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Abstract
1. Statistical modelling of animal movement data is a rapidly growing area of  

research. Typically though, these models have been developed for analysing the 
tracks of individual animals and we lose sight of the impact animals have on each 
other with regards to their movement behaviours. We aim to develop a model 
with a flexible social framework that allows us to capture that information.

2. Our approach is based on the concept of social hierarchies, and this is embedded 
in a multivariate diffusion process which models the movement of a group of ani-
mals. The possibility of switching between behavioural states facilitates dynamic 
social behaviours and we augment the observed data with sampled state switch-
ing times in order to model the animals' behaviour naturally in continuous time. 
In addition, this enables us to carry out exact inference in a Bayesian setting with 
the benefits of being able to handle regular, irregular and missing data. All move-
ment and behaviour parameters are estimated with Markov chain Monte Carlo 
methods.

3. We examine the capability of our model with simulated data before fitting it 
to GPS locations of five wild olive baboons Papio anubis. The results enable us 
to identify which animals are influencing the movement of others and when, 
which provides both a dynamic and long-term static insight into the group's so-
cial behaviours.

4. Our model offers a flexible method in continuous time with which to model the 
network of social interactions within animal movement. Doing so avoids the limita-
tions caused by a discrete-time approach and it allows us to capture rich informa-
tion with regards to a group's social structure, leading to constructive applications 
in conservation and management decisions. However, currently it is a computa-
tionally expensive task to fit the model to data, which in turns limits extending 
the model to more fruitful but complex cases such as heterogeneity in space or 
individual characteristics. Furthermore, our social hierarchy approach assumes all 
relevant animals are tracked and that any interactions have some ordering, both 
of which narrow the scope within which this approach is appropriate.
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1  | INTRODUC TION

The research area of statistically modelling animal movement has 
rapidly expanded in recent years. This has in part been driven by 
the increase in availability of movement data (e.g. from GPS tags) 
coupled with the potential insight, from habitat preference to mon-
itoring the impacts of a changing environment, that can be gained 
from analysing it (Kays, Crofoot, Jetz, & Wikelski, 2015).

This has led to a broad range of methods to be developed. For 
instance, the hidden Markov model approach utilises the computa-
tional efficiency of discrete time (Langrock et al., 2012) whilst the 
continuous-time correlated random walk formulation by Johnson, 
London, Lea, and Durban (2008) offers more flexibility with regards 
to irregular data intervals. Dunn and Gipson (1977) introduced mod-
elling animal movement as a diffusion process, a concept that has 
been built up on by Blackwell (1997, 2003), Harris and Blackwell 
(2013) and Blackwell, Niu, Lambert, and LaPoint (2016) to account 
for multiple movement behaviours.

Typically, these methods have been developed for analysis 
of individual animals and so they fail to account for the impacts 
that social animals have on each other's movement behaviours. 
With increasing ability to obtain simultaneous tracking data from 
multiple animals within a group (Westley, Berdahl, Torney, & 
Biro, 2018), we now have the opportunity to build these social 
interactions into our models. Indeed, recent work has begun to 
explore that possibility (Langrock et al., 2014; Niu, Blackwell, & 
Skarin, 2016) through treating the group as a collective during the 
movement.

However, being able to drill further into the social behaviour of a 
group, such as identifying animals with high levels of influence, will 
provide us with richer information on their social structures, with 
useful applications in conservation efforts (King, Fehlmann, Biro, 
Ward, & Fürtbauer, 2018; Westley et al., 2018). Outside of statistical 
modelling, approaches have been taken to extract this desired in-
formation from within the data, such as Strandburg-Peshkin, Farine, 
Couzin, and Crofoot (2015) looking for moments where collective 
movement decisions have occurred and how the scenario developed.

In this paper, we develop a social framework in our movement 
model to capture those intra-group interactions. This is inspired by 
orderly social hierarchies, which are shown to be prevalent across a 
broad array of taxa (McDonald & Shizuka, 2013). The need to keep 
these hierarchies dynamic (Chase & Lindquist, 2016) also works in 
conjunction with more fluid arrangements such as fission-fusion 
dynamics (Ramos-Fernández & Morales, 2014) meaning we can ac-
count for an extensive range of social constructs.

Furthermore, we formulate this in continuous time. In doing so, 
the interactive behaviours we define are not married to the temporal 
scale of the observations, we avoid the approximations caused from 

analysing discrete data and irregular or missing data are not prob-
lematic (Blackwell et al., 2016; Harris & Blackwell, 2013).

During this paper, we first introduce the components of our 
movement model: the social framework which is embedded within 
a multivariate Ornstein-Uhlenbeck process and continuous-time 
behavioural state switching. We then outline the algorithm de-
veloped to fit the model to data using Markov chain Monte Carlo 
(MCMC) methods before showcasing key features of the results 
we can obtain using simulated data and baboon GPS locations. 
Finally, we discuss the wider applications of this work and future 
directions.

2  | MODELLING SOCIAL ANIMAL 
MOVEMENT

2.1 | Influence hierarchies

To capture the social behaviour of a group's movement, our as-
sumption is: a period of direct interaction between two animals 
can be characterised by the movement of one of those animals 
being attracted to the other. This is an assumption shared with 
other areas of animal movement literature (Long, Nelson, Webb, 
& Gee, 2014).

For ease of reference, we will refer to the roles in this dyadic re-
lationship as ‘dominant’ and ‘subordinate’ (see Social definitions) but, 
as with all behaviour modelling, we need to be careful not to over- 
interpret the behaviour labelling. That is, ‘subordinate’ or ‘attracted 
to’ have certain connotations but the movement behaviour just 
broadly translates to the movement of an animal being influenced by 
the other in some sense. Similar considerations also need to be made 
for our subgroup-level labels of ‘leader’ and ‘follower’.

