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A complete Thermo-Electro-Viscoelastic
Characterization of Dielectric Elastomers - Part
II: Continuum Modelling Approach

Markus Mehnert, Mokarram Hossain and Paul Steinmann

Abstract A comprehensive experimental study performed under a combination of
thermo-electro-mechanical loads applied to a widely used electro-active polymer, is
presented in the Part I of this work (Mehnert et al., submitted, 2021). Soft polymeric
materials, used as base materials in electro-active polymers, are highly susceptible
to temperature changes. Hence, thermal influences on their behavior have to be
investigated precisely. Constitutive modelling and numerical simulation of electro-
active polymers are active fields of current research. However, on the one hand,
their experimental study under complex loading conditions is non-trivial. On the
other hand, very few constitutive modelling approaches meet with experimental data
obtained from thermo-electro-mechanical loading conditions. In this contribution,
we aim to develop a thermo-electro-mechanically coupled model, which will closely
replicate the response of an electro-active polymer investigated under a combination
of thermal, electric and mechanical loads. Once the model is calibrated with the
experimental data described in Part I of this contribution, it is validated with a
different set of data, which shows excellent agreement with experimental findings.
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1 Introduction

’Can materials act as machines?’ is one of the most pressing questions among ma-
terial scientists and engineers since the last decade of the twentieth century [1].
Machines consisting of a set of materials are usually designed to perform some
specific tasks such as generating motion or lifting an object. One of the most active
field of current research is synthesis and design of responsive materials that can
integrate within machines or act as machines. Responsive materials are smart and
innovative substances that can be activated under the application of external or inter-
nal stimuli including electric field, magnetic field, pH, light, temperature, humidity
or combinations of two or more of them. Among others, electro-active polymers
(EAPs) are widely accepted, low-cost, responsive materials. EAPs are a group of
polymeric materials that can potentially undergo large deformations and can change
their attributes when subjected to an electric field. In the development of actuators,
adaptable optics or generators, electro-active polymers may complement or even out-
perform traditional technologies, such as electro-magnetic motors or piezoelectrics
[2, 3]. Dielectric elastomers (DEs) are a special subclass of electro-active polymers,
which enable the simple design of soft actuators. A dielectric elastomer can be
produced when a thin film of a soft polymeric material is sandwiched between two
compliant electrodes and it can deform upon the application of an electric potential
difference between the electrodes [4]. For the applications of electro-active poly-
mers, it should be taken into account, however, that their base materials are highly
sensitive to temperature changes.
An important factor to increase the usability of electro-active polymers is the de-
velopment of a rigorous continuum modeling and simulation approach allowing to
fully harness their potential. The simulation of electro-mechanical material behavior
demands for an appropriate coupling of the mechanical description with the theory
of electrodynamics. For a comprehensive description of the physical background
of electrodynamics, the reader is referred to the standard works of Griffith [5] or
Jackson [6]. Early attempts describing the interplay between a deforming body and
an electric field can be found in the works of, e.g., Eringen [7] or Toupin [8]. These
ground works have been expanded over the last decades specifically sparked by the
growing interest in electro-active polymeric materials [9, 10, 11]. Of special impor-
tance for the simulation of a wide range of polymeric materials is the consideration
of their time-dependent response. For this purpose, numerous material models have
been developed that may be characterized by the origin of their time-dependent stress
contributions, which are frequently formulated based either on stress-type internal
variables [12, 13, 14] or strain-type internal variables [15, 16]. A successful combi-
nation of electro-mechanics and viscoelasticity for the simulation of electro-active
polymers can be found for example in the works of Ask et al. [17, 18]. After model
formulation, their viscoelastic material model was fitted to experimental data of a
polyurethane-type elastomer that were obtained from experiments performed under
an electro-mechanically coupled loading condition.
As a number of polymers show a significant sensitivity towards temperature changes
[19, 20], thermal influences on their behavior should be considered thoroughly.
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While polymeric materials are frequently assumed to be incompressible at constant
temperature [21], a change in temperature leads to a volumetric deformation of the
material due to thermal expansion. Depending on the thermal expansion coefficient
of the respective material, these deformations can change the volume of the material
up to 5 % for temperature changes in the range of 100 K [20]. Furthermore, the
mechanical material parameters can be assumed to be temperature dependent, fre-
quently exhibiting a pronounced softening of the material at increased temperatures
[22, 23]. In early attempts of incorporating thermal influences into viscoelastic mate-
rial models the Time-Temperature-Superposition Principle was used [19], which is,
however, only valid for thermo-rheologically simple materials that can be modelled
within small strain theories. More general frameworks were presented for example
by Lion [24], Reese and Govindjee [25], Behnke et al. [22, 26], Johlitz et al. [27],
Dippel et al. [23] or Anand et al. [28, 29].
The focus of Part II is the mathematical and numerical treatment of thermo-electro-
mechanical problems in the geometrically nonlinear context. Once mathematical
formulations are set-up, experimental data, that was obtained by performing exper-
iments on a classical electro-active polymer, will be utilized. At first, all material
parameters appearing in the constitutive model will be identified by a given sub-set
of data. Afterwards, for the model validation, independent sets of data will be used
that are not part of the parameter identification process.
The work is organized as follows: in Section 2 the required kinematic expressions,
balance equations and constitutive equations are introduced as a basis for the thermo-
electro-viscoelastic material model that is presented in Section 3. This includes a
specified constitutive model for the thermo-electro-viscoelastic material behavior of
the dielectric polymer under investigation. In Section 4, the available results from
the experiments are combined with the proposed material model in order to identify
a set of material parameters describing the response of the dielectric elastomer VHB
4905TM. The paper is closed by some concluding remarks.

2 Constitutive modelling

In this Section, the thermo-electro-mechanical modeling approach is presented and
specified with suitable terms from the literature. These are selected in such a way
that the material behavior of VHB 4905TM can be replicated as closely as possible
with a reasonable amount of material parameters. The reader should note that the
description of the presented terms here is deliberately kept short and is layed out in
more detail in the corresponding chapters of the Appendix.



4 Markus Mehnert, Mokarram Hossain and Paul Steinmann

2.1 Kinematics

In order to consider the combined influence of electric, mechanical, and thermal
loads, a multiplicative decomposition of the deformation gradient F into a thermal
part FΘ and an electro-mechanical deformation FEM is introduced as

F = FΘFEM . (1)

The aforementioned decomposition can be interpreted as the introduction of a purely
electro-mechanical intermediate configuration, on which quantities can be formu-
lated that are independent of the electro-mechanically induced deformation (c.f.
Figure 1).

BtB0

BEM

F = ∇Xχ

F
EM FΘ

x = χ(X)

Fig. 1 Introduction of the intermediate configuration BEM and corresponding decomposition of
the total deformation gradient F into an electro-mechanical FEM and a thermal contribution FΘ.

