a role more heavily in some
communicative functions than in others. Some features may be
used in the clustering of one functional domain and not in another.
Further analysis must be done within each domain to determine
how these features may interact to distinguish the roles a gesture
plays with respect to each communicative function.

We encountered a variety of challenges which may be overcome
to achieve better clustering and model performance. Constructing
a dataset which is appropriate for this mapping presents the largest
obstacle. There are currently few large-scale datasets of natural
social motion. Although development of recent technologies has
made scraping motion from video data easier [4], these are still too
noisy to effectively track certainmeaningful aspects of gesture, such
as precise changes in hand shape. Current datasets also do not have
transcripts which accompany motion, leaving the transcription task
to other third-party programs which can be error-prone and lead
to difficulty for rhetorical and semantic parsers. Parsers themselves
may also be improved through being trained on social conversation.

5.1 Future Work
While it is reasonable to expect that semantic and affective do-
mains will see similar results to this domain, that assumption must
first be tested. This process will also help identify relevant motion
features to these different functional domains. Whereas we have im-
plemented analyses of these domains, their mapping to motion has
not been explored. This implementation also purposefully excludes

rhetorical structures that occur at the paragraph or conversational
level. Future analyses may explore this using different functional
parsing mechanisms in combination with new motion features to
provide a more holistic analysis of a wider range of input utterances.

Another avenue would be exploring the specificity of allowing
clusters with multiple rhetorical tags. While these could poten-
tially create more relevant or cleaner clusters, our initial analyses
found that in practice this created hyper-specific clusters with only
one gesture. Allowing multiple tags also raises a question of confi-
dence in domain parsers; multiple tags may reveal ambiguity of the
parser’s analysis as opposed to specificity, and counter-intuitively
lower the silhouette scores.

Although we have described one method for selecting gestures
and quantitatively assessed it, a subjective analysis remains for
future work. This will specifically involve crowd-sourcing opinions
on traditional metrics such as naturalness of a gesture, clarity of
the gesture’s message, and the perceived meaningfulness of the
gesture, in order to determine how well this algorithm does at se-
lecting gestures which should then, more importantly, be tested
in real-world virtual agent implementations. This inspires a vari-
ety of questions, including how well functional vs. sub-clustering
selection perform on subjective metrics, such as naturalness, coher-
ence, and appropriateness with respect to speech. While motion
sub-clustering objectively produces a more consistent family of
motions, whether or not human observers understand and enjoy
viewing those motions remains to be seen.

The dataset used was also across a wide variety of subjects
and speaker types. A subsequent experiment would be to train
this model on a domain-specific set of videos in a controlled con-
versational setting, such as found in [11]. The creation of such a
dataset could further ensure high-quality motion and speech cap-
ture through use of motion capture technologies, high-quality audio
equipment, and human transcription quality control.

6 CONCLUSION
In this paper we demonstrated a new approach through which
to view the relationship between gestures and their associated
utterances. We presented a novel method to map gestural motion
to the gesture’s co-speech properties by forming clusters based on
motion properties within clusters based on communicative function.
We described how an agent could make use of such a model as a
generative mechanism to create socially appropriate gestures on-
the-fly in conversation, and described our implementation and
evaluation of the rhetorical functional domain. Our analysis finds
that some rhetorical structures are often accompanied by similar
gesture performances, while others are not well-defined by simple
motion features. Finally, we discussed the challenges and limitations
of our architecture and suggest future improvements to address
them, and propose subjective evaluations building on these findings.
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