This dyadic concept can be naturally extended for larger social 
groups to give rise to social hierarchies (see Figure 1a). In order to 
keep this framework tractable and easy to interpret, we are restrict-
ing these hierarchies to essentially a thinned network that contain 
the edges representing the most causal interaction. That is, an animal 
can have at most one dominant but it can have multiple subordinates. 
This is as opposed to a tournament-style network where there is a 
some degree of relationship between every pair of nodes, which is 
a rare occurrence in nature (McDonald & Shizuka, 2013). Thus, our 
resulting social structure will represent the most causal influence 
to explain a group's movement—hence ‘influence hierarchies’ (see 
Figure 1b). We restrict the possible hierarchies to avoid any cycles, 
to ensure that the pattern of relationships is meaningful and that the 
movement models will be well-defined. The hierarchical structure is 
therefore what is often known in statistical contexts as a Directed 
Acyclic Graph.
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2.2 | Multivariate Ornstein-Uhlenbeck process

To model the movement of the animals, we use a diffusion process 
including a linear attraction term to represent the attraction-based 
interaction we have assumed. Then the movement of an individual 
animal i  that is attracted to animal j can be described by the follow-
ing stochastic differential equation (SDE):

where Ay

it
 is the location of animal i  at time t in the y coordinate; � 

is the rate of attraction towards Ay

jt
 where i≠ j; � is the coefficient of 

‘noise’, the component of movement modelled not in terms of social 

interaction but as Brownian motion Wy

it
. Therefore, Equation 1 has two 

components: the noise term, which is a continuous-time analogue of a 
random walk, and the attraction term, which captures any persistence 
in the movement towards another animal. For leading and independent 
(i.e. non-subordinate) animals, this reduces to Brownian motion (BM) as 
they have no attraction term:

where � is a distinct noise parameter. The x and y coordinates are 
treated as independent [see Blackwell (1997) for justification] and 
there are corresponding equations for the x axis.

Because of their linearity, these univariate SDEs can be com-
bined into a multivariate Ornstein-Uhlenbeck (OU) process to model 
the group's movement jointly as detailed by Niu et al. (2016). For n 
animals, say, in the y axis:

where

and Ly
it
 is the location of animal i 's leader at time t. Ft and Σ are  

(n × n)–matrices where

and

Gt is a vector of locations for all animals at time t and matrix Ft is the 
attraction matrix for the group which indicates the interactions within 
the hierarchy at time t, i.e. who is subordinate to whom. Θt is a vector 
which contains the location of each animal's leader at time t and matrix 
Σ contains the coefficient of noise for each animal.

The solution to the multivariate SDE has a closed form—a multi-
variate normal distribution (Niu et al., 2016):

where G0, F0 and Θ0 correspond to the animals' locations, the attrac-
tion matrix and the leaders' locations at time 0 respectively. The OU 
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Social definitions

Dominant: with respect to an edge in the hierarchy be-
tween animals i  and j where j is attracted to i , i  is domi-
nant towards j.
Follower: an animal in a subgroup that is not the leader.
Group: all animals in the data set.
Independent: an animal is independent if it is neither a 
dominant or a subordinate.
Leader: the focal point of a subgroup. That is, this animal 
is a dominant to at least one animal, but a subordinate to 
none. Animal i 's leader is the leading animal of the sub-
group i  is in.
Subgroup: all animals in a single hierarchy structure, i.e. a 
component of the graph formed as in Figure 1. Independent 
animals are their own subgroup.
Subordinate: with respect to an edge in the hierarchy be-
tween animals i  and j where j is attracted to i , j is subor-
dinate to i .

F I G U R E  1   In (a), whilst C is subordinate to B, we see B is in 
turn subordinate to A which enables us to learn how the influence 
in movement is cascaded through the group. In (b), we have 
a transitive triad where A dominates B, B dominates C and A 
dominates C. We only capture the influence that best describes C's 
movement and consequently the structure we estimate will either 
be A dominates B, B dominates C or A dominates B, A dominates 
C. In all of the above hierarchies, A is the leader whilst B and C are 
followers

A

B

C

(a)

A

B C

=

A

B C

or

A

B C

(b)



     |  57Methods in Ecology and EvoluonMILNER Et aL.

process is Markovian with the animals' locations at time t conditional 
on their previous locations at time 0.

The expected value of this distribution is given by:

and Var[Gt|G0] is given by Ξ
(
F0, t

)
 which consists of the following five 

expressions (to ease notation, we simplify Ξ
(
F0, t

)
 to Ξ and F0 to F):

where dom(i) is the dominant of animal i ; l  is the leader of the subgroup 
both i  and j are in; −l indicates all animals except l . The scenarios of (a) 
to (e) are as follows:

a. i = j and i  is a leading or independent animal.
b. i ≠ j and j is the leader of i 's subgroup.
c. i ≠ j, i  and j are in the same subgroup but neither are the leader.
d. i = j and i  is a subordinate.
e. i ≠ j and i  and j are in different subgroups.

In practice, the order of the computation of Ξ
(
F0, t

)
 is import-

ant as some expressions rely on other values within Ξ
(
F0, t

)
. See 

Appendix A for the algorithm (all appendices are provided in the on-
line supporting information).

2.3 | Behaviour states

The movement model we have described so far relies on some 
knowledge of which animal is subordinate to which and when. 
However, we are unlikely to know either of those pieces of informa-
tion and so we treat them as unknown. To estimate them, we in-
corporate behavioural state switching where the states correspond 
to the animal's social behaviour. As we are operating in continuous 
time, we do so with a continuous-time Markov chain with a discrete 
state space.

The state space we want to explore is the space of all possible 
hierarchies as defined in Section 2.1 and we are restricting each 
switching time to contain at most one behaviour change. That is, at 
most one animal can change behaviour at a given time. Ideally, the 
transition rates of our Markov chain would correspond to switching 
between hierarchies. However, even for a group as small as four an-
imals there are in excess of 100 of these structures, meaning that 
approach is not practical. Whilst we would set the majority of the 

transition rates to be 0 due to the above restriction, the transition 
matrix would be unwieldy and difficult to define and interpret.

We can, however, explore the same state space by defining our 
behaviour states to represent each individual animal's state, as op-
posed to the group's. That is, an individual can switch which animal 
they are attracted to (i.e. subordinate to) or switch to Brownian mo-
tion (i.e. leading or independent). The following generator matrix is 
then used for each animal:

where n is the number of animals in the data and state SAi rep-
resents being subordinate to animal i . Here we use the parameter-
isation of a continuous-time Markov chain in which an animal stays 
in state u for a holding time, which is exponentially distributed with 
rate �u where �u is the rate of leaving state u

�
�u =

∑
u≠v���

�
. After this 

holding time, the animal switches to state v with probability ���∕�u. 
The diagonal elements of λ are therefore determined by the off-diag-
onal ones: �uu = −�u.

In the case of n=4 as in the above example, the number of tran-
sition parameters is a manageable 20 as well as being more intui-
tive. The penalty of using this individualistic approach as a proxy for 
switching hierarchies is akin to treating each animal homogeneously. 
That is, the transition rate �uv is the rate of switching from state u to 
v averaged over all animals in the group.