For more details about this approach, see Lu and Pister [30], Reese and Govindjee
[25], Lion [31], Erbts et al. [32]. While FΘ is assumed to be purely volumetric,
the electro-mechanical deformation may in general combine both volumetric and
isochoric deformations. For the latter, a further multiplicative decomposition is
frequently used to capture the time-dependent viscoelastic response at finite strains.
Thus, the deformation gradient is ultimately decomposed into

F = FΘFEM = FΘF
vol
EMF iso

EM = FΘF
vol
EMFe

EMFv
EM . (2)

Note that the viscous response is assumed to be isochoric only, see Reese and Govin-
djee [16], Dippel et al. [23]. Furthermore, we can use the deformation gradient F for
the definition of the right Cauchy-Green tensor C = FTF. The corresponding elastic
and inelastic right Cauchy-Green strain tensors are defined as Ce

EM = [Fe
EM ]TFe

EM
and Cv

EM = [Fv
EM ]TFv

EM , respectively. We introduce the thermal expansion coeffi-
cientα and the temperature difference (∆Θ = Θ−Θ0) and consider the decomposition
of the Jacobian determinant into

J = detF = detFΘ detFEM = JΘJEM, (3)

where the thermal Jacobian is expressed either with an exponential function as
JΘ = exp(3α∆Θ) or with a linear function, i.e., JΘ = α[∆Θ] + 1, see Dippel et al.
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[23], Erbts et al. [32]. If we assume the material under investigation to be isotropic,
the thermal deformation gradient FΘ and the corresponding right Cauchy-Green
tensor read

FΘ = J
1
3
Θ
I → CΘ = J

2
3
Θ
I . (4)

Furthermore, the definition of the isochoric right Cauchy-Green tensor is C =

J−
2
3 C. As the thermal expansion is purely volumetric, it holds that the isochoric

Cauchy-Green tensor capturing the combined deformation is equal to the mechanical
contribution, i.e.

C = CEM . (5)

Finally, as rubber-like materials can be assumed to be incompressible at a constant
temperature, the decomposition into mechanical and thermal deformation resembles
a decomposition into a purely isochoric and a purely volumetric deformation. In this
case, we can state that

C = CEM with JEM = 1 and J = JΘ. (6)

2.2 Balance equations

In the presence of matter, the constitutive relation between an electric fieldE and the
electric displacement in the material configuration readsD = ε0JC−1 ·E +P, with
the electric polarizationP and the electric permittivity of vacuum ε0 = 8.85×10−12

F/m. In the absence of matter, the polarization vanishes and we can define the
vacuum electric displacement Dε := ε0JC−1 ·E. The behavior of the electric field
in the material configuration is governed by the Maxwell equations, which take the
form

DivD = 0, Curl E = 0 in B0. (7)

The expressions Div and Curl are the corresponding differential operators defined
with respect to the material position vector X . The second Maxwell equation is
fulfilled a priori when the electric field E is derived from a scalar electric potential
φ, i.e.

E = −Grad φ, in B0. (8)

In electro-mechanics the balance of linear momentum takes the form

Div Ptot + b0 = 0 in B0, (9)

with the total Piola stress tensor Ptot, which can be decomposed into a purely
mechanical contribution P and a ponderomotive contribution Ppon. The latter stress
contains the polarization stress Ppol and the Maxwell stress Pmax [33]. We complete
our description with the formulation of the necessary jump conditions describing the
behavior of the electric andmechanical problem at a possible surface of discontinuity.
When we denote the jump of a quantity between both sides of the discontinuity as
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[[•]], the formulation reads

[[D]] · N = %̂f0, on ∂B%0 and − [[Ptot]] · N = t
p
0 , on ∂Bt

0, (10)

where N is the outwards pointing surface normal, tp0 are the mechanical tractions
prescribed on the part of the boundary ∂Bt

0 and %̂
f
0 is the density of free surface

charges per undeformed area on the part of the boundary ∂B%0 [34, 35].

2.3 Constitutive equations

As a starting point for the derivation of constitutive equations, we use the local form
of the balance of energy in the material configuration. For the quasi static case this
reads

ÛU = P : ÛF − Div Q + R +E · ÛP + Ppol : ÛF . (11)

Here, we introduce the change in the internal energy density per unit undeformed
volume ÛU, the heat source R and the heat flux vector Q, which can be calculated
from the gradient of the absolute temperature Θ using the Fourier type relation Q :=
−κconJC−1 ·Grad Θ, where κcon is the isotropic heat conductivity. Next the dissipation
power density D = D(X, t) ≥ 0 is introduced that can be decomposed into the

dissipation power density due to the heat conduction Dcon = −Q
Θ
· Grad Θ ≥ 0 and

the local dissipation power density Dloc [36], which can be defined in the form of
the Clausius-Planck inequality as

Dloc = Θ ÛH − ÛU + P : ÛF +E · ÛP + Ppol : ÛF ≥ 0, (12)

using the entropy density H. It should be noted that in the case of a reversible process,
the local dissipation term vanishes. With the help of a Legendre transformation [37],
a formulation for the energy density Ψ(F,Θ,E) can be obtained as

Ψ(F,Θ,E) = U − ΘH −E ·P. (13)

Using this energy density, the Clausius-Planck inequality can be transformed to

Dloc = − ÛΨ − ÛΘH + [P + Ppol] : ÛF − ÛE ·P ≥ 0. (14)

Note that in the formulation ofΨ(F,Θ,E) the energy that is stored in the electric field
itself is not taken into account. In order to consider this energy contribution as well,
we have to amend the energy density by the term E(F,E) = − 1

2ε0J[E ⊗ E] : C−1,
which leads to the amended total energy density per unit volume in B0 [38, 39]

Ω(F,Θ,E) = Ψ(F,Θ,E) + E(F,E). (15)
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When the amended energy function Ω(F,Θ,E) is inserted into the Clausius-Planck
inequality we find a formulation that contains the total Piola stress and the electric
displacement

Dloc = − ÛΩ − ÛΘH + Ptot : ÛF − ÛE ·D ≥ 0, (16)

which further establishes the constitutive relations for the total Piola stress Ptot, the
electric displacementD and the entropy H [33]

Ptot =
∂Ω

∂F
, with Pmax =

∂E
∂F

, D = − ∂Ω
∂E

, H = −∂Ω
∂Θ

. (17)

It is convenient to introduce the total Piola-Kirchhoff stress Stot as an additional
stress measure, which is related to the Piola stress by Stot = F−1Ptot. As presented in
Appendix 6.1, the introduced intermediate configuration BEM can be used to define
a corresponding form Stot

EM of the Piola-Kirchhoff stress that is connected to Stot via

Stot = F−1
EM · Stot

EM · F−TEM . (18)

This enables us to use an energy function that does not explicitly contain a contri-
bution connected to the thermal expansion through the expression

Stot = 2J
− 2

3
Θ

∂Ω(FEM,Θ,E)
∂CEM

. (19)

Finally, the first law of thermodynamics in entropy form is derived by combining the
Clausius-Planck inequality (14) with (11), resulting in

c(Θ) ÛΘ = R − DivQ + Θ∂Θ
[
Ptot : ÛF −D · ÛE

]
︸                        ︷︷                        ︸

H

+Dloc, (20)

where the specific heat capacity c(Θ) at constant deformation and constant electric
field is introduced. The terms in brackets on the right-hand side of the above equation
describe possible heating/cooling effects due to mechanical deformation, i.e. the
Gough-Joule effect, or the application of an electric field. These are summarized in
the termH in order to tighten the expression.We can finalize the thermal description
of our system by imposing boundary conditions for the thermal system in addition
to the ones for the mechanical and the electric problem defined earlier. We impose
Dirichlet boundary conditions for the temperature andNeumann boundary conditions
for the heat flux on the boundary ∂B0 = ∂BΘ0

⋃
∂BQ

0 .

Θ = Θp on ∂BΘ0 and Q · N = Q on ∂BQ
0 . (21)
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3 A thermo-electro-viscoelastic constitutive model

In the following, the constitutive modeling approach for the description of the mate-
rial response of VHB 4905TM under combined thermo-electro-mechanical loading
is described in detail. It is assumed that the underlying material can be characterized
as isotropic. Thus, the material response to an electro-mechanical loading can be
expressed using a function of the six principal invariants I1 to I6 connected to the
electro-mechanical right Cauchy-Green tensor CEM and the electric field E, which
read

I1 = tr (CEM ), I2 =
1
2

[
[tr (CEM )]2 − tr (CEM

2)
]
, I3 = det (CEM ),

I5 = [E ⊗ E] : CEM, I6 = [E ⊗ E] : C2
EM .