2.3.1 | Leading/independent extensions

The model described so far assumes leading or independent animals 
to be restricted to a single BM state and movement parameter ρ. To 
capture richer movement for these animals, various extensions to 
the model can be made.

Firstly, additional BM states with distinct noise parameters can 
be included to represent different ‘speeds’ of movement. In the re-
sults to be discussed, we use two BM states to loosely embody slow 
and fast movement. Secondly, we might assume that leading or in-
dependent animals are themselves attracted to some location, a re-
source or nesting site for example. It would then be natural to think 
of these animals as also moving under an OU process.

Both methods add movement parameter(s) and may add further 
row(s) and column(s) to the transition matrix, meaning some consid-
eration is needed as to the costs and benefits of these extensions.

3  | INFERENCE

Markov chain Monte Carlo methods are used to infer both the be-
haviour and movement parameters. Each iteration of the MCMC 
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BM λn+1 ,1 . . . . . . λ n+1 ,n+1

(7)



58  |    Methods in Ecology and Evoluon MILNER Et aL.

algorithm consists of two parts. Firstly, we sample the behaviour 
states of the animals in continuous time. This is done through sim-
ulating the state switches between the observed data points and 
the acceptance of these behaviour trajectories is evaluated by a 
Metropolis-Hastings ratio. The exact algorithm for this step is detailed 
in Section 3.1. Secondly, the parameters of the Ornstein-Uhlenbeck 
and Brownian motion processes are sampled in accordance with the 
latest behaviour sample by means of a Metropolis-Hastings random 
walk. Further details of this, including restrictions we place on the 
parameters, are in Section 3.2.

3.1 | Behaviour parameters

To estimate the behaviour parameters (both the states and Λ) we 
sample the animals' behaviour trajectories between the observed 
data points. Through this, we treat the behaviour switching in con-
tinuous time and account for our uncertainty in what the animal is 
doing at unobserved times, which enables us to undertake exact in-
ference in a Bayesian setting. Our method to simulate these trajec-
tories is a multi-animal variation of the ‘kappa’ method introduced by 
Blackwell et al. (2016) where the observed data is augmented with 
sampled state switching times. The current paper only discusses 
the spatially homogeneous case and we restrict only one animal to 
switch state at any given switching time. Furthermore, we only up-
date the trajectory for one animal at a time to increase the accept-
ance rates of our proposals.

Let �o represent the observed data times for the interval 
[
ta, tb

]
; �si 

represent the sampled switching times in the same interval for animal 
i ; � = �o ∪ �s so that 𝜏 = {𝜏1 < ⋯ < 𝜏p} where p is the size of � and 
�s = ∪i�si

 for all animals i . Finally, let β represent the behaviour states 
of all animals at times τ where βj corresponds to the states at time � j 
for j = 1, . . . , p.

To re-sample a trajectory estimate for a given animal, say i , in 
the interval 

[
ta, tb

]
, we discard the current sampled switching times 

for i , �si, and sample new ones, �
⋀

si
. The new potential switching times 

are produced from a homogeneous Poisson process over the interval (
ta, tb

)
 with rate λmax, where λmax ≥ max(λu) for all states u. �

⋀

si
 is com-

bined with �s−i, the remainder of �s, to produce a new set of switching 
times, �

⋀

s, and augmented times, �
⋀

= �o∪�
⋀

s.
We then simulate the behaviour states forward through 

𝜏
⋀

=
�
𝜏
⋀

1 < ⋯ < 𝜏
⋀

p
⋀

�
, where p

⋀

 is the size of �
⋀

, to obtain our new be-
haviour trajectory �

⋀

. We initialise �
⋀

1 = �1, after which there are 
three scenarios to account for:

• If �
⋀

j ∈ �o for j=2, . . . , p
⋀

, the behaviour states of all animals at �
⋀

j are 
carried forward from �

⋀

j−1.
• If �

⋀

j ∈ �s−i
 for j = 2, . . . , p

⋀

−1, we use our previously sampled states 
for all animals except i  at these times whilst the behaviour state 
of i  is carried forward from �

⋀

j−1.
• If �

⋀

j ∈ �
⋀

si
 for j=2, . . . , p

⋀

−1, the behaviour states of all animals 
except i  at �

⋀

j are carried forward from �
⋀

j−1. The probability of �
⋀

j 
being a switch for i  is λu/λmax when i  is in state u. If so, the new 

state is v with probability ���∕�u, otherwise, the state of i  at �
⋀

j is 
also carried forward from �

⋀

j−1.

We initialise �
⋀

1 = �1 as we typically simulate a trajectory esti-
mate over a short interval of the data and therefore our simulations 
must be consistent with the trajectories outside of that interval. 
For that reason, we also require �

⋀

p
⋀ = �p. Within the trajectory, 

there is an additional condition that sampled states must not cre-
ate a cyclic hierarchy, which includes an animal not being able to 
be subordinate to itself. If these conditions aren't met, we reject 
the trajectory and return to our previously sampled switches for i .

If these conditions are met, we accept or reject the new trajec-
tory with a Metropolis-Hastings (MH) step. Our simulations are pro-
posed from the current estimate of Λ and so the MH ratio simplifies 
to a ratio of likelihoods of the observed movement through the new 
proposed state switches against our previous estimate: 

where g�ok are the locations of the animals in a particular axis at time 
�ok

; �
⋀

[�ok−1
,�ok

] are the newly sampled states throughout the interval [
�ok−1 , �ok

]
 at times �

⋀

[�ok−1
,�ok

]; � [�ok−1 ,�ok ] are the previous state estima-
tions in the same interval at times � [�ok−1 ,�ok ]. Blackwell (2003) details 
how the movement likelihood terms are calculated through be-
haviour switches between two observations and more detail can be 
found in Appendix B.

We use the conjugate Dirichlet prior for the multinomial likeli-
hood of the transition rates to obtain their full conditional distribu-
tions and resample them using Gibbs sampling at each iteration of 
the MCMC algorithm.

3.1.1 | Partial observations

Partial observations, where we only have data on some of the ani-
mals we are tracking, are a potential obstacle when analysing data 
from multiple animals: tracking equipment may not be fully synchro-
nised or a GPS tag may not have been able to transmit some data for 
example. However, the above method is naturally adaptable to take 
into account the uncertainty of any missing or unsynchronised data 
using standard results for conditional multivariate normal distribu-
tions. See Appendix C for more information.