(22)

In order to capture the thermal loading, a temperature-dependent form of the energy
function has to be derived. When we assume that the temperature may in general
have a nonlinear effect on the material response, such a coupling may be established
starting with the definition of the specific heat capacity c at constant deformation
and electric field, i.e.

c |F,E(Θ) = c0 − Θ∂
2g(Θ)
∂Θ2 Ψ̃0(CEM,E). (23)

Here, we have introduced a constant ground heat capacity c0 and the scaling function
g(Θ) that is connected multiplicatively with the energy function Ψ̃0, which describes
the response of the material at the reference temperature. This approach renders the
thermally coupled energy function as

Ψ = f (Θ)Ψ̃0(CEM,E) +U0

[
1 − Θ
Θ0

]
+ c0

[
Θ − Θ0 − Θ ln

(
Θ

Θ0

)]
, (24)

where we have introduced the internal energy at reference temperature U0 and a
thermal scaling function of the energy that is defined as

f (Θ) = Θ
Θ0
+ g(Θ) − g(Θ0) + ∂g(Θ)

∂Θ

����
Θ0

[Θ − Θ0]. (25)

A detailed derivation of this expression is given in Appendix 7. For the sake of
readability, the index of the isothermal energy contribution Ψ̃0 is discarded in the
following and the respective term is simply labeled as Ψ̃. In order to correctly
replicate the highly viscous material response of electro-active polymers such as
VHB 4905TM, the energy contribution Ψ̃(CEM,E) has to be modified into the form
Ψ̃(CEM,E, Ai) that, in addition to the non-thermal deformation and the electric
field, also depends on strain-like internal variables Ai . These tensorial variables
correspond to a number of Maxwell elements that capture a time dependency of the
material response. We assume that the energy Ψ̃(CEM,E, Ai) can be decomposed
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into a contribution Ψ̃vol(JEM) that represents the volumetric change of the mate-
rial due to electro-mechanical deformation, and a volume preserving contribution
Ψ̃iso

(
CEM,E, Ai

)
, the first of which vanishes, when the material is considered to

be incompressible at constant temperature. The latter term depends on the modified
right Cauchy-Green tensor CEM = J−2/3

EM CEM and can be further decomposed into
an elastic part Ψ̃e

iso
(
CEM,E

)
and a viscous contribution Ψ̃v

iso
(
CEM,E, Ai

)
. Based on

the thermo-mechanical experimental results in Part I, we can assume that, in order to
replicate the effect of temperature on the material response, both the elastic and the
viscous energy contributions have to be modified by a respective scaling function.
Consequently, the term f (Θ), introduced in equation (25), expands to the expres-
sions f e(Θ) and f v(Θ) as separate scaling functions, which are multiplied with the
respective energy contribution. Thus, as presented in [40], the heat capacity takes
the form

c(Θ) = c0 − Θ∂
2ge(Θ)
∂Θ2 Ψ̃e

iso
(
CEM,E

) − Θ∂2gv(Θ)
∂Θ2 Ψ̃v

iso
(
CEM,E, Ai

)
. (26)

The energy function is formulated on the intermediate configurationBEM . Therefore,
the internal energy contribution describing the thermal expansion of the material is
not included explicitly, resulting in an expression for the thermo-electro-viscoelastic
energy function that reads

Ψ(FEM,E,Θ) = f e(Θ)Ψ̃e
iso

(
CEM,E

)
+ f v(Θ)Ψ̃v

iso
(
CEM,E, Ai

) − c0k(Θ), (27)

where the term
[
Θ−Θ0 −Θ ln

(
Θ
Θ0

)]
is summarized as k(Θ) for the sake of brevity.

3.1 Electro-viscoelastic modeling approach

Following the structure of the experimental investigations presented in Part I, we
begin by specifying the zero field elastic part of the energy function. Based on the
information from the multi-step relaxation tests performed at room temperature and
the equilibrium values for the resulting force we select a Yeoh-type energy function
[41] for the representation of the zero field base elasticity, i.e.,

Ψ̃e
iso(CEM) = c1

[
I1 − dim

]
+ c2

[
I1 − dim

]2
+ c3

[
I1 − dim

]3
. (28)

This model is derived from the class of Mooney-Rivlin models [42] but does not
consider the second invariant. Thus, it is exclusively based on the first invariant of
the modified right Cauchy-Green tensor I1 = tr

(
CEM

)
up to power three, with three

material parameters c1, c2 and c3. These parameters will be identified using the
results of the multi-step relaxation experiments performed at room temperature. In
the context of the current work, the function is formulated independently from the
dimension of the space under consideration. Therefore, Equation (28) contains the
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expression “dim“ that refers to the currently considered dimension. In the case of
the experiments, the value of “dim“ is set to 3.
It should be noted that this choice differs from the one made in [43], where the
micromechanically motivated eight-chain model was selected. As our experiments
on VHB are restricted to a range of a maximum stretch of 200%, the material stress-
strain behavior does not show a particularly complex non-linear response. Thus, the
identified material parameters presented in [43] transform the selected eight-chain
model into a form that is reduced to a simple polynomial type energy function,
rendering the complexity of the selected micro-mechanically motivated approach
redundant. Consequently, in the context of this work, the Yeoh-type energy function
is selected as a more straight-forward approach.
Next, the viscous response (mechanical) of the material is modelled by specifying
Ψ̃v
iso

(
CEM, Ai

)
. As the resulting curves in the cyclic loading tests do not show a

distinctive S-shape, the viscous energy contribution takes the form of aNeo-Hookean
type formulation with the respective evolution law defined for the strain-like internal
variables Ai [44], i.e.,

Ψ̃v
iso(CEM, Ai) =

3∑
i=1

µvi
2

[
I
v

1,i − dim
]
,where ÛAi =

1
τi

[
CEM − 1

dim
I
v

1,iAi

]
. (29)

Note that in the above formulation, we define the term I
v

1,i = A−1
i : CEM. In

these definitions, the viscous shear moduli µvi and the relaxation times τi have
been introduced. In accordance with our previous works [45, 46], we select three
internal variables. Thus, three pairs of shear moduli and relaxation times have to be
identified using the results of the cyclic loading tests conducted at room temperature.
In order to replicate the effect of temperature on the material, the scaling functions
ge(Θ) and gv(Θ) have to be specified. It should be noted that due to the restrictions
of the available testing equipment and real life application scenarios of VHB, the
temperatures that are considered in the context of this work are restricted to a range
from room temperature up to 60◦C. Thus, the temperature scaling functions do
not need to have the potential to reflect the more complex effects around the glass
transition temperature that, according to the VHB 4905TM performance manual
supplied by 3MTM, is at −40◦C [47]. The elastic scaling function ge(Θ) is therefore
defined as a simple quadratic relation in terms of the temperature change ∆Θ =
Θ − Θ0, i.e.

ge(Θ) =
[
− Θ
Θ0
+ 1 − ae

1∆Θ − ae
2∆Θ

2
]
. (30)

Here, we have introduced two additional material parameters ae
1 and ae

2 that have to
be identified using the results of the multi-step relaxation experiments performed at
different temperatures. For the viscous scaling function gv(Θ), a formulation from
[48, 40] is adapted that reads

gv(Θ) =
[
− Θ
Θ0
+ exp

(
av

[
1 − Θ
Θ0

] )]
, (31)
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where the additional material parameter av is introduced that has to be identified
using the cyclic loading tests performed at increased temperatures.
Finally, the coupling of the mechanical material response to the application of
an electric field has to be established. For this, numerous different formulations
can be found in the literature, amongst others in the publications of Ask et al.
[17, 49], Saxena et al. [50] or Jabareen [51]. The approach adopted in the context
of this work originates from the ideas presented in the works of Steinmann [52] and
Dorfmann and Ogden [53]. Generally we assume that the influence of the free space,
surrounding the material may be neglected due to the capacitor like characteristics
of the applications under consideration [52]. The electro-mechanical coupling is
established by additional terms in the energy function, one of which is depending on
the fifth invariant I5 = [E ⊗ E] : C, defined in Equation (59). Thus, similar to the
formulation given in [52], the coupled form of the isothermal energy contribution
Ψ̃e
iso = Ψ̃

e
iso

(
CEM,E

)
reads

Ψ̃e
iso

(
CEM,E

)
= c1

[
I1 − dim

]
+ c2

[
I1 − dim

]2
+ c3

[
I1 − dim

]3
+ γ1I4 + γ2I5. (32)

The reader should note that the expression γ1I4 characterizes the purely electric
behavior of the material and can therefore not be identified using the presented
experiments. However, as it does not influence the mechanical response of the
material, it will not be investigated in the scope of this work.
The formulation is extended by the idea presented in [53] that the mechanical
material parameters may be dependent on the electric field. In the case of the Yeoh-
type energy function, we choose to incorporate a dependency of c1 on the electric
field in the form c1 := c1(I4) = ĉ1 − βe I4. This relation conveys the notion that
the material has a ground state elasticity described by the parameter ĉ1 that is
influenced by the application of an electric field, scaled by the coupling parameter
βe. Alternatively, the parameter c1(E) is also multiplied with the purely mechanical
first invariant I1, which may be interpreted as a deformation-dependent formulation
of the coupling parameters. Thus, the approach chosen herein is in accordance with
the concepts presented in [49, 51]. Within the scope of this work, we will extend on
the formulation given in [40], in which the field sensitivity is captured exclusively
by additional terms in the elastic energy contribution. Furthermore, a dependency
of the viscous material parameters on the electric field is also assumed similar to
the form presented in [40].Thus the viscous shear moduli from Equation (29) are
defined as µvi := µvi (I4) = µ̂vi − βvi I4 with the ground state viscous shear moduli µ̂vi
and the coupling parameters βvi . In order to ease the orientation among the numerous
introduced material parameters, the required quantities are summarized in Table 3.1.

4 Parameter identification

Using the experimental results presented in Part I, all material parameters appearing
in the constitutive model as introduced in the previous section can be identified.
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Mechanical Base Parameters
Elastic Parameters Viscous Parameters

c1 c2 c3 µ̂v
1 µ̂v

2 µ̂v
3 τ1 τ2 τ3

Coupling Parameters
Thermal Scaling Parameters Electro-Mechanical Coupling Parameters
ae

1 ae
2 av βe γ2 βv

1 βv
2 βv

3

To this end, the same approach as presented in [43, 47] is adopted here. Thus,
analytical solutions that correspond to the purelymechanical and thermo-mechanical
experiments have to be derived. Based on the selected sample dimensions during
the experiments, the stress state can be assumed to be one-dimensional. Moreover,
when we consider the material to be incompressible at constant temperature, the
resulting deformation gradient and the corresponding right Cauchy-Green tensor in
the intermediate configuration, formulated in terms of the applied strain λ, take the
form

FEM =


λ 0 0
0 λ−1/2 0
0 0 λ−1/2

 , CEM =


λ2 0 0
0 λ−1 0
0 0 λ−1

 . (33)

Therefore, the strain-like internal variables Ai take a form, resembling CEM , i.e.

Ai =


A2
i 0 0

0 A−1
i 0

0 0 A−1
i

 . (34)

With the above definitions at hand, the corresponding Piola stresses can be derived.
For the sake of simplicity, we beginwith the purelymechanical case, i.e., the resulting
stress contributions at reference temperature without the application of an electric
field. Using the expressions for the elastic (28) and the viscous energy contribution
(29)1, these stresses take the form

Pe
iso =

4
3
[
c1 + 2c2

[
λ2 + 2λ−1 − dim]

+ 3c3
[
λ2 + 2λ−1 − dim]2] [

λ − λ−2],

Pv
iso,i =

4
3
µvi

[
λA−2

i − λ−2 Ai

]
.

(35)

The internal variables Ai can be obtained from the evolution law (29)2 by using an im-
plicit Euler integration method combined with a Newton-type iterative scheme. Now
the material parameters can be identified by fitting the expression for the Piola stress
to the experimental results. This identification begins with the elastic parameters ci
of the Yeoh-type model. As it is assumed that the equilibrium values correspond
to the purely elastic response of the material, the elastic material parameters are
identified by minimizing the objective function

[Pe
iso]A − Fn

exp

Fexp
. (36)
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Here the undeformed cross section A and the experimental values of the applied force
Fexp are introduced. The optimal solution is found using the nonlinear least-squares
solver lsqnonlin in Matlab, resulting in a fit of the analytical solution (dashed line)
to the experimental results (solid line) as depicted in Figure 2 with the values for
the material parameters c1 = 1.603 · 10−2N/mm2, c2 = −8.1407 · 10−4N/mm2 and
c3 = 4.6951 · 10−5N/mm2.
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Fig. 2 Analytical solution (dashed line) is fitted to the experimental results (solid line), in which
the equilibrium values are obtained from a multi-step relaxation test that is performed at constant
reference temperature.

It is clearly visible that the model for the elastic response of the material results in an
excellent replication of the experimental results. It should be emphasized again that
the stress-strain curve of VHB does not show the S-shape, which is a characteristic
for most polymeric materials. This is because the maximum applied deformation
applied in our experiments is not in the range in which the strain hardening occurs.
However, the selected Yeoh-type material model is in general capable of reproducing
such hardening due to its cubic formulation as shown in [42]. In order to quantify
the quality of the fit, the coefficient of determination R2 can be introduced as

R2 = 1 −
∑n

i=1[yi − ŷi]2∑n
i=1[yi − y]2 . (37)

Here, the difference between the experimental results yi and the simulation ŷi are
normalized by the difference between the experimental results and their average value
y [46], thus R2 can take a value between 1, corresponding to a perfect fit between
the model and the experiment, and 0. For Figure 2 the coefficient of determination
is 0.9993.
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Once the elastic parameters are identified, the viscous material parameters, namely
µvi and τi , can be identified by fitting the analytical solution to the experimental
results of the cyclic loading tests. The identification could be performed using the
data of a cyclic loading test at one specific strain rate. However, as we consider a
number of three internal variables, the values for the three parameter pairs are not
unique. This means, when we identify a set of material parameters with the help
of the data of only one strain rate, the identified parameters do not necessarily fit
the curves of the other strain rates. Thus, a simultaneous minimization technique
[54, 55, 56] is adopted to identify a unique set of material parameters that can work
for data with all specified strain rates under consideration. To this end, for the values
of the viscous material parameters, an optimization objective reads

s∑
n=1

[
Pe,n
iso + Pv,n

iso
]
A − Fn

exp

Fn
exp

, (38)

where s is the number of strain rates taken into account for the optimization routine.
As in the elastic case, this problem is solved using the lsqnonlin optimization function
integrated within Matlab. The results of the strain rates Ûλ = [0.025 s−1, 0.1 s−1, 0.2
s−1] are used for the optimization, while the remaining data from Ûλ = 0.05 s−1 is used
for additional validation of the identified parameters. Table 1 shows the identified
values for the parameter sets.

µv
1 µv

2 µv
3 τ1 τ2 τ3

5.76 · 10−2 1.47 · 10−2 9.01 · 10−3 0.81 27.35 763.67

Table 1 Identified material parameter sets. µv
i in N/mm2 and τi in s.