3.2 | Movement parameters

Treating the current values of the behaviours as fixed, we update the 
parameters of all Ornstein-Uhlenbeck and Brownian motion processes 
simultaneously through a Metropolis-Hastings random walk. We 
use independent, normally-distributed proposals for each parameter 
meaning the Metropolis-Hastings ratio is again reduced to Equation 8.

(8)
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We place certain bounds on the parameters. In general, all pa-
rameters must be >0 and we have added the restriction that � ≤ �,  
the justification being that an animal influenced by another should 
have less variability in their movement than an animal following a 
BM process. In the case of extending the model to allow for multiple 
BM states (see Section 2.3), the above restriction is loosened to � ≤ 
ρmax where ρmax ≥ �, ∀�. This case also brings potential complications 
to the state labelling and so, in order to keep consistency, we define 
𝜌1 < . . . < 𝜌m for m BM states.

3.3 | Implementation

Both the simulation and inference methods were fully implemented 
in R (R Core Team, 2017). Aside from the MCMCpaCk package 
(Martin, Quinn, & Park, 2011), which is used for the Dirichlet dis-
tribution, the code to perform the inference is original. Whilst the 
inference code is not yet formally wrapped up as an R package, it is 
available on GitHub (see Data Availability Statement) along with a 
brief readme file that instructs on how to use the code in R. This in-
cludes guidance on what format the data is required to be in, what 
tuning parameters need consideration and altering the number of 
states which model leading and independent movement. There is 
also information for reproducing the analysis in this paper.

4  | RESULTS

4.1 | Simulated data

We analysed simulated data to show the theoretical capabilities of 
both our model and inference approach. Here, we analyse a single 
data set to examine the outputs of the model in detail, whilst in 
Section 5, we analyse 400 different simulations to provide insight 
into the robustness of the model in different scenarios.

The simulation consists of five dynamically interacting ani-
mals for 100 discrete-time movement steps, with each step two 
units of time. We randomly deleted 10% of the data (uniformly 
across all data) to provide us with the setting of having incomplete 

data. The ‘observed’ times were augmented with switching times 
through a Poisson process as detailed in Section 3.1; the move-
ment of the group was simulated forwards through the augmented 
data set using a multivariate OU process as in Section 2.2; state 
switches were sampled using a continuous-time Markov chain as 
in Section 2.3.

We incorporated two BM states for leading/independent ani-
mals to allow for different speeds of movement, meaning we have 
seven behaviour states in total. Whilst we simulated the movement 
and behaviours of the animals in continuous time, the model is only 
fitted to the discrete-time ‘observed’ data to mirror typical real data. 
All inference runs (in this and subsequent sections) were performed 
on the University of Sheffield's HPC ‘ShARC’ where each core runs at 
2.4 GHz with 4.0 GB of RAM (a single core being used for each run).

To initialise the MCMC algorithm we randomised the behaviour 
parameters and started with over-dispersed movement parame-
ter values. We set λmax as 0.2 as that was sufficiently high for the 
transition rates used for the simulation and we updated sections of 
an animal's trajectory ranging from 3 to 12 observations long. We 
sampled a new trajectory 70 times per iteration of the MCMC in 
order for the behaviour state at each observation to be re-sampled 
on average. We ran the MCMC algorithm for 1.4 million iterations, 
of which 50,000 was burn-in, and we recorded every second itera-
tion for the movement parameters and every 20th iteration for the 
behaviour parameters. We used an uninformative Dirichlet prior for 
the transition rates.

Figure 2 shows the movement parameter posteriors against 
the true values used. All are consistent with the true value and to 
check convergence the Gelman-Rubin diagnostic is used to assess 
the potential improvement from running more or longer chains. 
The multivariate potential scale reduction factor (PSFR) is 1, cal-
culated from two separate MCMC runs using coda (Plummer, Best, 
Cowles, & Vines, 2006); this indicates that each chain is exploring 
the same posterior distribution, after burn-in. Details of the con-
fidence limits of the PSFRs (for these and subsequent results) are 
in Appendix D. Figure 3 shows our behaviour state posteriors for 
animal 3, along with the true states from the simulation. The pos-
terior estimates are broadly correct and confident, though quick, 
nuanced switches as in observations 67 and 68 can be smoothed 

F I G U R E  2   Top: posterior distributions 
for the four movement parameters for 
our simulated data. The blue vertical line 
indicates the true value used. Bottom: 
a summary of the movement parameter 
results. Point estimates and standard 
deviations are given to 3 s.f.; effective 
sample size is rounded down after being 
calculated using using coda (Plummer 
et al., 2006)
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over. Note that since this output refers to animal 3, the probabil-
ity of it being in state SA3 (which would represent subordinate to 
itself) is necessarily zero.

Thus, our model and inference approach can provide insights 
into the dynamics of the social interactions within a group's move-
ment when our social behaviour assumptions (Section 2.1) are fair.

4.2 | Baboon data

To test our approach ‘in the field’, we have taken a subset of wild 
olive baboon data that was originally analysed by Strandburg-
Peshkin et al. (2015), which is available on Movebank (Crofoot, Kays, 
& Wikelski, 2015). The GPS data was collected at the Mpala Research 
Centre in Kenya for 26 baboons in a single troop. The data was re-
corded at a frequency of 1 Hz, for 12 hr a day (06:00–18:00) over 
30 days. We took a subset of this data for five baboons (ID's 3, 4, 5, 
11, 9) for 15 min (899 observations) to act as a test for the model. 
We chose this time period to contain some directional conflict as 
in Movie S2 in the supplementary materials of Strandburg-Peshkin 
et al. (2015). We converted the GPS coordinates to UTM zone 37N 
easting-northing using sp (Bivand, Pebesma, & Gomez-Rubio, 2013; 
Pebesma & Bivand, 2005).

Again, we included two BM states for leading or independent 
animals. In attempting to fit the model with only a single BM state 
in another analysis, the subordinate behaviour states translated 
to a pseudo-BM state (that is, an OU process with an extremely 
weak attraction parameter) to force capture of a different speed 
of movement to that of our actual BM state. It therefore became 
necessary to include an additional BM state to better model that 
diversity of movement and allow the subordinate states to repre-
sent the social behaviours. This baboon analysis presented a similar 
scenario.