Figure 3 depicts a comparison between the analytically obtained results (dashed
lines) and the respective experimental results.
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(a) Loading-unloading test with Ûλ = 0.025 s−1 and Ûλ = 0.05 s−1
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Fig. 3 Comparison between the experimental results (solid lines) and the simulation (dashed lines)
results for cyclic loading tests performed at various strain rates at reference temperature.

The plots show that the model is able to replicate the material response satisfyingly
well both for the strain rates that are used for the parameter identification as well
as for the remaining validation data. For the former, the coefficient of determination
ranges from 0.9982 to 0.9964 and for the latter the value is 0.9942. As an additional
validation, the results of the multi-step relaxation test can also be replicated. In
Figure 4, a comparison between the experimental results and the simulation results
is depicted.
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Fig. 4 Comparison between the simulation results (dashed line) and the experimental data (solid
line) that are obtained from a multi-step relaxation test performed at reference temperature.

Note that during the entire course of the multi-step relaxation test, the selected
material model, in combination with the identified material parameters, is capable of
replicating the material response with an excellent agreement. This holds true when
the material response is dominated by viscous effects, i.e., the initial peak followed
by the subsequent relaxation behavior of the applied force, and the final equilibrium
phase of each step, where the response is dominated by the elastic contribution.
Now, the identified purely mechanical parameters will enable us to utilize the results
of the experiments conducted at increased temperatures for the identification of the
thermo-coupling parameters. For this, the same approach is adopted as in the purely
mechanical case. However, the calculated stresses now contain the respective scaling
functions f (Θ)e and f (Θ)v related to ge(Θ) =

[
− Θ
Θ0
+ 1 − ae

1∆Θ − ae
2∆Θ

2
]
and

gv(Θ) =
[
− Θ
Θ0
+ exp(av[1 − Θ

Θ0
])
]
, thus rendering the temperature sensitive stresses

in the format

P̃e
iso =

[
1 −

[
1
Θ0
+ 2ae

1

]
∆Θ − ae

2∆Θ
2
]
J
− 2

3
Θ

Pe
iso,

P̃v
iso,i =

[
exp

(
av

[
1 − Θ
Θ0

] )
+ [1 + av]

[
1 − Θ
Θ0

] ]
J
− 2

3
Θ

Pv
iso,i.

(39)

In this context, the terms Pe
iso and Pv

iso,i refer to the respective stresses at reference
temperature given in Equation (35) and JΘ is the determinant of the thermal deforma-
tion gradient. Using the results from themulti-step relaxation experiments conducted
at various temperatures, the parameters ae

1 and ae
2 of the elastic scaling function can

be identified. Figure 5 shows the results of the fitting procedure, in which the val-
ues of the parameters ae

1 = 4.015 ·10−3K−1 and ae
2 = −1.349 ·10−4K−2 are identified.
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Fig. 5 Simulation results meet with experimental data. The equilibrium values are extracted from
the relaxed points of the multi-step relaxation tests performed at different temperatures. (Left)
Simulation (dashed lines) and experimental values (solid lines) over the applied stretch. (Right)
Simulation (o-marks and dashed trend line) and experimental values (x-marks and solid line) of the
resulting force for the maximum applied stretch over the temperature range.

Figure 5 shows that for the narrow temperature range under consideration, the simple
form of the scaling function ge(Θ) is sufficient to replicate the effect of the tempera-
ture on the elastic material response satisfyingly well. Thus, we can proceed with the
identification of the material parameter c of the viscous coupling function. For the
identification, the experimental results of the cyclic loading tests at 0.1 s−1 performed
under the temperatures 40◦C and 60◦C are used. Therefore, the data obtained from
the experiments conducted at a strain rate of 0.1 s−1 at the temperatures of 30◦C
and 50◦C and the entire data from the remaining strain rates can be used for the
validation. Figures 6 to 9 show a comparison between the simulation results and the
experiments with an identified value of the thermo-coupling parameter av = 1.7934.

The results depicted in Figures 6 to 9 indicate that the choice of the viscous scaling
function gv(Θ) leads to an excellent fit of the cyclic loading experiments for all of
the strain rates and temperatures under consideration.
Finally, on the basis of the identified purely mechanical parameters, the values of the
electro-mechanical coupling parameters can be found using an approach similar to
the one from the previous sections. However, due to the selected sample geometry
and the boundary conditions of the electro-mechanical experiments, the resulting
deformation can not be considered as a uniaxial stress state. Therefore, the problem
can not be solved analytically and the finite element implementation described
in [40, 46] has to be used to mimic the experiments. The data from the electro-
mechanical experiments at the maximum applied voltage of 6 kV at three different
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Fig. 6 Simulation results are compared with experimental data that are obtained from the cyclic
loading tests conducted at different temperatures. (Left) Simulation (dashed lines) and experimental
values (marks) over the applied stretch. (Right) Simulation (o-marks and dashed trend line) and
experimental values (x-marks and solid line) of the resulting force for the maximum applied stretch
over the temperature range for the strain rate of 0.025 s−1.
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Fig. 7 Simulations compared to experiments for the values of the resulting force of cyclic loading
tests at different temperatures. (Left) Simulation (dashed lines) and experimental values (marks)
over the applied stretch. (Right) Simulation (o-marks and dashed trend line) and experimental
values (x-marks and solid line) of the resulting force for the maximum applied stretch over the
temperature range for the strain rate of 0.05 s−1.

strain rates is used for the optimization. Furthermore, the results from the remaining
electro-mechanical experiments conducted with 2 kV - 5 kV for all strain rates can be
used as the validation of the model with the identified parameters. This simultaneous
optimization routine makes the use of the same optimization function as previously
introduced in Equation (38). Therein, the calculated stress values are obtained from
the finite element computation. The amount of experimental data that is chosen for
the optimization routine is small compared to the remaining validation data. This is
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Fig. 8 Simulation results meet with experimental data where the data are obtained from cyclic
loading tests performed at different temperatures. (Left) Simulation (dashed lines) and experimental
values (marks) over the applied stretch. (Right) Simulation (o-marks and dashed trend line) and
experimental values (x-marks and solid line) of the resulting force for the maximum applied stretch
over the temperature range for the strain rate of 0.1 s−1.
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Fig. 9 Simulations meet with experiments, in which experimental data are extracted from cyclic
loading tests conducted at different temperatures. (left) Simulation (dashed lines) and experimental
values (marks) over the applied stretch. (right) Simulation (o-marks and dashed trend line) and
experimental values (x-marks and solid line) of the resulting force for the maximum applied stretch
over the temperature range for the strain rate of 0.2 s−1.

necessary, as the entire finite element simulation has to be run separately for each
iteration of the optimization, which results in a significant computational burden.
With this we find the values of the material parameters, introduced for the coupling
of the elastic and the viscous energy as βe = 3.0791 · 10−12 N/(Vmm)2, βv1 =
2.3974 · 10−14 N/(Vmm)2, βv2 = 2.7304 · 10−14 N/(Vmm)2, βv3 = 1.8847 · 10−15

N/(Vmm)2 and γ2 = 5.9777 · 10−12N/V2. The identified parameter values lead to a
simulated material response as depicted in Figures 10 to 12. On the left-hand side the
applied force over the entire cyclic loading experiment is plotted. The experimental



20 Markus Mehnert, Mokarram Hossain and Paul Steinmann

results are depicted as black circles for the purely mechanical case, i.e. a voltage
difference of 0 kV, and as blue triangles for a potential difference of 6 kV. The
dashed lines in the according color show the results from the FE simulation. The
plots on the right-hand side depict the applied force for the maximum applied stretch
of 200% over the applied voltages. Here, the experimental results are depicted as
black squares, whereas the results from the simulation are depicted as red crosses. A
dashed trend line is added for both the computational and the experimental results for
purely representational purposes. Furthermore, the scaling of the y-axis is adjusted
in such a way that the influence of the electric field can easily be identified.
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Fig. 10 Loading-unloading test for a strain rate of Ûλ = 0.025 s−1. (Left) Applied force over the
entire loading-unloading cycle. (Right) Applied force at the maximum stretch value for all applied
potential differences.

Note that the constitutive model formulated in Section 3 can be fitted accurately with
the experimental data that are obtained over the entire range of the applied strain for
different applied voltage differences and strain rates. To quantify the quality of the
fit, the coefficient of determination can be calculated. For the data presented in the
left plots of Figures 10 to 12, the value of R2 ranges between 0.9606 and 0.9913
demonstrating the high quality of the fit.

The remaining experimental data, i.e., the cyclic-loading tests conducted under an
electric field and increased temperature, can be used as further validation of our
model. It is assumed that the thermal and electric effects are superimposed without
additional heating effects. Thus, we neglect possible heat generation effects that
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Fig. 11 Loading-unloading test for a strain rate of Ûλ = 0.1 s−1. (Left) Applied force over the entire
loading-unloading cycle. (Right) Applied force at the maximum strain value for all applied potential
differences.

0 50 100 150 200
0

1

2

3

4

5

6

Stretch in %

R
es

u
lt

in
g

F
or

ce
in

N

0 kV - Experimental results 0 kV - Simulation results
6 kV - Experimental results 6 kV - Simulation results

0 1 2 3 4 5 6
5.2

5.4

5.6

5.8

6

Applied potential difference in kV

Experimental results Simulation results

Fig. 12 Loading-unloading test for a strain rate of Ûλ = 0.2 s−1. (Left) Applied force over the entire
loading-unloading cycle. (Right) Applied force at the maximum strain value for all applied potential
differences.

appear in the heat conduction equation (20). In the case of a temperature change
due to the application of an electric field, this assumption is based on a lack of
experimental evidence with adequate data sets. Possible heat generation due to the
mechanical deformation is neglected due to the fact that the material is deformed
under only a single cycle, which does not result in a considerable magnitude of the
Gough-Joule effect. Furthermore, we assume that the coupling parameters are not
explicitly dependent on temperature. A comparison between the results of the finite
element simulation and the experimental data is depicted in Figure 13. The curves
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show the results of the electro-mechanical tests at reference temperature and at an
increased temperature of 55 ◦C for 0 kV and 6 kV.
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Fig. 13 Resulting force over the applied strain of cyclic loading tests at different temperatures and
applied electric voltages. Experimental data plotted as solid lines, simulation results plotted as
dashed lines.

The plots clearly show that the proposed modeling approach in combination with the
identified material parameters is capable of correctly replicating the experimental
behavior of VHB 4905TM conducted under a combined thermo-electro-mechanical
loading. With a unique set of identified material parameters, the thermo-electro-
viscoelastic coupled model can match simulation results nicely with experimental
data even for non-homogeneous deformation. To conclude the parameter identifica-
tion, Table 2 summarizes the values for all material parameters.

5 Summary and outlook

In this contribution, a thermodynamically consistent numerical modelling ap-
proach for the simulation of dielectric elastomers under combined thermo-electro-
mechanical loading was presented. The proposed model was specified for the highly
viscous polymer VHB 4905TM. In combination with the cinorehensive experimental
results presented in Part I, all relevant material parameters appearing in the consti-
tutive model were identified in Part II. For the replication of the mechanical and
thermo-mechanical experiments, analytical solutions were derived whereas in the
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VHB 4905TM

Mechanical Base Parameters
Elastic Parameters

ce1 ce2 ce3
0.015 −5.97 · 10−4 3.15 · 10−5

Viscous Parameters
µv

1 µv
2 µv

3
4.14 · 10−3 1.89 · 10−2 3.42 · 10−3

τ1 τ2 τ3
0.81 27.14 759.74

Thermal Scaling Parameters
ae

1 ae
2 av

7.64 · 10−3 −5.60 · 10−5 4.69
Electro-Mechanical Coupling Parameters

βe γ2 βv
1 βv

2 βv
3

3.08 · 10−12 5.98 · 10−12 2.40 · 10−14 2.73 · 10−14 1.88 · 10−15

Table 2 Summary of the identified material parameters for VHB 4905TM. Parameters ci , µv
i in

N/mm2, τi in s, βe , βv
i in N/(Vmm)2, γ̂2 in N/V2.

case of an electric field, a finite-element implementation was used for the solution
of the problem. In our future work, we aim to present a similar investigation for the
characterization of polymers filled with piezoactive particles that will amplify the
electro-mechanical coupling.
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6 Appendix

6.1 Considerations for incompressible materials under
non-isothermal conditions

The aim of our modeling approach is to simulate a material that exhibits incom-
pressible behavior at constant temperatures but is able to undergo a volumetric
deformation due to thermal loading. Following the concept outlined in [57], the
deformation gradient is split multiplicatively into a thermal contribution FΘ and an
electro-mechanical contribution FEM , which may be interpreted as the introduc-
tion of an intermediate configuration termed herein as BEM , c.f. Figure 1. While
the thermal deformation is purely volumetric, the electro-mechanical deformation
may, in general, contain isochoric and volumetric contributions. Consequently, the
deformation is described by

F = FΘFEM = FΘF
iso
EMFvol

EM . (40)

The introduction of the volume changing electro-mechanical deformation Fvol
EM and

the volume preserving deformation F iso
EM motivates the introduction of the isochoric

right Cauchy-Green tensor CEM = J−2/3
EM CEM that is based on the Jacobian JEM =

det(FEM ) and the regular right Cauchy-Green tensor CEM = FT
EMFEM . When we

assume isotropic thermal expansion, e.g. described by a linear formulation in the
form JΘ = 1 + α[Θ − Θ0] [58], where α is the thermal expansion coefficient, the
thermal deformation gradient can be formulated as

FΘ = J
1
3
Θ
I → CΘ = J

2
3
Θ
I . (41)

Here a right Cauchy-Green tensor CΘ is introduced that corresponds to the thermal
expansion. Additionally we introduce the Green strain tensors as

E =
1
2
[FTF − I ] = 1

2
[C − I ],

EEM =
1
2
[FT

EMFEM − I ] = 1
2
[CEM − I ],

EΘ = E − EEM =
1
2
[FTF − FT

EMFEM ] = 1
2
[FT
ΘFΘ − I ].

(42)

Noteably, the multiplicatively decomposition of the deformation gradient leads to
an additive decomposition of the Green strain, which becomes especially visible in
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Equation (43)1. These can be transformed into their counterparts Γ, ΓEM and ΓΘ
in the electro-mechanical intermediate configuration by a push forward operation
leading to

Γ = F−TEMEF−1
EM = ΓEM + ΓΘ,

ΓEM = F−TEMEEMF−1
EM =

1
2
[I − F−TEMF−1

EM ],

ΓΘ = F−TEMEΘF
−1
EM = F−TEM

1
2
[FTF − FT

EMFEM ]F−1
EM

=
1
2
[FT
ΘFΘ − I ] = EΘ.