The MCMC algorithm was initialised as in Section 4.1. λmax was 
again set as 0.2, which seems sufficient given the resulting transi-
tion rates. Updates of the animal's trajectory are performed over 
lengths of 3–40 observations and we sampled 210 trajectories in 
each iteration. The MCMC ran for 500,000 iterations, of which 
100,000 was burn-in, and we recorded every second iteration for 
the movement parameters and every 20th iteration for the be-
haviour parameters. An uninformative Dirichlet prior was used for 
the transition rates.

Figure 4 shows the posterior distributions for the movement pa-
rameters. The posterior for α shows strong evidence that there is in-
deed interaction between the five baboons in the data analysed. The 
Gelman-Rubin diagnostic is again used to check convergence over two 
MCMC runs (using coda, Plummer et al., 2006) and the multivariate 
potential scale reduction factor of the movement parameters is 1.02.

The state posteriors of baboon 5 are shown in Figure 5, through 
which we can observe the dynamics of this baboon's social behaviour 
in a subordinate sense. That is, it mostly alternates being attracted 
to baboons 3 and 4, though there is some uncertainty as to which 
baboon it is subordinate to in the last 200 observations.

Figure 7a shows a similar graph but with the state posteriors re-
configured to indicate the role of this particular baboon (baboon 9). 
An animal in a BM state is leading if they have a subordinate or inde-
pendent if not. All animals in a subordinate state are following. This al-
lows us to see in what capacity an animal interacts with its peers. For 
instance, we estimate baboon 9 largely interacts as a subordinate 
until around observation 700 when it takes on a consistent leader-
ship role. Looking at the data, this time corresponds to a change in 
the direction that the baboons are moving in.

This formulation also allows us to see the long-term manner in 
which the animals interact, both in the sense of their role (Table 1) and 
with each other (Table 2). Though both of these tables only show us a 
static overview of the social interaction, they highlight which animals 

F I G U R E  3   The state posterior 
distribution for animal 3 in the simulation 
data. There are seven states: the two 
Brownian motion speeds and five 
subordinate behaviours where state SAi 
indicates attraction to animal i. The area 
of each box represents the posterior 
probability of being in that state at that 
observation, from 0 to 1. The black line is 
true state in the simulated data
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seem to have persistently high levels of influence in the group (baboons 
3 and 5) and potentially strong bonds within it (e.g. baboons 3, 5 and 11).

Exact inference by means of simulating when behaviour switches 
occur is a computationally costly task. Ideally, we would have run a 
greater number of iterations as indicated by the modest effective 
sample size of the movement parameters (Figure 4) and the Gelman-
Rubin diagnostic for the transition rates. Whilst the potential scale 
reduction factor for the vast majority of rates was <1.04, the high-
est was 1.38. Additionally, the larger the subset of data we can fit 

F I G U R E  4   Top: posteriors distributions 
for the four movement parameters for the 
baboon data analysis. Note the different 
scales of the Density axes. Bottom: a 
summary of the movement parameter 
inference. Point estimates and standard 
deviations are given to 3 s.f.; effective 
sample size is rounded down after being 
calculated using using coda (Plummer 
et al., 2006)

F I G U R E  5   The state posterior 
distribution for baboon 5. There are seven 
states: the two Brownian motion speeds 
and five subordinate behaviours where 
state SBi indicates attraction to baboon 
i. The area of each box represents the 
posterior probability of being in that state 
at that observation, from 0 to 1
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TA B L E  1   The percentage (1 d.p.) of observations each baboon 
spent in each role based on the modal state

Independent (%) Leading (%) Following (%)

Baboon 3 47.2 37.2 15.7

Baboon 4 54.1 10.0 35.9

Baboon 5 20.4 38.0 41.6

Baboon 11 28.7 4.0 67.3

Baboon 9 47.7 21.4 30.9
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the model to (both in terms of the number of animals and the time 
period), the more long-term and biological questions can be inves-
tigated. However, the results described above were obtained over 
approximately 2.8 days and so we have not yet overcome the com-
putational hurdle that can come with continuous-time models, par-
ticular ones with a complex state space.

This data has previously been analysed by Strandburg-Peshkin 
et al. (2015) to investigate how a troop of baboons collectively make 
their movement decisions. ‘Movement initiations’ were extracted 
from the data of 25 baboons through a method based on minima and 
maxima distances between a pair of animals. Through this approach, 
Strandburg-Peshkin et al. quantified the probability of a baboon fol-
lowing a movement initiation in the context of the number of ini-
tiators and their consensus in direction—situation-based covariates 
that would not be trivial to implement in our model.

Though, whilst their interaction assumption of a following an-
imal moving towards the initiator is conceptually similar to ours, it 
is perhaps more restrictive. Our OU approach models the subor-
dinate's movement as being distributed around the location of its 
dominant. As a result, we do not have to constrain our definition 
of influence to being the ‘initiator’ or the animal at the front of the 
group (Strandburg-Peshkin et al., 2015) for example. Along with the 
state switching we have defined, this will also help to smooth out 
erroneous interactions in the data.

5  | RELIABILIT Y

Whilst the above results are encouraging, there is scope for the 
model to infer false positives (interaction where there is none) and 
false negatives (no interaction where there is some). To investigate 
this, we have analysed 400 different simulations derived from four 
different sets of parameters—100 from each set.

The parameters of set 1 are identical to those used to create 
the simulated data in Section 4.1; set 2 has been derived to simu-
late similar movement behaviours as inferred from the baboon data; 
set 3's parameters were chosen to represent different behaviours 
from those of sets 1 and 2. For instance, the three noise parameters 
are less distinct than in the other sets to provide a tougher infer-
ence scenario (see Table 3). Set 4 consists of animals solely moving 
in Brownian motion in order to analyse the rate at which the model 

introduces false positives. Whilst the movement parameters and Λ 
were kept constant across all simulations for that parameter set, the 
initial behaviour states at time 0 were sampled from the stationary 
distribution of Λ in order for each data set to contain different be-
haviours. All simulations allow for two BM states and consist of 100 
movement steps.

Generally, each run was initialised much like those in Section 4.1. 
However, each set was treated to its own movement parameter 
proposal distributions in order to encourage good mixing, with the 
same configuration being used for all runs corresponding to that set. 
Additionally, to encourage false positives in set 4, we initialised α 
to be low on the assumption that any false positives inferred would 
point to weak attraction. Each run was carried out for 1 million iter-
ations with a burn-in of 500,000.

In order to evaluate the rate of false positives and false negatives 
in interaction, we use our state estimations of the whole group to 
calculate the probability of two animals interacting at a given time, 
whether directly or indirectly and regardless of dominance and sub-
ordination ordering. This probability is an interaction posterior. At 
times of true interaction in the simulations, we would expect the 
interaction posterior to be close to 1; at times of true non-interaction, 
we would expect the complimentary non-interaction posterior to be 
close to 1. The CDFs of these posteriors for each run are plotted in 
Figure 6.

The CDFs relating to sets 1 and 3 form the desired curve, 
though those of set 3 display more uncertainty. This is intuitive 
as α is smaller in set 3 compared to set 1 (that is, the attraction is 
weaker) and the noise parameters were set to provide more of a 
challenge. The anomalous result in the non-interaction posteriors 
for set 3 comes from a data set where there is very little non-inter-
action—each pair of animals don't interact for only approximately 
8.7% of the data on average. Uncertain state estimations during 
some of those segments of non-interaction are a blot on otherwise 
reasonable results for that data set. With regards to set 4, there 
are no plots concerning true interaction as there isn't any in those 
simulations—a feature confidently estimated in the non-interaction 
posteriors. However, there are clearly two erroneous results. The 
most spurious of those is the consequence of not tuning each sim-
ulation separately and the resulting acceptance rate of the move-
ment parameters was extremely low (approximately 1%). Whilst 
this is clearly not a desirable outcome, ordinarily we would be able 
to tune the MCMC differently to navigate this issue; as it is, the 
problem is evident from the most cursory diagnostics, so would 

TA B L E  2   The percentage (1 d.p.) of observations each baboon is 
subordinate to another based on the modal state. Cell ij in the table 
corresponds to baboon i being subordinate baboon j

Baboon 
3 (%)

Baboon 
4 (%)

Baboon 
5 (%)

Baboon 
11 (%)

Baboon 
9 (%)

Baboon 3 — 0.2 7.8 0.1 7.2

Baboon 4 7.8 — 18.4 6.5 3.0

Baboon 5 28.5 10.0 — 1.3 1.9

Baboon 11 16.1 0.0 34.6 — 15.9

Baboon 9 13.9 0.0 9.8 7.2 —

TA B L E  3   The four sets of movement parameter values used to 
simulate data

Parameter  
set α σ ρslow ρfast

1 0.5 0.7 0.4 1.8

2 0.0266 0.297 0.0751 0.855

3 0.2 0.7 0.5 1.4

4 0.4 1.8
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F I G U R E  6   The plots in the left column 
contain the CDFs of the interaction 
posteriors at times of true interaction. The 
plots in the right column contain the CDFs 
of the non-interaction posteriors at times 
of true non-interaction. Each row of plots 
corresponds to a parameter set and each 
CDF is derived from the posteriors for all 
pair combinations during a single run
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not mislead in an actual analysis. The second erroneous result sim-
ply inferred some interaction. A small number of segments of the 
data are estimated, with a large degree of uncertainty, to contain 
weak interaction.

Figure 6 indicates a greater degree of uncertainty in the interac-
tion posteriors of set 2 compared to those of sets 1 and 3. In part, this 
effect will be due to set 2's simulations containing comparatively lit-
tle interaction and so false negatives are more pronounced in their 
interaction posterior CDFs than those of sets 1 and 3. More impor-
tantly though, this uncertainty highlights a limitation of modelling 
the movement of leading/independent animals only as Brownian 
motion. The difference in certainty of the state posteriors in 
Section 4.2 and those of the simulations derived from Section 4.2's 
results will in part be due to there being some feature of the real 
movement that is not captured by BM, such as persistence. Without 
that feature, independent animals and subgroups in the simulations 
would frequently overlap movement paths. It therefore becomes a 
challenge to identify the exact interactions taking place. This pro-
duces scenarios in the simulations that are perhaps not biologically 
relevant and another process, such as Ornstein-Uhlenbeck, may be 
better suited to model the movement of the leading and indepen-
dent animals.

Generally though, these simulation results display a good level of 
robustness. Where there is uncertainty, the CDFs in Figure 6 indicate 
it is most likely regarding interaction—potentially resulting in a false 
negative. Using set 2 as an example, we can examine this uncertainty 
further with Figures E.1 and E.2 in Appendix E. The role posteriors com-
pared against the true role show that we are fairly certain whether an 
animal is a subordinate or not at any given time. The consistent move-
ment parameter posteriors are further evidence of this. The uncer-
tainty relates to exactly which animal they are subordinate to.

6  | DATA THINNING

Alongside our model being slow to fit to data, a recurring question 
in animal tracking studies is: at what frequency should data be col-
lected at for the analysis at hand (Hughey, Hein, Strandburg-Peshkin, 
& Jensen, 2018)? We have therefore experimented with thinning the 
same baboon data analysed above (henceforth referenced as the ‘full 
analysis’) to investigate how the inference speed can be improved by 
fitting the model to a thinned data set, and how the results compare 
to the full analysis. We experimented by thinning the data by a factor 
of five and of 20.

We will also discuss our choices of λmax for these experiments. 
λmaxδt is the mean number of potential switching points sampled 
from the Poisson process between sequential observations over a 
time span of δt. Whilst we state in Section 3.1 that λmax ≥ max(λu) 
to ensure all state switches can be sampled appropriately, if λmaxδt 
is high, say five, there is little information to be gained from sam-
pling that many state switches between sequential observations. 
Reducing λmax will reduce the size of the augmented data set and the 
number of computations needed.

6.1 | Thinning by a factor of five

We took every fifth observation of the baboon data detailed above, 
leaving us with 180 observations (at 0.2 Hz) instead of 899 (at 1 Hz). 
We ran the inference again for 500 K iterations to provide a compa-
rable analysis. λmax was kept at 0.2 and so λmaxδt = 1 for sequential 
observations.

As a result of thinning of the data, the uncertainty of move-
ment parameter posteriors increased as can be seen in Figure F.1 in 
Appendix F. The slight differences in the estimations will most likely 
be for two reasons. Firstly, any discrepancies in state estimations 
between the two analyses and secondly, the model we have cho-
sen to fit may not be sufficient to represent some of the movement 
behaviours. That is, we chose to model the movement of leading/
independent animals as Brownian motion. However, if there is some 
persistence in their movement in reality, the noise coefficient of BM 
will not scale appropriately as the data is thinned. Section 2.3 de-
tailed how this model may be extended to capture that persistence.