(43)

It should be noted that the push forward of EΘ results in an identical expression ΓΘ,
which is inevitable, as theGreenStrainEΘ is located in the intermediate configuration

by definition. Next we derive the strain-rate tensor
4
Γ of the combined deformation

relative to the intermediate configuration that reads

4
Γ = F−TEM

ÛEF−1
EM =

ÛΓ + LT
EMΓ + ΓLEM =

4
ΓEM +

4
ΓΘ, (44)

with the velocity gradient LEM = ÛFEMF−1
EM . The time derivative of the intermediate

electro-mechanical and thermal strains take the form
4
ΓEM = F−TEM

ÛEEMF−1
EM =

ÛΓEM + LT
EMΓEM + ΓEMLEM

=
1
2
[LEM + LT

EM ],
4
ΓΘ = F−TEM

ÛEΘF−1
EM =

ÛΓΘ + LT
EMΓΘ + ΓΘLEM .

(45)

Thus, with the expressions given in Equations (41) and (43), we can derive ÛΓΘ as

ÛΓΘ = 1
3

J
− 1

3
Θ

∂JΘ
∂Θ
ÛΘI, (46)

whereas
4
ΓΘ can be expressed as

4
ΓΘ = ÛΓΘ + [J

2
3
Θ
− 1]

4
ΓEM . (47)

We now introduce an appropriate stress measure Stot, a Piola-Kirchhoff type stress,
as a work conjugate to the Green strain. Within the concept of a specific stress power
p [59] this leads to

p = Stot : ÛE = Stot : [FT
EM

4
ΓFEM ] = Stot

EM :
4
Γ = Stot

EM : [
4
ΓΘ +

4
ΓEM ], (48)

where the intermediate stress Stot
EM is introduced as the push-forward of Stot to the

intermediate configuration. With Equation (47) this can be transformed to
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p = Stot
EM : [ ÛΓΘ + [J

2
3
Θ
− 1]

4
ΓEM +

4
ΓEM ] = Stot

EM : [ ÛΓΘ + J
2
3
Θ

4
ΓEM ]. (49)

We can now incorporate Stot
EM into the Clausius-Planck inequality (14), which results

in
− ÛΩ − ÛΘH + Stot : ÛE − ÛED ≥ 0,

− ÛΩ − ÛΘ H + Stot
EM : [ ÛΓΘ + J

2
3
Θ

4
ΓEM ] − ÛED ≥ 0.

(50)

Using the definition of ÛΓΘ given in Equation (46) this can further be transformed
into

− ÛΩ + ÛΘ
[
1
3

J
− 1

3
Θ

∂JΘ
∂Θ

Stot
EM : I − H

]
+ J

2
3
Θ
Stot
EM :

4
ΓEM −P ÛE ≥ 0. (51)

Now we can formulate an augmented free energy functionΩ parameterized in terms
of CEM , Θ and E, which results in a time derivative in the form

ÛΩ(CEM,Θ,E) = ∂Ω(CEM,Θ,E)
∂CEM

: ÛCEM +
∂Ω(CEM,Θ,E)

∂Θ
ÛΘ+ ∂Ω(CEM,Θ,E)

∂E
ÛE.

(52)
Thus, if we recall ÛCEM = 2 ÛEEM = 2FT

EM

4
ΓEMFEM , Equations (51) and (52) can

be combined resulting in the constitutive equations for the intermediate stress, the
entropy and the electric displacement

Stot
EM = 2J

− 2
3
Θ

FEM
∂Ω

∂CEM
FT
EM, D = − ∂Ω

∂E
, H =

1
3

J
− 1

3
Θ

∂JΘ
∂Θ

Stot : CEM − ∂Ω
∂Θ

.

(53)
In the subsequent calculations, the stress in the reference configuration is used
frequently, which can be derived by a simple pull-back operation of the intermediate
stress resulting in the expression

Stot = F−1
EMStot

EMF−TEM = 2J
− 2

3
Θ

∂Ω

∂CEM
. (54)

The derived framework can be specified to correctly replicate the material response
of a DE under thermo-electro-mechanical loading. For this, the energy function
may be extended by, for instance, including internal variables in order to model the
time-dependency of a viscoelastic material.

7 General framework for a coupled energy function

The aim of this appendix is the introduction of a suitable framework for the for-
mulation of an energy function that correctly describes the response of a polymeric
material experiencing a thermo-electro-mechanical loading. This framework will
be derived step by step, beginning with the isothermal case. The information pre-
sented therein has been investigated as well in our previous publication [45] where,
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in addition to mathematical formulations, a number of illustrative boundary value
problems were presented. Subsequently, a thermodynamically consistent formula-
tion for a thermally coupled energy function is derived. This is initially done under
the assumption of a constant specific heat capacity, resulting in a linear scaling of
the energy function with the temperature, which is also shown in [33]. In order to
simulate a nonlinear dependency of the energy function on the temperature, in the
next step, a more general form of the specific heat capacity is selected, leading to a
generalized formulation, as presented in [40]. As the energy function is intended to
be used for the simulation of polymeric materials that are typically incompressible,
in a final step, special focus is put on ensuring that the energy function correctly
describes incompressibility at constant temperatures while still replicating a thermal
expansion.

7.1 Isothermal energy function

We will begin by investigating the case of an electro-mechanically coupled material,
i.e., isotropic electro-elastic behavior without considering thermal influences. It is
assumed that the material response can be derived from a corresponding energy
function, referred to as the isothermal energy contribution. As shown in [36], the
concept of isotropy is closely related to the theory of isotropic tensor functions. Thus,
following the representation theorem [60, 61], a scalar-valued function F = F (A, b)
is invariant with respect to the proper orthogonal group SO(3) if and only if it can
be expressed as a function of the six principal invariants of A and b [45], i.e.

F (A, b) = F (I1A, I3A, I3A, I4b, I5Ab, I6Ab). (55)

Therefore, we introduce the energy functionΨ0(FEM,E) as a contribution to the free
energy (13) in the form Ψ(F,Θ,E) = Ψ(Ψ0(FEM,E),Θ). In the context of this work
Ψ0(FEM,E) is best described as an energy contribution expressed in terms of a set of
material parameters at reference temperature and is defined as an isotropic function
depending on the electric field vector E and the right Cauchy-Green tensor CEM ,
which is valid based on the principle of objectivity [36]. Following e.g. [53, 36, 60],
the first three invariants I1, I2, I3 depend solely on the right Cauchy-Green tensor and
are, therefore, purely mechanical quantities

I1 = tr (CEM ), I2 =
1
2

[
[tr (CEM )]2 − tr (CEM

2)
]
, I3 = det (CEM ). (56)

On the other hand, the purely electric fourth invariant I4 reads

I4 = [E ⊗ E] : I, (57)

which is the definition of the electric field strength in the undeformed configuration.
Throughout the literature, the form of the first four invariants is consistent, see for
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example [62, 63, 18, 51]. However, for the form of the two remaining invariants I5, I6
that describe the coupling between the electric field and the mechanical deformation,
two different options can be found. In various contributions [18, 64, 36, 65, 66, 67],
the coupled invariants depend directly on the right Cauchy-Green tensor in the form

I5 = [E ⊗ E] : CEM, I6 = [E ⊗ E] : C2
EM . (58)

A physical interpretation of these invariants can be found as well, though it is not
as straight forward as the interpretation of I4. As shown in [53], the electric field
in the context of electro-elasticity introduces a behavior that is comparable to the
preferred direction of a transversely isotropic material. Thus, we may consider the
electric field as the normal vector to an area-like quantity, analogously to the size of
an area element dA in the material configuration and da in the spatial configuration.
As presented in [68], this leads to the notion that I5 is a measure of the changes of
this area-like quantity, normal to the electric field, multiplied with the electric field

strength in the deformed configuration, i.e., the ratio
da2

dA2 |e|
2.

Alternatively, the inverse of the right Cauchy-Green tensor can be used for the
definition of a different version of the coupling invariants as presented for example
in [53, 68, 69, 70]. This alternative formulation will be labeled Ĩ5, Ĩ6 in the context
of this work and takes the form

Ĩ5 = [E ⊗ E] : C−1
EM, Ĩ6 = [E ⊗ E] : C−2

EM . (59)

In this formulation the fifth invariant can intuitively be interpreted as the square of
the electric field strength in the deformed configuration, i.e.