When comparing the role posteriors of baboon 9, the thinned 
analysis (Figure 7b) smooths over the state estimations from the full 
analysis (Figure 7a). To investigate this smoothing, we looked at the 
modal state estimations at the 1 Hz observation times in both analy-
ses and quantified the periods of behaviour that were present in the 
full but absent from the thinned analysis. To classify a period of be-
haviour as being smoothed over, we require that at least 80% of that 
period to have a different modal state estimated in the thinned anal-
ysis. The 80% threshold is arbitrary, but it prevents a period from 
being accounted for in the thinned analysis by a relatively short visit 
to that state whilst still capturing significant smoothing. Figure 8 
shows that the smoothed-over periods are predominately small in 
length—mostly under five seconds which is our new temporal scale.

This smoothing is likely to be a result of our assumption that 
the animal's behaviour is Markovian. If the full data suggests the 
short state transitions as seen in Figures 5 and 7a, the Markovian 
behaviour process will readily accommodate them. The constant 
transition rates incorporate no presumption against very short 
visits, as reflected in the exponentially distributed holding times. 
Through thinning the data, the ‘evidence’ of these transitions 
is no longer present, though they may remain with much lower 
probability.

6.2 | Thinning by a factor of 20

We took every 20th observation of the data set used for the full 
analysis, leaving us with 45 observations (at 0.05 Hz). We ran the 
inference again for 500 K iterations but for this analysis we reduced 
λmax to 0.05. As discussed above, the motivation for this was to keep 
λmaxδt small.

Whilst this amount of thinning can be thought of as extreme 
smoothing, where we'd expect to get results largely in agreement 
to those of the full analysis, Figure 7c shows the state/role pos-
teriors can be drastically different. For example, the thinned data 
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no longer supports the two periods of subordination that baboon 
9 undertakes between observations 600–700 in Figure 7a. Thus, 
the resulting social structure has a different picture. These differ-
ent behaviour estimations then have further impacts on the move-
ment parameter posterior distributions (Figure F.1, Appendix F).

In the full analysis, max(λu) = 0.153 (3 d.p) and so we wouldn't 
expect an animal to switch state much more frequently than 
every 7 s. We therefore suspect thinning the data to 0.2 Hz 
keeps enough information in order to estimate similar behaviours. 

Thinning the data further, and reducing λmax, reduces the scope of 
social behaviours that can be captured. That is, short-term inter-
actions can't be seen and are unlikely to be sampled. Whilst the 
thinning-by-20 results aren't wrong per se, they offer a different 
temporal perspective of the social behaviours of the baboons. 
These thinning experiments indicate the results of an analysis will 
be most informative and efficient if the temporal resolution of the 
data collected is informed by the nature of the behaviours that are 
to be investigated.

F I G U R E  7   The role posterior distribution for baboon 9 for the full analysis (a), thinned by a factor of five (b) and thinned by a factor of 20 
(c). The area of each box represents the posterior probability of being in that role at that observation, from 0 to 1

0 200 400 600 800

Observation

R
ol

e

Fo
llo

w
in

g
Le

ad
in

g
In

de
pe

nd
en

t

0 50 100 150

Observation

R
ol

e

Fo
llo

w
in

g
Le

ad
in

g
In

de
pe

nd
en

t

0 10 20 30 40

Observation

R
ol

e

Fo
llo

w
in

g
Le

ad
in

g
In

de
pe

nd
en

t

(a)

(b)

(c)



66  |    Methods in Ecology and Evoluon MILNER Et aL.

With regards to the speed of the inference, the thinned-by-five 
analysis was completed in approximately 24 hr, as opposed to ap-
proximately 67 hr for the full analysis. Whilst the number of obser-
vations was reduced to a fifth, the number of simulated data was 
equivalent as we kept the same λmax. Though, there is scope to use 
a smaller λmax during the thinned-by-five analysis as the resulting  
max(λu) was 0.111 (3 s.f.). The thinned-by-20 analysis was completed 
in approximately 7 hr.

7  | COMPARISON OF METHODS

To compare our approach with other methods, we have exam-
ined our results from both the simulation and full baboon analy-
ses alongside those obtained when applying dyadic metrics (Joo, 
Etienne, Bez, & Mahévas, 2018; Long et al., 2014) to the same data. 
Much like our approach, dyadic metrics utilise movement data 
from multiple animals to investigate any interdependence and in 
turn better understand their collective behaviours. As their name 
suggests, the dyadic metrics are built to analyse the interdepend-
ence of two animals.

The metrics we have chosen to implement are proximity and 
dynamic interaction using the wildlifeDI R package from Long 
et al. (2014). Joo et al. (2018) indicate each metric offers an informa-
tive view into a specific element of interaction. Proximity evaluates 
whether two animals are within a distance threshold defined by the 
user; dynamic interaction, when split into its displacement and direc-
tion components, offers insight into whether two animals are moving 
at a similar speed or in a similar orientation respectively. In order to 
compare results, we use the same interaction posterior approach that 
we used in Section 5 as that is comparable to the interpretation of 
the dyadic metrics. This is done for every data point in which both 
animals are simultaneously observed as this is a necessary criterion 
for the metrics.

Figure 9a plots our interaction posterior against each of the 
three metrics for animals 1 and 3. These animals were chosen as 
ideal candidates to compare methods as they undertook periods 

of both direct and indirect interaction. Whilst the interaction pos-
terior is largely (and correctly) concentrated at 0 and 1, the dis-
placement and direction metrics are uniform across their ranges 
regardless of whether there was true interaction or not. Proximity 
fares better as most simultaneous data <2 m apart correspond to 
true interaction and most simultaneous data >4 m apart corre-
spond to true non-interaction. However, the distances in between 
highlight the difficulty in determining interaction from proximity 
alone.

Figure 9b displays the same comparison for baboons 4 and 9. 
Whilst the interaction posterior is again largely concentrated towards 
0 and 1, the proximity metric does not offer a discernible pattern. 
It is uninformative when the interaction posterior is close to 0 and 
interaction appears to be grouped at distinct ranges of proximity—at 
approximately 60 m and <20 m. For both displacement and direction, 
there is moderate concentration at (1,1) —indicating a consensus be-
tween our model and these metrics on some moments of interac-
tion. However, both metrics are quite uniform when the interaction 
posterior is certain there is no interaction. In particular, direction is 
just as likely to suggest interaction as it is non-interaction.