Ĩ5 = [E ⊗ E] : C−1
EM = EC−1

EME
T = |e|2. (60)

Both of these formulations are invariant to the proper orthogonal group SO(3)
and are therefore valid options for the formulation of the coupling invariants of a
free energy function of an isotropic material. In the context of this work, we will
restrict ourselves to the initial formulation based directly on the right Cauchy-Green
tensor. The interested reader is referred to [45] for a more detailed insight into the
differences between the two formulations. It should be noted however that, even
though the selection of an energy function that contains the coupling invariants I5
or I6 in general results in a connection between the electric field and the mechanical
response, it does not necessarily mean that it correctly replicates the behavior of a
dielectric elastomer under the loading of an electric field. Therefore, the effects of
material parameters that are sensitive to an electric field were thoroughly investigated
in [40].
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7.2 Thermally coupled energy function

7.2.1 Constant heat capacity

The electro-mechanically coupled energy contribution derived in the previous chap-
ter will now be integrated into a framework that introduces the temperature as an
additional field. To this end, we follow the approach presented by Reese and Govin-
djee [25] and adapted it to electro-mechanics. As a starting point, the Legendre
transformation as given in Equation (13) is used, which reads

Ψ(F,Θ,E) = U − ΘH −EP = U + Θ∂Ω
∂Θ
−EP = U + Θ∂Ψ

∂Θ
−EP. (61)

Here we have made the use of the constitutive equation for the entropy as given in
(17). For the sake of readability and in order to abbreviate the expressions, the free
energy is labelled as Ψ in the following. When the derivative of this function with
respect to the temperature is taken, we find that

∂Ψ

∂Θ
=
∂U
∂Θ
+
∂Ψ

∂Θ
+ Θ

∂2Ψ

∂Θ∂Θ︸    ︷︷    ︸
−c

−→ ∂U
∂Θ

= c.
(62)

Here we use the definition of the specific heat capacity c as found for example in
[71, 72, 73, 31]. Consequently, the internal energy may be expressed depending on
the specific heat capacity and the internal energyU0 at the reference temperature as

U =
∫ Θ

Θ0

cdΘ̃ +U0. (63)

Based on the definition of the specific heat capacity

c = −Θ ∂2Ψ

∂Θ∂Θ
, (64)

the derivative of the free energy with respect to the temperature takes the form

∂Ψ

∂Θ
=

∫ Θ

Θ0

− c

Θ̃
dΘ̃ +

∂Ψ

∂Θ

����
Θ0

. (65)

By inserting Equations (63) and (65) into (61), the free energy can be expressed as

Ψ =

∫ Θ

Θ0

cdΘ̃ +U0 + Θ

[∫ Θ

Θ0

− c

Θ̃
dΘ̃ +

∂Ψ

∂Θ

����
Θ0

]
−EP

= U0 + Θ
∂Ψ

∂Θ

����
Θ0

+

∫ Θ

Θ0

c
[
1 − Θ
Θ̃

]
dΘ̃ −EP.

(66)
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Based on Equation (61), the derivative of the free energy with respect to the temper-
ature, evaluated at the reference temperature can be expressed as

Ψ0 = U0 + Θ0
∂Ψ

∂Θ

����
Θ0

−EP −→ Θ ∂Ψ

∂Θ

����
Θ0

=
Θ

Θ0
[Ψ0 −U0 +EP], (67)

which renders Equation (66) into the format

Ψ =
Θ

Θ0
Ψ0 + [U0 −EP]

[
1 − Θ
Θ0

]
+

∫ Θ

Θ0

c
[
1 − Θ
Θ̃

]
dΘ̃. (68)

When the specific heat capacity at constant deformation and electric field is assumed
to be temperature independent, i.e. c |F,E(Θ) = c |F,E(Θ0) = c0, this leads to

Ψ =
Θ

Θ0
Ψ0 + [U0 −EP]

[
1 − Θ
Θ0

]
+ c0

[
Θ − Θ0 − Θ ln

(
Θ

Θ0

)]
. (69)

Thus, for a constant specific heat capacity, the isothermal energy contribution Ψ0
is scaled linearly by the temperature. The derived framework of a thermo-electro-
mechanical energy function leads to a similar result as presented in [33, 40], in
which the thermal coupling was derived following a slightly different approach. In
order to maintain the structure of the energy functions presented therein, the term
connected to the internal energyU0 is interpreted as the volumetric deformation due
to thermal expansion, which is in accordance with the literature, see e.g. [25]. The
remaining contribution EP

[
1 − Θ

Θ0

]
indicates a coupling between the electric field

and the temperature and is combined with the first term on the right-hand side to
the expression Ψ̃0 =

Θ
Θ0
Ψ0 −EP

[
1 − Θ

Θ0

]
, resulting in the final form of the energy

function

Ψ =
Θ

Θ0
Ψ̃0 + c0

[
Θ − Θ0 − Θ ln

(
Θ

Θ0

)]
− [Θ − Θ0]M(FΘ). (70)

The specific formof M(FΘ) can be taken from literature, e.g. as M(FΘ) = 3κ0α0 ln(JΘ)
with the bulk modulus κ0 and the thermal expansion coefficient α0.

7.2.2 Temperature dependent heat capacity

The calculations in the previous section have shown that the assumption of a
temperature-independent specific heat capacity inevitably leads to a linear scaling
of the free energy Ψ0. However, it is well documented that the mechanical material
parameters of various materials exhibit a nonlinear dependency on the temperature
[58, 74]. Thus, as Ψ0 is interpreted as an energy function containing a set of pa-
rameters of the material at the reference temperature, a more generalized form of
the specific heat capacity has to be introduced. Following the approach presented in
[25], we assume a base heat capacity c0 that is amended by the free energy multiplied
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by a temperature dependent scaling function in the form

cF,E(Θ) = c0 − Θ∂
2g(Θ)
∂Θ2 Ψ̃0. (71)

When this formulation is introduced into Equation (68), the definition of the free
energy function takes the form

Ψ =
Θ

Θ0
Ψ̃0 +U0

[
1 − Θ
Θ0

]
+

∫ Θ

Θ0

[
c0 − Θ̃∂

2g(Θ̃)
∂Θ̃2

Ψ̃0

] [
1 − Θ
Θ̃

]
dΘ̃. (72)

The integral on the right-hand side can be evaluated using partial integration, which
results in the expression

Ψ =
Θ

Θ0
Ψ̃0 +U0

[
1 − Θ
Θ0

]
+ c0

[
Θ − Θ0 − Θ ln

(
Θ

Θ0

)]
+

[
g(Θ) − g(Θ0) + ∂g(Θ)

∂Θ

����
Θ0

[Θ − Θ0]
]
Ψ̃0.

(73)

Eventually, the thermally coupled energy function takes the final form

Ψ = f (Θ)Ψ̃0 +U0

[
1 − Θ
Θ0

]
+ c0

[
Θ − Θ0 − Θ ln

(
Θ

Θ0

)]
, (74)

where the scaling of the energy function is summarized as

f (Θ) = Θ
Θ0
+ g(Θ) − g(Θ0) + ∂g(Θ)

∂Θ

����
Θ0

[Θ − Θ0]. (75)

It should be noted that in general the base specific heat capacitymay itself also depend
on temperature, as presented for example in [26]. As the intention of the selected
format of the specific heat capacity, as introduced in Equation (71), is the option
of a nonlinear scaling of the material parameters, this alternative is not investigated
further in the context of this work.
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