Overall, there is some consistency of the metrics with our model 
in estimating when two animals interact. However, when the ani-
mals are not interacting (either known from the simulated data or 
estimated from our model), the dyadic metrics are generally not in 
agreement and are fairly uniform across their ranges. We suspect 
this is because the metrics can have quite relaxed definitions of in-
teraction. For instance, dynamic interaction can hint at interaction 
without any concern as to whether the animals are reasonably prox-
imate to one another. That is in contrast to our perhaps more de-
fined notion of interaction where we are not likely to introduce false 
positives (see Section 5). Though, that definition comes with its own 
limitations such as not being able to capture co-movement.

From a practical point of view, the dyadic metrics are much 
faster to run than our approach and they will require less tun-
ing. However, our model can more naturally handle incomplete 
or unsynchronised data. The metrics require essentially simulta-
neous data to evaluate the cohesion of two animals at a given 

F I G U R E  8   A histogram of the number 
of observations in a state before switching 
in the full analysis (black) and which of 
these periods were smoothed over in the 
thinned analysis (grey)
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time whereas our model is able provide an estimate of interac-
tion in continuous time across the temporal range of the data. 
Furthermore, our model has the capability to jointly analyse the 
data of larger social groups.

8  | DISCUSSION

Our model offers a robust yet flexible method in continuous time 
in which to capture the social interactions in animal movement. 
Modelling the state switches in continuous time means we avoid 
approximation from using discrete data and our social behaviour 
analysis is not bound to the temporal scale of the data. Through 
the ‘influence hierarchies’ framework, a wide range of social con-
structs can be captured: from despotic leadership to fission-fusion 
dynamics. Furthermore, social hierarchies are a simple and common 
concept meaning a certain amount of the abstraction of statistical 
models is stripped away.

Our formulation of the behavioural states allows us to capture 
rich information with regards to the social behaviours in a group's 
movement. Animals consistently influencing the movement of other 

animals may be considered ‘keystone’ animals and identifying such 
animals can have productive applications in conservation and man-
agement decisions (King et al., 2018; Westley et al., 2018). Obtaining 
a picture of a group's social structure may also help us understand 
how resilient or adaptive they are to change (King et al., 2018) and 
we can monitor how anthropogenic activity might be impacting 
them (Westley et al., 2018).

We restrict the social structure to the hierarchies defined in 
Section 2.1 in order to keep the model tractable. However, this 
does mean we omit certain interactive behaviours. For instance, 
the ‘double-subordinate’ as in McDonald and Shizuka (2013) and 
discussed in Strandburg-Peshkin, Papageorgiou, Crofoot, and 
Farine (2018), where an animal is equally influenced by two (or 
more) others. Cyclic structures are also not accounted for in our 
model, but analysis from McDonald and Shizuka (2013) suggests 
social structures tend to be highly orderly and so this may not be 
problematic.

Our social interaction assumption is one based on order—that is, 
there is a dominant and subordinate. However, that will not always 
be a fair assumption such as the case where two or more animals 
are mutually influenced by each other. Current work is ongoing to 

F I G U R E  9   The interaction posteriors (the posterior probability of two animals being in the same subgroup) from the simulation analysis 
(Section 4.1) are plotted against the proximity, dynamic interaction in displacement (DId) and dynamic interaction in direction (DIθ) dyadic metrics 
for the same data set (a). The results used are for animals 1 and 3 and each point corresponds to a simultaneous observation. Similarly, the 
same approach has been taken for baboons 4 and 9 from Section 4.2 (b). Both axes have been jittered in order to help display the density of 
the points
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model that behaviour in a similar framework to the one detailed in 
this paper. Furthermore, our assumption the behaviour process  
in general is Markovian may not be biologically sound as discussed in 
Section 6.1. An alternative approach may be to model the behaviour 
process as semi-Markovian in order for the times spent in a state to 
be more realistically distributed.

Whilst the opportunity to obtain simultaneous tracking data 
from multiple animals within a group is increasing, it still may not be 
possible or practical to track an entire group. Incomplete data on a 
group, along with our definitions of the behaviour states, can lead 
to falsely estimating direct influence and relationships between 
the animals we have data on as our model does not account for the 
animals we don't have data for. For example, we have character-
ised baboon 9 as leading others through a movement decision, but 
as we have only analysed five of the 26 baboons in the group there 
is a possibility baboon 9 was in fact influenced by an animal we 
don't have tracking data for. Therefore we have to be conscious 
not to over-interpret our results as the de-facto social behaviour. 
Niu et al. (2016) used a moving abstract central point that acts as 
the focus of a group's movement which can navigate the possibil-
ity that we don't have complete data about a group, but it doesn't 
allow finer details of the social behaviour to be examined.

Whilst probing further into the social interactions can offer 
richer information as discussed, the sheer size of the state space can 
be inhibiting—a considerable amount of time is needed to fully ex-
plore it. Work needs to be done to optimise the current inference 
algorithm, particularly with regards to the method in which we sam-
ple new trajectories. The current method is naive as we simulate for-
wards through the data whilst ignoring the end state the trajectory 
must be in, which can lead to low acceptance rates. One potential 
route to remedy this is to explore techniques based on the Forward 
Algorithm (widely used for efficient implementation of Hidden 
Markov models) as proposed by Blackwell (2018).

Various elements of the model can be treated as either het-
erogeneous or homogeneous in space and time or across individ-
uals, depending on the analysis in question. In both analyses in 
this paper, we used a Λ that is heterogeneous across individuals. 
An alternative approach would be treat it as homogeneous, re-
sulting in just four transition rate parameters relating to being in 
an OU (subordinate state) or a BM (leading/independent) state. 
This should improve the mixing of the inference but it will pro-
vide coarser results. The model and inference we have detailed is 
spatially homogeneous. However, more rich and beneficial infor-
mation could be obtained through adding spatial covariates such 
as environmental data or the positions of the animals relative to 
each other. These may affect the social behaviour, or indepen-
dent and/or leading animals may be affected by a static (Blackwell 
et al., 2016) or dynamic (Wang, Blackwell, Merkle, & Potts, 2019) 
environment rather than following Brownian motion. The algo-
rithm in Section 2.3 to sample new trajectories is easily extended 
to a spatially heterogeneous case, though it slows it down con-
siderably. Again, work is ongoing to develop and improve this. 
Furthermore, we could add some heterogeneity into the animals 

themselves. For example, we could use characteristic information 
such as the animal's age or sex to ascertain how they interplay 
with social dominance. Or independent transition rates could 
be estimated for each animal in a model that is hierarchical in 
the statistical sense, but some consideration will be needed to 
weigh up the benefits of substantially increasing the number of 
parameters.
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